Last updated: 2020-09-03

Checks: 6 0

Knit directory: drift-workflow/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190211) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    docs/.DS_Store
    Ignored:    docs/assets/.DS_Store
    Ignored:    output/

Untracked files:
    Untracked:  analysis/extrapolate3.Rmd
    Untracked:  analysis/extrapolate4.Rmd
    Untracked:  analysis/pm1_priors_tmp.Rmd

Unstaged changes:
    Modified:   drift-workflow.Rproj

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 40bd6e1 Jason Willwerscheid 2020-09-03 workflowr::wflow_publish(“analysis/pm1_priors11.Rmd”)
html f2b82dc Jason Willwerscheid 2020-09-03 Build site.
Rmd 688d5fa Jason Willwerscheid 2020-09-03 wflow_publish(“analysis/pm1_priors11.Rmd”)

suppressMessages({
  library(flashier)
  library(drift.alpha)
  library(tidyverse)
})

I run some more experiments on the balanced tree with four populations of equal sizes to try to get a better understanding of what’s going on.

sim_tree <- function(n_range, 
                     p = 10000, 
                     branch_means, 
                     branch_sds, 
                     resid_sd = 0.1,
                     admix_pops = NULL, 
                     outgroup = FALSE, 
                     seed = 666) {
  set.seed(666)
  
  depth <- length(branch_means)
  npop_pure <- 2^(depth - 1)

  if (is.null(admix_pops)) {
    admix_pops <- matrix(nrow = 0, ncol = 0)
  }
  npop_admix <- ncol(admix_pops)
  
  npop <- npop_pure + npop_admix + outgroup
  
  if (length(n_range) == 1) {
    n <- rep(n_range, npop)
  } else {
    n <- sample(30:100, npop, replace = TRUE)
  }
  K <- 2^depth - 1
  
  FF <- matrix(nrow = p, ncol = K)
  k <- 1
  for (d in 1:depth) {
    for (i in 1:(2^(d - 1))) {
      FF[, k] <- rnorm(p, sd = branch_means[d] + rnorm(1, sd = branch_sds[d]))
      k <- k + 1
    }
  }
  
  tree_mat <- matrix(0, nrow = npop_pure, ncol = K)
  k <- 1
  for (d in 1:depth) {
    size <- 2^(depth - d)
    for (i in 1:(2^(d - 1))) {
      tree_mat[((i - 1) * size + 1):(i * size), k] <- 1
      k <- k + 1
    }
  }
  
  pop_means <- FF %*% t(tree_mat)
  if (npop_admix > 0) {
    pop_means <- cbind(pop_means, pop_means %*% admix_pops)
  }
  if (outgroup) {
    pop_means <- cbind(pop_means, rnorm(p, mean = 0, sd = sqrt(sum(branch_sds^2))))
  }
  
  Y <- NULL
  for (i in 1:npop) {
    Y <- rbind(Y, matrix(pop_means[, i], nrow = n[i], ncol = p, byrow = TRUE))
  }
  Y <- Y + rnorm(sum(n) * p, sd = resid_sd)
  
  plot_fl <- function(fl) {
    dr <- init_from_flash(fl)
    sd <- sqrt(dr$prior_s2)
    L <- dr$EL
    LDsqrt <- L %*% diag(sd)
    K <- ncol(LDsqrt)
    plot_loadings(LDsqrt[,1:K], rep(letters[1:npop], n)) +
      scale_color_brewer(palette="Set3")
  }
  
  return(list(Y = Y, plot_fn = plot_fl))
}
  
init.mean.factor <- function(resids, zero.idx) {
  u <- matrix(1, nrow = nrow(resids), ncol = 1)
  u[zero.idx, 1] <- 0
  v <- t(solve(crossprod(u), crossprod(u, resids)))
  return(list(u, v))
}

balanced_4pop <- sim_tree(n_range = 50,
                          p = 10000,
                          branch_means = rep(1, 3),
                          branch_sds = rep(0, 3),
                          resid_sd = 0.1)

In an earlier analysis, I needed to do a backfit in order to find sparse third and fourth factors via rotation. Ideally, though, the greedy approach would be able to find a sparse third factor. But it doesn’t:

fl_pl <- flash.init(balanced_4pop$Y) %>%
  flash.set.verbose(0) %>%
  flash.add.greedy(Kmax = 3, 
                   prior.family = c(prior.point.laplace(), prior.normal())) %>%
  flash.backfit(tol = 1e-4, verbose.lvl = 0)

balanced_4pop$plot_fn(fl_pl)

Version Author Date
f2b82dc Jason Willwerscheid 2020-09-03

This is not a convergence issue: if I initialize to a sparse factor (by, for example, keeping only the first three factors from the fit from the previous analysis), I get the same result:

fl_pl2 <- flash.init(balanced_4pop$Y) %>%
  flash.set.verbose(0) %>%
  flash.add.greedy(Kmax = 4, 
                   prior.family = c(prior.point.laplace(), prior.normal())) %>%
  flash.backfit(tol = 1e-4, verbose.lvl = 0)

fl_pl3 <- fl_pl2 %>% 
  flash.remove.factors(kset = 4) %>%
  flash.backfit(tol = 1e-4, verbose.lvl = 0)

balanced_4pop$plot_fn(fl_pl3)

Version Author Date
f2b82dc Jason Willwerscheid 2020-09-03

What’s happening is that we’re getting the third principal component and there’s a sufficiently large gap between the third and fourth singular values for the non-sparse third PC to be preferred to a sparse linear combination of the third and fourth PCs.

svd_res <- svd(balanced_4pop$Y)
cat("First four singular values:", round(svd_res$d[1:4]))
#> First four singular values: 1877 1216 713 694

The third PC appears as follows:

plot(svd_res$u[, 3])

Version Author Date
f2b82dc Jason Willwerscheid 2020-09-03

This is not due to residual noise, but (I think) to the fact that the simulated branches aren’t exactly orthogonal. If I remove the noise altogether, I get the same result:

balanced_4pop_smallsd <- sim_tree(n_range = 50,
                                  p = 10000,
                                  branch_means = rep(1, 3),
                                  branch_sds = rep(0, 3),
                                  resid_sd = 0)

fl_pl4 <- flash.init(balanced_4pop_smallsd$Y) %>%
  flash.set.verbose(0) %>%
  flash.add.greedy(Kmax = 3, 
                   prior.family = c(prior.point.laplace(), prior.normal())) %>%
  flash.backfit(tol = 1e-4, verbose.lvl = 0)

balanced_4pop$plot_fn(fl_pl4)

Version Author Date
f2b82dc Jason Willwerscheid 2020-09-03

If I force the prior to put some mass on the pointmass at zero (here, I fix the mixture proportions at c(0.5, 0.5)), I again get the same result:

g <- ebnm::laplacemix(pi = c(0.5, 0.5), mean = c(0, 0), scale = c(0, 1))

fl_pl5 <- flash.init(balanced_4pop$Y) %>%
  flash.set.verbose(0) %>%
  flash.add.greedy(Kmax = 3, 
                   prior.family = c(prior.point.laplace(g_init = g, fix_g = TRUE),
                   prior.normal())) %>%
  flash.backfit(tol = 1e-4, verbose.lvl = 0)

balanced_4pop$plot_fn(fl_pl5)

Version Author Date
f2b82dc Jason Willwerscheid 2020-09-03

The result is the same if I use a sparse initialization. I show the initialization and details for 25 iterations, which is sufficient to get to a non-sparse solution:

fl_pl6 <- flash.init(balanced_4pop$Y) %>%
  flash.set.verbose(0) %>%
  flash.add.greedy(Kmax = 4, 
                   prior.family = c(prior.point.laplace(g_init = g, fix_g = TRUE),
                   prior.normal())) %>%
  flash.backfit(tol = 1e-3, verbose.lvl = 0) %>%
  flash.remove.factors(kset = 4)

balanced_4pop$plot_fn(fl_pl6)


verbose.fns <- c(flashier:::calc.obj.diff,
                 function(new, old, k) {
                   round(sum(flashier:::get.KL(new, n = 1)))
                 },
                 function(new, old, k) {
                   round(sum(flashier:::get.KL(new, n = 2)))
                 },
                 function(new, old, k) {
                   round(flashier:::get.obj(new) - 
                           sum(flashier:::get.KL(new, n = 1)) -
                           sum(flashier:::get.KL(new, n = 2)))
                 })
verbose.colnames <- c("ELBO diff", "KL-div (L)", "KL-div (F)", "fit (llik)")
verbose.colwidths <- c(12, 14, 14, 14)

fl_pl7 <- fl_pl6 %>% 
  flash.set.verbose(3, verbose.fns, verbose.colnames, verbose.colwidths) %>%
  flash.backfit(tol = 1e-4, verbose.lvl = 3, maxiter = 25)
#> Backfitting 3 factors (tolerance: 1.00e-04)...
#>     Iteration  Factor   ELBO diff    KL-div (L)    KL-div (F)    fit (llik)
#>             1     all    3.48e+04         -3273        -94552      -1476575 
#>             2     all    4.28e+02         -3542        -94231      -1476199 
#>             3     all    9.53e+02         -3592        -94354      -1475073 
#>             4     all    1.11e+03         -3598        -94385      -1473930 
#>             5     all    1.20e+03         -3605        -94411      -1472694 
#>             6     all    1.26e+03         -3613        -94441      -1471393 
#>             7     all    1.21e+03         -3623        -94471      -1470144 
#>             8     all    6.68e+02         -3635        -94497      -1469439 
#>             9     all    2.24e-02         -3634        -94480      -1469457 
#>            10     all    1.76e-02         -3634        -94479      -1469457 
#>            11     all    2.35e-02         -3634        -94480      -1469457 
#>            12     all    2.92e-02         -3634        -94480      -1469457 
#>            13     all    3.16e-02         -3634        -94480      -1469457 
#>            14     all    9.80e-03         -3634        -94480      -1469457 
#>            15     all    2.96e-03         -3634        -94480      -1469457 
#>            16     all    5.46e-03         -3634        -94480      -1469457 
#>            17     all    8.18e-03         -3634        -94480      -1469457 
#>            18     all    1.17e-02         -3634        -94480      -1469457 
#>            19     all    1.61e-02         -3634        -94480      -1469457 
#>            20     all    1.41e-02         -3634        -94480      -1469457 
#>            21     all    2.19e-03         -3634        -94480      -1469457 
#>            22     all    4.07e-03         -3634        -94480      -1469457 
#>            23     all    6.16e-03         -3634        -94480      -1469457 
#>            24     all    8.97e-03         -3634        -94480      -1469457 
#>            25     all    1.27e-02         -3634        -94480      -1469457 
#>   --Maximum number of iterations reached!
#>   Backfit complete. Objective: -1567570.423 
#> Wrapping up...
#> Done.

balanced_4pop$plot_fn(fl_pl7)

There doesn’t appear to be a good way to get a sparse third factor using a greedy approach. Backfitting might be necessary.

sessionInfo()
#> R version 3.5.3 (2019-03-11)
#> Platform: x86_64-apple-darwin15.6.0 (64-bit)
#> Running under: macOS Mojave 10.14.6
#> 
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] forcats_0.4.0      stringr_1.4.0      dplyr_0.8.0.1     
#>  [4] purrr_0.3.2        readr_1.3.1        tidyr_0.8.3       
#>  [7] tibble_2.1.1       ggplot2_3.2.0      tidyverse_1.2.1   
#> [10] drift.alpha_0.0.10 flashier_0.2.7    
#> 
#> loaded via a namespace (and not attached):
#>  [1] Rcpp_1.0.4.6       lubridate_1.7.4    invgamma_1.1      
#>  [4] lattice_0.20-38    assertthat_0.2.1   rprojroot_1.3-2   
#>  [7] digest_0.6.18      truncnorm_1.0-8    R6_2.4.0          
#> [10] cellranger_1.1.0   plyr_1.8.4         backports_1.1.3   
#> [13] evaluate_0.13      httr_1.4.0         pillar_1.3.1      
#> [16] rlang_0.4.2        lazyeval_0.2.2     readxl_1.3.1      
#> [19] rstudioapi_0.10    ebnm_0.1-21        irlba_2.3.3       
#> [22] whisker_0.3-2      Matrix_1.2-15      rmarkdown_1.12    
#> [25] labeling_0.3       munsell_0.5.0      mixsqp_0.3-40     
#> [28] broom_0.5.1        compiler_3.5.3     modelr_0.1.5      
#> [31] xfun_0.6           pkgconfig_2.0.2    SQUAREM_2017.10-1 
#> [34] htmltools_0.3.6    tidyselect_0.2.5   workflowr_1.2.0   
#> [37] withr_2.1.2        crayon_1.3.4       grid_3.5.3        
#> [40] nlme_3.1-137       jsonlite_1.6       gtable_0.3.0      
#> [43] git2r_0.25.2       magrittr_1.5       scales_1.0.0      
#> [46] cli_1.1.0          stringi_1.4.3      reshape2_1.4.3    
#> [49] fs_1.2.7           xml2_1.2.0         generics_0.0.2    
#> [52] RColorBrewer_1.1-2 tools_3.5.3        glue_1.3.1        
#> [55] hms_0.4.2          parallel_3.5.3     yaml_2.2.0        
#> [58] colorspace_1.4-1   ashr_2.2-51        rvest_0.3.4       
#> [61] knitr_1.22         haven_2.1.1