Last updated: 2022-07-25

Checks: 6 1

Knit directory: SISG2022_Association_Mapping/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220530) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/Users/joelle.mbatchou/software/github/SISG2022_Association_Mapping/ .

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cb3e604. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    lectures/.DS_Store

Untracked files:
    Untracked:  analysis/Session07_practical_Key.Rmd
    Untracked:  analysis/Session08_practical_Key.Rmd
    Untracked:  data/sim_rels_geno.bed
    Untracked:  data/sim_rels_geno.bed?dl=0

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Session03_practical_Key.Rmd) and HTML (docs/Session03_practical_Key.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cb3e604 Joelle Mbatchou 2022-07-25 add key

Before you begin:

  • Make sure that R is installed on your computer
  • For this lab, we will use the following R libraries:
require(data.table)
require(dplyr)
require(tidyr)
require(GWASTools)
require(ggplot2)

GWAS in Samples with Structure

Introduction

We will be analyzing a simulated data set which contains sample structure to better understand the impact it can have in GWAS analyses if not accounted for. We will perform GWAS on a quantitative phenotype which was simulated to have high heritability and be highly polygenic.

The file “sim_rels_pheno.txt”” contains the phenotype measurements for a set of individuals and the file “sim_rels_geno.bed” is a binary file in PLINK BED format with accompanying BIM and FAM files which contains the genotype data at null variants (i.e. simulated as not associated with the phenotype).
How should we expect the QQ/Manhatthan plots to look like under this scenario?

Exercises

Here are some things to try:

  1. Examine the dataset:
  • How many samples are present?
famfile <- fread("data/sim_rels_geno.fam", header = FALSE)
famfile %>% str
Classes 'data.table' and 'data.frame':  2400 obs. of  6 variables:
 $ V1: int  2307 379 478 1545 990 1907 369 1694 2137 2314 ...
 $ V2: int  2307 379 478 1545 990 1907 369 1694 2137 2314 ...
 $ V3: int  0 0 0 0 0 0 0 0 0 0 ...
 $ V4: int  0 0 0 0 0 0 0 0 0 0 ...
 $ V5: int  1 2 1 1 1 2 2 1 2 1 ...
 $ V6: int  -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 ...
 - attr(*, ".internal.selfref")=<externalptr> 
  • How many SNPs? In how many chromosomes?
bimfile <- fread("data/sim_rels_geno.bim", header = FALSE)
bimfile %>% str
Classes 'data.table' and 'data.frame':  106134 obs. of  6 variables:
 $ V1: int  1 1 1 1 1 1 1 1 1 1 ...
 $ V2: chr  "1:12000011:A:C" "1:12000012:A:C" "1:12000019:T:C" "1:12000027:C:T" ...
 $ V3: int  0 0 0 0 0 0 0 0 0 0 ...
 $ V4: int  12000011 12000012 12000019 12000027 12000036 12000061 12000073 12000074 12000117 12000136 ...
 $ V5: chr  "A" "A" "T" "C" ...
 $ V6: chr  "C" "C" "C" "T" ...
 - attr(*, ".internal.selfref")=<externalptr> 
bimfile %>% select(V1) %>% table
.
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
4918 4857 4813 4772 4810 4914 4840 4696 4790 4906 4782 4756 4803 4671 4814 4869 
  17   18   19   20   21   22 
4632 4834 4908 4942 4947 4860 
  1. Examine the phenotype data:
  • How many individuals in the study have measurements?
yfile <- fread("data/sim_rels_pheno.txt", header = TRUE)
yfile %>% str
Classes 'data.table' and 'data.frame':  2400 obs. of  3 variables:
 $ FID  : int  2307 379 478 1545 990 1907 369 1694 2137 2314 ...
 $ IID  : int  2307 379 478 1545 990 1907 369 1694 2137 2314 ...
 $ Pheno: num  0.00999 -1.45253 0.11097 1.11363 -0.20993 ...
 - attr(*, ".internal.selfref")=<externalptr> 
yfile %>% pull(Pheno) %>% is.na %>% table
.
FALSE 
 2400 
  • Make a visual of the distribution of the phenotype?
yfile %>%
  ggplot(aes(x = Pheno)) +
  geom_histogram(colour="black", fill="white")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

  1. Using PLINK, perform a GWAS using the phenotype file sim_rels_pheno.txt and the sim_rels_geno.{bed,bim,fam} genotype files. Only perform association test on SNPs that pass the following quality control threshold filters:
  • minor allele frequency (MAF) > 0.01
  • at least a 99% genotyping call rate (less than 1% missing)
  • HWE p-values greater than 0.001
~/software/bins/plink2 --bfile data/sim_rels_geno --pheno data/sim_rels_pheno.txt --pheno-name Pheno --maf 0.01 --geno 0.01 --hwe 0.001 --autosome --glm allow-no-covars --out /tmp/gwas_plink
PLINK v2.00a3 AVX2 (12 Dec 2020)               www.cog-genomics.org/plink/2.0/
(C) 2005-2020 Shaun Purcell, Christopher Chang   GNU General Public License v3
Logging to /tmp/gwas_plink.log.
Options in effect:
  --autosome
  --bfile data/sim_rels_geno
  --geno 0.01
  --glm allow-no-covars
  --hwe 0.001
  --maf 0.01
  --out /tmp/gwas_plink
  --pheno data/sim_rels_pheno.txt
  --pheno-name Pheno

Start time: Mon Jul 25 16:18:13 2022
16384 MiB RAM detected; reserving 8192 MiB for main workspace.
Using up to 12 threads (change this with --threads).
2400 samples (1179 females, 1221 males; 2400 founders) loaded from
data/sim_rels_geno.fam.
106134 variants loaded from data/sim_rels_geno.bim.
1 quantitative phenotype loaded (2400 values).
Calculating allele frequencies... 0%61%done.
--geno: 0 variants removed due to missing genotype data.
--hwe: 123 variants removed due to Hardy-Weinberg exact test (founders only).
125 variants removed due to allele frequency threshold(s)
(--maf/--max-maf/--mac/--max-mac).
105886 variants remaining after main filters.
--glm linear regression on phenotype 'Pheno': 0%61%done.
Results written to /tmp/gwas_plink.Pheno.glm.linear .
End time: Mon Jul 25 16:18:13 2022
  1. Make a Manhattan plot of the association results using the manhattanPlot() R function.
plink.gwas <- fread("/tmp/gwas_plink.Pheno.glm.linear", header = TRUE)
plink.gwas %>% str
Classes 'data.table' and 'data.frame':  105886 obs. of  13 variables:
 $ #CHROM : int  1 1 1 1 1 1 1 1 1 1 ...
 $ POS    : int  12000011 12000012 12000019 12000027 12000036 12000061 12000073 12000074 12000117 12000136 ...
 $ ID     : chr  "1:12000011:A:C" "1:12000012:A:C" "1:12000019:T:C" "1:12000027:C:T" ...
 $ REF    : chr  "C" "C" "C" "T" ...
 $ ALT    : chr  "A" "A" "T" "C" ...
 $ A1     : chr  "A" "A" "T" "C" ...
 $ TEST   : chr  "ADD" "ADD" "ADD" "ADD" ...
 $ OBS_CT : int  2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 ...
 $ BETA   : num  0.0122 -0.018 -0.0849 0.0125 0.0111 ...
 $ SE     : num  0.0438 0.0362 0.0284 0.0435 0.0288 ...
 $ T_STAT : num  0.279 -0.497 -2.992 0.288 0.387 ...
 $ P      : num  0.78 0.6192 0.0028 0.7731 0.6991 ...
 $ ERRCODE: chr  "." "." "." "." ...
 - attr(*, ".internal.selfref")=<externalptr> 
manhattanPlot(
  p = plink.gwas$P,
  chromosome = plink.gwas$`#CHROM`, 
  thinThreshold = 1e-4,
  main= "Manhattan plot of GWAS with PLINK"
)

  1. Make a Q-Q plot of the association results using the qqPlot() R function.
qqPlot(
  pval = plink.gwas$P,
  thinThreshold = 1e-4,
  main= "Q-Q plot of GWAS with PLINK"
 )

  1. Compute the genomic control inflation factor \(\lambda_{GC}\) based on the p-values. Is there evidence of possible inflation due to confounding?
chisq.stats <- qchisq(plink.gwas$P, df = 1, lower.tail = FALSE)
median(chisq.stats) / qchisq(0.5,1)
[1] 1.148451
  1. Now use REGENIE to perform a GWAS of the phenotype using a whole genome regression model.
  • We want to use high quality variants in the Step 1 null model fitting. Using PLINK, apply QC filters to remove variants with MAF below 5%, missingness above 1%, HWE p-value below 0.001, minor allele count (MAC) below 20.
~/software/bins/plink2 --bfile data/sim_rels_geno --maf 0.05 --geno 0.01 --hwe 0.001 --mac 20 --write-snplist --out /tmp/qc_pass
PLINK v2.00a3 AVX2 (12 Dec 2020)               www.cog-genomics.org/plink/2.0/
(C) 2005-2020 Shaun Purcell, Christopher Chang   GNU General Public License v3
Logging to /tmp/qc_pass.log.
Options in effect:
  --bfile data/sim_rels_geno
  --geno 0.01
  --hwe 0.001
  --mac 20
  --maf 0.05
  --out /tmp/qc_pass
  --write-snplist

Start time: Mon Jul 25 16:18:28 2022
16384 MiB RAM detected; reserving 8192 MiB for main workspace.
Using up to 12 threads (change this with --threads).
2400 samples (1179 females, 1221 males; 2400 founders) loaded from
data/sim_rels_geno.fam.
106134 variants loaded from data/sim_rels_geno.bim.
Note: No phenotype data present.
Calculating allele frequencies... 0%61%done.
--geno: 0 variants removed due to missing genotype data.
--hwe: 123 variants removed due to Hardy-Weinberg exact test (founders only).
8624 variants removed due to allele frequency threshold(s)
(--maf/--max-maf/--mac/--max-mac).
97387 variants remaining after main filters.
--write-snplist: Variant IDs written to /tmp/qc_pass.snplist .
End time: Mon Jul 25 16:18:28 2022
  • Run REGENIE Step 1 to fit the null model and obtain polygenic predictions using a leave-one-chromosome-out (LOCO) scheme
regenie --bed data/sim_rels_geno --phenoFile data/sim_rels_pheno.txt --step 1 --loocv --bsize 1000 --qt --extract /tmp/qc_pass.snplist --out /tmp/regenie_step1

The prediction list file output from Step 1 contains the path to the LOCO polygenic predictions:

cat /tmp/regenie_step1_pred.list
Pheno /tmp/regenie_step1_1.loco
  • Run REGENIE Step 2 to perform association testing at the same set of SNPs tested in PLINK.
plink.gwas %>%
  select(ID) %>%
  fwrite("/tmp/plink_gwas.snplist", col.names = FALSE, quote = FALSE)
regenie --bed data/sim_rels_geno --phenoFile data/sim_rels_pheno.txt --step 2 --bsize 400 --qt --pred /tmp/regenie_step1_pred.list --extract /tmp/plink_gwas.snplist --out /tmp/regenie_step2
  • Generate Manhatthan and Q-Q plots based on the association results and compute \(\lambda_{GC}\). Compare with output from Questions 4-6.
regenie.gwas <- fread("/tmp/regenie_step2_Pheno.regenie", header = TRUE)
regenie.gwas %>% str
Classes 'data.table' and 'data.frame':  105886 obs. of  13 variables:
 $ CHROM  : int  1 1 1 1 1 1 1 1 1 1 ...
 $ GENPOS : int  12000011 12000012 12000019 12000027 12000036 12000061 12000073 12000074 12000117 12000136 ...
 $ ID     : chr  "1:12000011:A:C" "1:12000012:A:C" "1:12000019:T:C" "1:12000027:C:T" ...
 $ ALLELE0: chr  "C" "C" "C" "T" ...
 $ ALLELE1: chr  "A" "A" "T" "C" ...
 $ A1FREQ : num  0.12 0.187 0.402 0.12 0.415 ...
 $ N      : int  2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 ...
 $ TEST   : chr  "ADD" "ADD" "ADD" "ADD" ...
 $ BETA   : num  0.00851 -0.01943 -0.0747 -0.023 0.01463 ...
 $ SE     : num  0.0419 0.0346 0.0272 0.0416 0.0275 ...
 $ CHISQ  : num  0.0413 0.3153 7.5548 0.3058 0.2823 ...
 $ LOG10P : num  0.0762 0.2407 2.2229 0.2364 0.2254 ...
 $ EXTRA  : logi  NA NA NA NA NA NA ...
 - attr(*, ".internal.selfref")=<externalptr> 
manhattanPlot(
  p = 10^-regenie.gwas$LOG10P,
  chromosome = regenie.gwas$CHROM, 
  thinThreshold = 1e-4,
  main= "Manhattan plot of GWAS with REGENIE"
)

qqPlot(
  pval = 10^-regenie.gwas$LOG10P,
  thinThreshold = 1e-4,
  main= "Q-Q plot of GWAS with REGENIE"
 )

chisq.stats <- qchisq(10^-regenie.gwas$LOG10P, df = 1, lower.tail = FALSE)
median(chisq.stats) / qchisq(0.5,1)
[1] 0.9962878

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] ggplot2_3.3.3       GWASTools_1.32.0    Biobase_2.46.0     
[4] BiocGenerics_0.32.0 tidyr_1.0.2         dplyr_1.0.8        
[7] data.table_1.13.2   workflowr_1.7.0    

loaded via a namespace (and not attached):
 [1] nlme_3.1-140         fs_1.5.2             bit64_4.0.5         
 [4] httr_1.4.3           rprojroot_2.0.3      tools_3.6.1         
 [7] backports_1.1.5      bslib_0.3.1          utf8_1.1.4          
[10] R6_2.4.1             colorspace_2.0-0     DBI_1.1.3           
[13] mgcv_1.8-28          withr_2.5.0          DNAcopy_1.60.0      
[16] tidyselect_1.1.1     processx_3.5.3       bit_4.0.4           
[19] compiler_3.6.1       git2r_0.30.1         cli_3.1.1           
[22] quantreg_5.54        mice_3.8.0           SparseM_1.78        
[25] sandwich_3.0-1       labeling_0.4.2       sass_0.4.0          
[28] scales_1.1.1         lmtest_0.9-40        quantsmooth_1.52.0  
[31] callr_3.7.0          stringr_1.4.0        digest_0.6.25       
[34] minqa_1.2.4          GWASExactHW_1.01     rmarkdown_2.14      
[37] pkgconfig_2.0.3      htmltools_0.5.2      lme4_1.1-21         
[40] fastmap_1.1.0        highr_0.8            rlang_1.0.4         
[43] rstudioapi_0.13      RSQLite_2.2.15       farver_2.0.3        
[46] jquerylib_0.1.4      generics_0.0.2       zoo_1.8-9           
[49] jsonlite_1.7.2       magrittr_1.5         Matrix_1.2-17       
[52] Rcpp_1.0.8.3         munsell_0.5.0        fansi_0.4.1         
[55] lifecycle_1.0.1      stringi_1.4.6        whisker_0.4         
[58] yaml_2.2.1           MASS_7.3-51.4        grid_3.6.1          
[61] formula.tools_1.7.1  blob_1.2.3           promises_1.2.0.1    
[64] crayon_1.3.4         lattice_0.20-38      splines_3.6.1       
[67] knitr_1.39           ps_1.7.0             pillar_1.7.0        
[70] boot_1.3-22          logistf_1.24.1       gdsfmt_1.22.0       
[73] glue_1.6.1           evaluate_0.15        getPass_0.2-2       
[76] operator.tools_1.6.3 vctrs_0.3.8          nloptr_1.2.2.1      
[79] httpuv_1.6.5         MatrixModels_0.4-1   gtable_0.3.0        
[82] purrr_0.3.3          cachem_1.0.6         xfun_0.31           
[85] broom_0.5.5          later_1.3.0          survival_3.2-10     
[88] tibble_3.1.6         memoise_2.0.1        ellipsis_0.3.2