Last updated: 2022-04-09

Checks: 7 0

Knit directory: logistic-susie-gsea/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220105) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 419aadc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    library/
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    staging/

Untracked files:
    Untracked:  .ipynb_checkpoints/
    Untracked:  Untitled.ipynb
    Untracked:  _targets.R
    Untracked:  _targets.html
    Untracked:  _targets.md
    Untracked:  _targets/
    Untracked:  _targets_r/
    Untracked:  analysis/fetal_reference_cellid_gsea.Rmd
    Untracked:  analysis/fixed_intercept.Rmd
    Untracked:  analysis/iDEA_examples.Rmd
    Untracked:  analysis/latent_gene_list.Rmd
    Untracked:  analysis/libra_setup.Rmd
    Untracked:  analysis/linear_method_failure_modes.Rmd
    Untracked:  analysis/linear_regression_failure_regime.Rmd
    Untracked:  analysis/logistic_susie_veb_boost_vs_vb.Rmd
    Untracked:  analysis/logistic_susie_vis.Rmd
    Untracked:  analysis/references.bib
    Untracked:  analysis/simulations.Rmd
    Untracked:  analysis/test.Rmd
    Untracked:  baboon_diet_cache/
    Untracked:  build_site.R
    Untracked:  cache/
    Untracked:  code/html_tables.R
    Untracked:  code/latent_logistic_susie.R
    Untracked:  code/logistic_susie_data_driver.R
    Untracked:  code/marginal_sumstat_gsea_collapsed.R
    Untracked:  code/sumstat_gsea.py
    Untracked:  code/susie_gsea_queries.R
    Untracked:  data/adipose_2yr_topsnp.txt
    Untracked:  data/deng/
    Untracked:  data/fetal_reference_cellid_gene_sets.RData
    Untracked:  data/human_chimp_eb/
    Untracked:  data/pbmc-purified/
    Untracked:  data/wenhe_baboon_diet/
    Untracked:  deng_example_cache/
    Untracked:  docs.zip
    Untracked:  index.md
    Untracked:  latent_logistic_susie_cache/
    Untracked:  simulation_targets/
    Untracked:  single_cell_pbmc_cache/
    Untracked:  single_cell_pbmc_l1_cache/
    Untracked:  summary_stat_gsea_exploration_cache/
    Untracked:  summary_stat_gsea_sim_cache/

Unstaged changes:
    Modified:   _simulation_targets.R
    Modified:   _targets.Rmd
    Modified:   analysis/baboon_diet.Rmd
    Modified:   analysis/gseabenchmark_tcga.Rmd
    Modified:   analysis/single_cell_pbmc.Rmd
    Modified:   analysis/single_cell_pbmc_l1.Rmd
    Deleted:    analysis/summary_stat_gsea_univariate_simulations.Rmd
    Modified:   code/fit_baselines.R
    Modified:   code/fit_logistic_susie.R
    Modified:   code/fit_mr_ash.R
    Modified:   code/fit_susie.R
    Modified:   code/load_gene_sets.R
    Modified:   code/logistic_susie_vb.R
    Modified:   code/simulate_gene_lists.R
    Modified:   code/utils.R
    Modified:   target_components/factories.R
    Modified:   target_components/methods.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/deng_example.Rmd) and HTML (docs/deng_example.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 419aadc karltayeb 2022-04-09 wflow_publish(“analysis/deng_example.Rmd”)

Overview

We report gene set enrichment analysis of the topics from Jason’s NMF and SNMF of the Deng et al. data set.

For each topic we construct a binary gene list by thresholding on local false sign rates output from flash. Here, I pick \(lfsr} <- 1e-5\).

#library(GSEABenchmarkeR)
#library(EnrichmentBrowser)
library(susieR)
library(DT)
library(kableExtra)
library(tidyverse)
library(Matrix)


source('code/load_gene_sets.R')
source('code/utils.R')
source('code/logistic_susie_vb.R')
source('code/susie_gsea_queries.R')
source('code/html_tables.R')

#source('code/latent_logistic_susie.R')
# load nmf models
nmf <- readRDS('data/deng/nmf.rds')
snmf <- readRDS('data/deng/snmf.rds')

# load genesets
gobp <- loadGeneSetX('geneontology_Biological_Process', min.size=50)  # just huge number of gene sets
#gobp_nr <- loadGeneSetX('geneontology_Biological_Process_noRedundant', min.size=1)
gomf <- loadGeneSetX('geneontology_Molecular_Function', min.size=1)
kegg <- loadGeneSetX('pathway_KEGG', min.size=1)
#reactome <- loadGeneSetX('pathway_Reactome', min.size=1)
#wikipathway_cancer <- loadGeneSetX('pathway_Wikipathway_cancer', min.size=1)
#wikipathway <- loadGeneSetX('pathway_Wikipathway', min.size=1)

genesets <- list(
  gobp=gobp,
  #gobp_nr=gobp_nr,
  gomf=gomf,
  kegg=kegg
  #reactome=reactome,
  #wikipathway_cancer=wikipathway_cancer,
  #wikipathway=wikipathway
)
convert_labels <- function(y, from='SYMBOL', to='ENTREZID'){
  hs <- org.Hs.eg.db::org.Hs.eg.db
  
  gene_symbols <- names(y)
  if(from == 'SYMBOL'){
    gene_symbols <- purrr::map_chr(gene_symbols, toupper)
    names(y) <- gene_symbols
  }
  symbol2entrez <- AnnotationDbi::select(hs, keys=gene_symbols, columns=c(to, from), keytype = from)
  symbol2entrez <- symbol2entrez[!duplicated(symbol2entrez[[from]]),]
  symbol2entrez <- symbol2entrez[!is.na(symbol2entrez[[to]]),]
  symbol2entrez <- symbol2entrez[!is.na(symbol2entrez[[from]]),]
  rownames(symbol2entrez) <- symbol2entrez[[from]]
  ysub <- y[names(y) %in% symbol2entrez[[from]]]
  names(ysub) <- symbol2entrez[names(ysub),][[to]]
  return(ysub)
}
convert_labels = partial(convert_labels, from='SYMBOL')

#' makes a binary with threshold, convert labels
get_y = function(L, thresh){
  y <- convert_labels(L <= thresh) %>% 
    {mode(.) <- "integer"; .}
  return(y)
}
#' fit logistic susie, and hypergeometric test
do_logistic_susie = function(y, db, susie.args=NULL){
  gs <- genesets[[db]]
  u <- process_input(gs$X, y)  # subset to common genes
  
  if(is.null(susie.args)){
    susie.args = list(
      L=10, init.intercept=0, verbose=1, maxit=100, standardize=TRUE)
  }
  
  logistic.susie(u$X, u$y, L=1)
  vb.fit <- exec(logistic.susie, u$X, u$y, !!!susie.args)

  #' hypergeometric test
  ora <- tibble(
    geneSet = colnames(u$X),
    geneListSize = sum(u$y),
    geneSetSize = colSums(u$X),
    overlap = (u$y %*% u$X)[1,],
    nGenes = length(u$y),
    propInList = overlap / geneListSize,
    propInSet = overlap / geneSetSize,
    oddsRatio = (overlap / (geneListSize - overlap)) / (
      (geneSetSize - overlap) / (nGenes - geneSetSize + overlap)),
    pValueHypergeometric = phyper(
      overlap-1, geneListSize, nGenes - geneListSize, geneSetSize, lower.tail= FALSE),
    db = db
  ) %>% 
  left_join(gs$geneSet$geneSetDes)
  return(list(fit = vb.fit, ora = ora, db=db))
}

get_credible_set_summary = function(res){
  gs <- genesets[[res$db]]
  #' report top 50 elements in cs
  beta <- t(res$fit$mu) %>%
    data.frame() %>%
    rownames_to_column(var='geneSet') %>%
    rename_with(~str_replace(., 'X', 'L')) %>%
    rename(L1 = 2) %>%  # rename deals with L=1 case
    pivot_longer(starts_with('L'), names_to='component', values_to = 'beta') 
  se <- t(sqrt(res$fit$mu2 - res$fit$mu^2)) %>%
     data.frame() %>%
      rownames_to_column(var='geneSet') %>%
      rename_with(~str_replace(., 'X', 'L')) %>%
      rename(L1 = 2) %>%  # rename deals with L=1 case
      pivot_longer(starts_with('L'), names_to='component', values_to = 'beta.se')
  
  credible.set.summary <- t(res$fit$alpha) %>%
    data.frame() %>%
    rownames_to_column(var='geneSet') %>%
    rename_with(~str_replace(., 'X', 'L')) %>%
    rename(L1 = 2) %>%  # rename deals with L=1 case
    pivot_longer(starts_with('L'), names_to='component', values_to = 'alpha') %>%
    left_join(beta) %>%
    left_join(se) %>%
    arrange(component, desc(alpha)) %>%
    dplyr::group_by(component) %>%
    filter(row_number() < 50) %>%
    mutate(alpha_rank = row_number(), cumalpha = c(0, head(cumsum(alpha), -1))) %>%
    mutate(in_cs = cumalpha < 0.95) %>%
    mutate(active_cs = component %in% names(res$fit$sets$cs)) %>%
    left_join(res$ora) %>%
    left_join(gs$geneSet$geneSetDes)

  return(credible.set.summary)
}

get_gene_set_summary = function(res){
  gs <- genesets[[res$db]]
  #' map each gene set to the component with top alpha
  #' report pip
  res$fit$pip %>% 
    as_tibble(rownames='geneSet') %>%
    rename(pip=value) %>%
    mutate(beta=colSums(res$fit$alpha * res$fit$mu)) %>%
    left_join(res$ora) %>%
    left_join(gs$geneSet$geneSetDes)
}

pack_group = function(tbl){
    components <- tbl$component
    unique.components <- unique(components)
    start <- match(unique.components, components)
    end <- c(tail(start, -1) - 1, length(components))
    res <- tbl %>% select(-c(component)) %>% kbl()
    for(i in 1:length(unique.components)){
      res <- pack_rows(res, unique.components[i], start[i], end[i])
    }
    return(res)
}

report_susie_credible_sets = function(tbl,
                                      target_coverage=0.95,
                                      max_coverage=0.99,
                                      max_sets=10){
  tbl_filtered <-
    tbl %>%
    group_by(db, component) %>%
    arrange(db, component, desc(alpha)) %>%
    filter(cumalpha <= max_coverage, alpha_rank <= max_sets) %>%
    mutate(in_cs = cumalpha <= target_coverage) %>% ungroup()

  tbl_filtered %>%
    select(component, geneSet, description, alpha, beta, beta.se, pValueHypergeometric, overlap, geneSetSize, oddsRatio) %>%
    dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
    pack_group %>%
    column_spec(c(4), color=ifelse(tbl_filtered$beta >0, 'green', 'red')) %>%
    kableExtra::kable_styling()
}

NMF

ix  <- order(nmf$fl$pve[-1], decreasing = T) + 1  # exclude first topic
Y <- purrr::map(ix[1:5], ~get_y(nmf$fl$L.lfsr[,.x], 1e-5))
names(Y) = paste0('topic_', ix[1:5])

nmf.gobp <- xfun::cache_rds({
  susie.args <- list(L=10, maxit=200, verbose=T)
  purrr::map(Y, ~do_logistic_susie(.x, 'gobp', susie.args = susie.args))},
  dir = 'cache/deng_example/', file='nmf.gobp')

nmf.gomf <- xfun::cache_rds({
  susie.args <- list(L=10, maxit=200, verbose=T)
  purrr::map(Y, ~do_logistic_susie(.x, 'gomf', susie.args = susie.args))},
  dir = 'cache/deng_example/', file='nmf.gomf')

nmf.kegg <- xfun::cache_rds({
  susie.args <- list(L=10, maxit=200, verbose=T)
  purrr::map(Y, ~do_logistic_susie(.x, 'kegg', susie.args = susie.args))},
  dir = 'cache/deng_example/', file='nmf.kegg')

remove(nmf.fits)
nmf.fits <- mget(ls(pattern='^nmf.+'))
names(nmf.fits) <- purrr::map_chr(names(nmf.fits), ~str_split(.x, '\\.')[[1]][2])

Thresholds

mean.gene.prop = function(l){
  purrr::map_dbl(3:10, ~get_y(l, 10^(-.x)) %>% mean())
}

y.mean.thresh <- purrr::map(2:10, ~mean.gene.prop(nmf$fl$L.lfsr[,.x]))

plot(3:10, y.mean.thresh[[2]]/y.mean.thresh[[2]][1],
  type='line',
  ylim = c(0.5, 1),
  main = 'sensitiviy to lfsr threshold',
  ylab = 'prop genes relative to 1e-3 threshold',
  xlab = '-log10(threshold)')

for(i in 1:length(y.mean.thresh)){
  lines(3:10, y.mean.thresh[[i]]/y.mean.thresh[[i]][1])
}

library(htmltools)

make_susie_html_table = function(fits, db, topic){
  fits %>%
    pluck(db) %>%
    pluck(topic) %>%
    get_credible_set_summary() %>%
    filter(active_cs, in_cs) %>%
    report_susie_credible_sets(target_coverage = 0.95, max_coverage = 0.95)
}

possibly_make_susie_html_table = possibly(
  make_susie_html_table, otherwise="nothing to report...")

for(topic in names(Y)){
  cat("\n") 
  cat("###", topic, "\n") # Create second level headings with the names.
  
  for(db in names(genesets)){
    cat("####", db, "\n") # Create second level headings with the names.
    possibly_make_susie_html_table(nmf.fits, db, topic) %>% print()
    cat("\n")
  }
}

topic_3

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0032501 multicellular organismal process 1 -0.212 0.0164 1 511 5120 0.721
L10
GO:0006283 transcription-coupled nucleotide-excision repair 0.997 0.124 0.0188 4.01e-10 31 70 5.91
L2
GO:0006412 translation 1 0.492 0.0194 2.15e-76 242 527 7.14
L3
GO:0006119 oxidative phosphorylation 0.868 0.265 0.0196 7.93e-38 65 88 21.5
GO:0042773 ATP synthesis coupled electron transport 0.0659 0.26 0.0195 1.52e-36 55 67 34.7
GO:0042775 mitochondrial ATP synthesis coupled electron transport 0.0659 0.26 0.0195 1.52e-36 55 67 34.7
L4
GO:0045047 protein targeting to ER 0.812 0.185 0.0212 1.49e-55 84 102 36
GO:0006613 cotranslational protein targeting to membrane 0.0844 0.181 0.0215 2.91e-55 81 96 41.5
GO:0072599 establishment of protein localization to endoplasmic reticulum 0.0827 0.179 0.0212 5.83e-53 84 106 29.4
L5
GO:0006457 protein folding 1 0.136 0.019 2.38e-12 61 179 3.89
L6
GO:0006417 regulation of translation 1 -0.261 0.0197 8.31e-07 69 284 2.41
L7
GO:0070585 protein localization to mitochondrion 0.94 0.17 0.0188 7.31e-17 53 117 6.23
GO:0072655 establishment of protein localization to mitochondrion 0.0589 0.164 0.0188 8.37e-16 51 115 5.98
L8
GO:0022613 ribonucleoprotein complex biogenesis 1 0.158 0.0193 2.08e-29 140 391 4.37
L9
GO:0043312 neutrophil degranulation 0.398 0.168 0.0192 2.63e-10 96 374 2.62
GO:0002283 neutrophil activation involved in immune response 0.283 0.167 0.0192 3.59e-10 96 376 2.6
GO:0042119 neutrophil activation 0.141 0.166 0.0192 7.69e-10 96 381 2.56
GO:0036230 granulocyte activation 0.0839 0.165 0.0192 1.2e-09 96 384 2.53
GO:0002446 neutrophil mediated immunity 0.0607 0.164 0.0193 1.61e-09 96 386 2.51

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0003735 structural constituent of ribosome 1 0.387 0.0214 8.73e-99 135 152 63.8
L10
GO:0000981 DNA-binding transcription factor activity, RNA polymerase II-specific 0.975 -0.228 0.0224 1 52 927 0.418
L2
GO:0060089 molecular transducer activity 0.963 -0.306 0.0239 1 26 751 0.251
L3
GO:0003954 NADH dehydrogenase activity 0.333 0.238 0.0222 8.88e-26 33 36 82.6
GO:0008137 NADH dehydrogenase (ubiquinone) activity 0.333 0.238 0.0222 8.88e-26 33 36 82.6
GO:0050136 NADH dehydrogenase (quinone) activity 0.333 0.238 0.0222 8.88e-26 33 36 82.6
L4
GO:0008324 cation transmembrane transporter activity 0.989 -0.202 0.0232 1 33 487 0.525
L5
GO:0003723 RNA binding 1 0.264 0.0186 4.15e-64 408 1370 3.87
L6
GO:0004129 cytochrome-c oxidase activity 0.31 0.15 0.0189 7.66e-08 14 22 13
GO:0015002 heme-copper terminal oxidase activity 0.31 0.15 0.0189 7.66e-08 14 22 13
GO:0016676 oxidoreductase activity, acting on a heme group of donors, oxygen as acceptor 0.31 0.15 0.0189 7.66e-08 14 22 13
GO:0016675 oxidoreductase activity, acting on a heme group of donors 0.0691 0.147 0.019 1.71e-07 14 23 11.5
L7
GO:0045296 cadherin binding 1 0.166 0.0189 2.06e-19 97 282 4.04
L8
GO:0004298 threonine-type endopeptidase activity 0.5 0.117 0.019 2.28e-09 15 21 18.6
GO:0070003 threonine-type peptidase activity 0.5 0.117 0.019 2.28e-09 15 21 18.6
L9
GO:0016679 oxidoreductase activity, acting on diphenols and related substances as donors 0.331 0.161 0.0282 8.49e-07 7 7 Inf
GO:0008121 ubiquinol-cytochrome-c reductase activity 0.331 0.161 0.0282 8.49e-07 7 7 Inf
GO:0016681 oxidoreductase activity, acting on diphenols and related substances as donors, cytochrome as acceptor 0.331 0.161 0.0282 8.49e-07 7 7 Inf

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa03010 Ribosome 1 0.611 0.0316 2.05e-74 116 129 57.6
L10
hsa04080 Neuroactive ligand-receptor interaction 1 -0.529 0.0422 1 1 163 0.034
L2
hsa00190 Oxidative phosphorylation 0.999 0.221 0.0282 2.01e-29 67 97 13.6
L4
hsa03050 Proteasome 1 0.303 0.0297 1.74e-20 36 44 26.5
L5
hsa05130 Pathogenic Escherichia coli infection 0.983 0.133 0.0271 0.000136 19 46 4.05
L6
hsa03040 Spliceosome 1 0.185 0.0272 5.23e-07 44 121 3.35
L7
hsa04010 MAPK signaling pathway 1 -0.208 0.0331 1 15 257 0.341
L8
hsa05016 Huntington disease 1 0.234 0.0279 4.04e-28 84 146 8.34
L9
hsa04060 Cytokine-cytokine receptor interaction 1 -0.385 0.0387 1 3 173 0.0972

topic_17

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0006457 protein folding 1 0.145 0.0194 5.85e-10 49 179 3.56
L10
GO:0043933 protein-containing complex subunit organization 1 0.246 0.0189 2.02e-36 349 1710 2.86
L2
GO:0022613 ribonucleoprotein complex biogenesis 1 0.173 0.0185 8.38e-51 154 391 6.65
L3
GO:0042327 positive regulation of phosphorylation 0.406 -0.181 0.0228 1 45 797 0.532
GO:0010562 positive regulation of phosphorus metabolic process 0.264 -0.179 0.0226 1 50 851 0.555
GO:0045937 positive regulation of phosphate metabolic process 0.264 -0.179 0.0226 1 50 851 0.555
GO:0001934 positive regulation of protein phosphorylation 0.065 -0.176 0.0228 1 42 759 0.522
L4
GO:0034641 cellular nitrogen compound metabolic process 1 0.415 0.016 3.15e-67 798 4670 3.39
L6
GO:0071426 ribonucleoprotein complex export from nucleus 0.633 0.142 0.0188 3.47e-22 54 117 8.17
GO:0071166 ribonucleoprotein complex localization 0.255 0.139 0.0188 5.74e-22 54 118 8.04
GO:0006405 RNA export from nucleus 0.0365 0.135 0.0189 2.43e-21 55 125 7.49
GO:0006406 mRNA export from nucleus 0.0268 0.133 0.0188 1.04e-16 43 99 7.26
L7
GO:0043687 post-translational protein modification 1 0.177 0.0197 1.62e-09 70 310 2.77
L8
GO:0032501 multicellular organismal process 1 -0.289 0.0171 1 402 5120 0.68
L9
GO:0006259 DNA metabolic process 1 0.136 0.019 6.05e-31 197 794 3.4

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0003723 RNA binding 1 0.419 0.0182 1.22e-87 396 1370 4.92
L2
GO:0022857 transmembrane transporter activity 0.907 -0.157 0.0233 1 32 779 0.374
GO:0015075 ion transmembrane transporter activity 0.0444 -0.147 0.0235 1 26 660 0.36
L3
GO:0038023 signaling receptor activity 1 -0.437 0.0263 1 11 697 0.138
L4
GO:0046872 metal ion binding 0.821 -0.157 0.0196 1 227 2810 0.756
GO:0043169 cation binding 0.179 -0.153 0.0196 1 234 2870 0.765
L5
GO:0051082 unfolded protein binding 0.999 0.109 0.0187 4.98e-12 37 99 5.56
L6
GO:0030545 receptor regulator activity 0.998 -0.326 0.0268 1 4 281 0.129
L7
GO:0005515 protein binding 1 0.321 0.0109 5.13e-26 1100 8650 3.27
L8
GO:0036402 proteasome-activating ATPase activity 0.977 0.138 0.0272 1.75e-06 6 6 Inf
L9
GO:0004298 threonine-type endopeptidase activity 0.494 0.0952 0.0185 3.4e-07 12 21 12.2
GO:0070003 threonine-type peptidase activity 0.494 0.0952 0.0185 3.4e-07 12 21 12.2

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa05200 Pathways in cancer 0.999 -0.192 0.0327 1 28 451 0.475
L10
hsa05016 Huntington disease 0.996 0.156 0.0285 0.000653 34 146 2.34
L2
hsa03013 RNA transport 1 0.283 0.0274 4.21e-23 66 139 7.35
L3
hsa03040 Spliceosome 1 0.302 0.0272 2.62e-22 60 121 7.94
L4
hsa05142 Chagas disease (American trypanosomiasis) 1 -0.237 0.0398 1 1 84 0.0889
L5
hsa03050 Proteasome 1 0.27 0.028 6.25e-17 30 44 16.7
L6
hsa04110 Cell cycle 1 0.24 0.0278 6.64e-09 40 118 4.01
L7
hsa01200 Carbon metabolism 1 0.194 0.0275 1.72e-07 33 98 3.93
L8
hsa03008 Ribosome biogenesis in eukaryotes 1 0.177 0.0276 7.18e-11 31 68 6.51
L9
hsa03420 Nucleotide excision repair 0.984 0.142 0.0274 1.62e-05 17 43 4.99

topic_4

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0006396 RNA processing 1 0.254 0.0189 4.54e-81 539 757 7.24
L10
GO:0098781 ncRNA transcription 0.971 0.139 0.0202 4.39e-17 72 88 12
L2
GO:0032501 multicellular organismal process 1 -0.219 0.0144 1 1600 5120 1.3
L3
GO:0051276 chromosome organization 1 0.212 0.0182 6.92e-48 562 924 4.51
L4
GO:0043604 amide biosynthetic process 0.883 0.182 0.0185 6.01e-31 390 651 4.2
GO:0006412 translation 0.0819 0.18 0.0187 4.87e-35 338 527 4.99
L5
GO:0042254 ribosome biogenesis 1 0.217 0.021 2.93e-58 215 247 18.5
L6
GO:0070647 protein modification by small protein conjugation or removal 1 0.184 0.018 2.62e-27 486 876 3.54
L7
GO:0046907 intracellular transport 0.999 0.213 0.0176 2.28e-23 753 1510 2.93
L8
GO:0051049 regulation of transport 0.926 -0.138 0.0181 1 414 1380 1.14
GO:0032879 regulation of localization 0.0714 -0.127 0.0174 1 629 2050 1.19
L9
GO:0007049 cell cycle 1 0.186 0.0176 9.91e-40 776 1430 3.55

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0003723 RNA binding 1 0.281 0.0178 1.45e-88 865 1370 5.35
L10
GO:0005515 protein binding 1 0.191 0.00958 4.41e-21 3530 8650 4.81
L2
GO:0004888 transmembrane signaling receptor activity 1 -0.291 0.0209 1 62 527 0.339
L3
GO:0022803 passive transmembrane transporter activity 0.522 -0.187 0.0208 1 41 324 0.373
GO:0015267 channel activity 0.414 -0.187 0.0208 1 41 323 0.374
GO:0022838 substrate-specific channel activity 0.0368 -0.181 0.0209 1 38 304 0.368
L4
GO:0030545 receptor regulator activity 0.949 -0.204 0.0204 1 41 281 0.441
GO:0048018 receptor ligand activity 0.0507 -0.199 0.0205 1 37 258 0.433
L5
GO:0005509 calcium ion binding 1 -0.142 0.0194 1 103 491 0.686
L6
GO:0140098 catalytic activity, acting on RNA 0.998 0.131 0.0188 2.88e-25 184 265 6.15
L7
GO:0003735 structural constituent of ribosome 1 0.129 0.0195 2.8e-23 118 152 9.28
L8
GO:0005201 extracellular matrix structural constituent 1 -0.176 0.0221 1 10 124 0.227
L9
GO:0042393 histone binding 0.955 0.111 0.0185 3.24e-13 108 163 5.23

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa03010 Ribosome 1 0.302 0.029 1.3e-22 104 129 11.2
L10
hsa00982 Drug metabolism 0.998 -0.211 0.0355 1 1 34 0.0774
L2
hsa04080 Neuroactive ligand-receptor interaction 1 -0.364 0.0334 1 10 163 0.164
L3
hsa03008 Ribosome biogenesis in eukaryotes 1 0.26 0.0312 2.69e-17 60 68 19.8
L4
hsa04060 Cytokine-cytokine receptor interaction 1 -0.218 0.03 1 24 173 0.407
L5
hsa03013 RNA transport 1 0.209 0.0283 7.47e-17 102 139 7.39
L6
hsa03040 Spliceosome 1 0.2 0.0278 4.52e-13 86 121 6.54
L7
hsa04110 Cell cycle 0.997 0.157 0.027 1.13e-07 74 118 4.44
L8
hsa03020 RNA polymerase 1 0.211 0.0326 7.34e-09 25 27 32.5

topic_7

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0098655 cation transmembrane transport 0.705 -0.129 0.019 1 138 616 0.737
GO:0006812 cation transport 0.227 -0.123 0.0187 1 204 836 0.825
GO:0098660 inorganic ion transmembrane transport 0.026 -0.118 0.0189 1 142 608 0.78
L10
GO:0044281 small molecule metabolic process 0.995 0.132 0.0173 3.04e-06 676 1540 2.21
L2
GO:0006396 RNA processing 1 0.229 0.0181 5.66e-39 465 757 4.47
L3
GO:0007049 cell cycle 0.998 0.164 0.0175 2.4e-36 774 1430 3.46
L4
GO:0032501 multicellular organismal process 1 -0.213 0.0143 1 1660 5120 1.37
L5
GO:0006996 organelle organization 1 0.214 0.0161 9.95e-38 1450 2980 3.13
L6
GO:0007186 G protein-coupled receptor signaling pathway 1 -0.177 0.0197 1 104 572 0.564
L7
GO:0033554 cellular response to stress 0.987 0.134 0.0174 1.5e-20 772 1560 2.84
L8
GO:0007155 cell adhesion 0.593 -0.108 0.0183 1 282 1050 0.95
GO:0022610 biological adhesion 0.395 -0.107 0.0183 1 285 1050 0.957
L9
GO:0010469 regulation of signaling receptor activity 1 -0.13 0.02 1 56 330 0.522

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0004888 transmembrane signaling receptor activity 1 -0.273 0.0206 1 70 527 0.384
L10
GO:0005515 protein binding 1 0.193 0.00954 1.12e-16 3560 8650 4.68
L2
GO:0003723 RNA binding 1 0.213 0.0175 1.17e-35 745 1370 3.49
L3
GO:0005261 cation channel activity 0.962 -0.181 0.0214 1 24 231 0.294
L4
GO:0048018 receptor ligand activity 0.985 -0.217 0.0208 1 33 258 0.372
L6
GO:0005509 calcium ion binding 1 -0.15 0.0193 1 105 491 0.692
L7
GO:0003824 catalytic activity 1 0.197 0.0146 7.87e-32 2070 4550 3.12

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa04060 Cytokine-cytokine receptor interaction 1 -0.348 0.032 1 15 173 0.231
L2
hsa04080 Neuroactive ligand-receptor interaction 1 -0.379 0.0331 1 11 163 0.176
L3
hsa03440 Homologous recombination 0.994 0.167 0.0307 1.72e-08 29 33 18.3
L5
hsa04610 Complement and coagulation cascades 1 -0.189 0.0325 1 4 52 0.206
L8
hsa04514 Cell adhesion molecules (CAMs) 0.982 -0.142 0.0289 1 17 95 0.539

topic_2

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0007049 cell cycle 0.999 0.142 0.0173 1.09e-27 698 1430 3.01
L10
GO:0050794 regulation of cellular process 0.995 0.15 0.0114 1.16e-27 2870 7290 3.65
L3
GO:0051641 cellular localization 0.999 0.123 0.0166 2.94e-16 1010 2350 2.46
L4
GO:0007264 small GTPase mediated signal transduction 0.986 0.109 0.018 1.48e-13 247 477 3.14
L6
GO:0070647 protein modification by small protein conjugation or removal 0.998 0.112 0.0177 1.21e-12 410 876 2.63
L7
GO:0032543 mitochondrial translation 0.632 -0.11 0.0205 1 14 119 0.372
GO:0140053 mitochondrial gene expression 0.343 -0.106 0.0203 1 19 139 0.441

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0022857 transmembrane transporter activity 0.82 -0.101 0.0183 1 204 779 0.984
GO:0005215 transporter activity 0.0939 -0.0929 0.0181 1 262 939 1.08
GO:0015318 inorganic molecular entity transmembrane transporter activity 0.0331 -0.0908 0.0185 1 160 612 0.982
GO:0015075 ion transmembrane transporter activity 0.0298 -0.0902 0.0185 1 175 660 1
L3
GO:0051020 GTPase binding 0.989 0.123 0.0179 4.93e-12 274 548 2.9
L4
GO:0140101 catalytic activity, acting on a tRNA 0.953 -0.101 0.0201 1 11 79 0.448
L5
GO:1901363 heterocyclic compound binding 0.841 0.138 0.0148 6.17e-09 1690 4300 2.34
GO:0097159 organic cyclic compound binding 0.159 0.134 0.0147 2.69e-08 1710 4360 2.33
L6
GO:0036459 thiol-dependent ubiquitinyl hydrolase activity 0.4 0.0992 0.0184 6.43e-08 58 91 4.93
GO:0101005 ubiquitinyl hydrolase activity 0.4 0.0992 0.0184 6.43e-08 58 91 4.93
GO:0019783 ubiquitin-like protein-specific protease activity 0.182 0.0965 0.0184 1.72e-07 62 101 4.46
L7
GO:0003735 structural constituent of ribosome 0.997 -0.109 0.0195 1 29 152 0.652

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa01100 Metabolic pathways 1 -0.147 0.0251 1 293 1020 1.16

SNMF

ix  <- order(snmf$fl$pve[-1], decreasing = T) + 1  # exclude first topic
Y.snmf <- purrr::map(ix[1:5], ~get_y(snmf$fl$L.lfsr[,.x], 1e-5))
names(Y.snmf) = paste0('topic_', ix[1:5])

snmf.gobp <- xfun::cache_rds({
  susie.args <- list(L=10, maxit=200, verbose=T)
  purrr::map(Y.snmf, ~do_logistic_susie(.x, 'gobp', susie.args = susie.args))},
  dir = 'cache/deng_example/', file='snmf.gobp')

snmf.gomf <- xfun::cache_rds({
  susie.args <- list(L=10, maxit=200, verbose=T)
  purrr::map(Y.snmf, ~do_logistic_susie(.x, 'gomf', susie.args = susie.args))},
  dir = 'cache/deng_example/', file='snmf.gomf')

snmf.kegg <- xfun::cache_rds({
  susie.args <- list(L=10, maxit=200, verbose=T)
  purrr::map(Y.snmf, ~do_logistic_susie(.x, 'kegg', susie.args = susie.args))},
  dir = 'cache/deng_example/', file='snmf.kegg')

snmf.fits <- mget(ls(pattern='^snmf.+'))
names(snmf.fits) <- purrr::map_chr(names(snmf.fits), ~str_split(.x, '\\.')[[1]][2])
for(topic in names(Y.snmf)){
  cat("\n") 
  cat("###", topic, "\n") # Create second level headings with the names.
  
  for(db in names(genesets)){
    cat("####", db, "\n") # Create second level headings with the names.
    possibly_make_susie_html_table(snmf.fits, db, topic) %>% print()
    cat("\n")
  }
}

topic_2

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 0.5 0.181 0.0203 1.52e-19 79 92 15.3
GO:0045047 protein targeting to ER 0.247 0.178 0.0202 3.53e-19 85 102 12.6
GO:0006613 cotranslational protein targeting to membrane 0.164 0.178 0.0203 5.19e-19 81 96 13.6
GO:0072599 establishment of protein localization to endoplasmic reticulum 0.0877 0.175 0.0201 9.61e-19 87 106 11.6
L3
GO:0042773 ATP synthesis coupled electron transport 0.43 0.0915 0.0186 7.01e-07 47 67 5.88
GO:0042775 mitochondrial ATP synthesis coupled electron transport 0.43 0.0915 0.0186 7.01e-07 47 67 5.88
GO:0006119 oxidative phosphorylation 0.0721 0.0841 0.0185 2.89e-06 57 88 4.6
GO:0022904 respiratory electron transport chain 0.0115 0.0763 0.0185 3.12e-05 52 83 4.2
GO:0045333 cellular respiration 0.0102 0.0751 0.0183 2.57e-05 83 145 3.36

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0003735 structural constituent of ribosome 1 0.2 0.0196 3.39e-23 121 152 9.88

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa03010 Ribosome 1 0.315 0.0296 1.03e-23 108 129 13.1
L2
hsa05012 Parkinson disease 0.936 0.165 0.0274 5.98e-09 73 106 5.51
hsa05016 Huntington disease 0.0373 0.148 0.0271 1.55e-07 91 146 4.14
L4
hsa03050 Proteasome 0.998 0.144 0.0283 1.14e-06 34 44 8.36

topic_3

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L2
GO:0006613 cotranslational protein targeting to membrane 0.794 0.206 0.0196 9.16e-39 74 96 20.7
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 0.206 0.204 0.0196 1.53e-38 72 92 22.2
L3
GO:0042773 ATP synthesis coupled electron transport 0.499 0.196 0.0191 3.66e-23 48 67 15.4
GO:0042775 mitochondrial ATP synthesis coupled electron transport 0.499 0.196 0.0191 3.66e-23 48 67 15.4
L5
GO:0070646 protein modification by small protein removal 0.838 0.127 0.0186 7.39e-13 88 249 3.35
GO:0016579 protein deubiquitination 0.162 0.123 0.0186 5.82e-12 82 233 3.33
L6
GO:0006412 translation 0.903 0.171 0.0188 2.82e-30 195 527 3.77
GO:0043043 peptide biosynthetic process 0.0812 0.166 0.0188 1.47e-28 196 545 3.6
L8
GO:0051276 chromosome organization 1 0.142 0.0186 8.88e-12 233 924 2.14

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0003735 structural constituent of ribosome 1 0.214 0.0188 1.65e-41 100 152 11.9
L10
GO:0004298 threonine-type endopeptidase activity 0.495 0.0958 0.0187 5.38e-07 14 21 11.9
GO:0070003 threonine-type peptidase activity 0.495 0.0958 0.0187 5.38e-07 14 21 11.9
L2
GO:0004888 transmembrane signaling receptor activity 1 -0.194 0.0222 1 34 527 0.397
L3
GO:0003954 NADH dehydrogenase activity 0.333 0.18 0.0203 4.05e-18 30 36 30
GO:0008137 NADH dehydrogenase (ubiquinone) activity 0.333 0.18 0.0203 4.05e-18 30 36 30
GO:0050136 NADH dehydrogenase (quinone) activity 0.333 0.18 0.0203 4.05e-18 30 36 30
L5
GO:0003723 RNA binding 1 0.179 0.0182 2.85e-31 392 1370 2.72
L6
GO:0031625 ubiquitin protein ligase binding 0.779 0.0988 0.0188 1.26e-07 77 257 2.59
GO:0044389 ubiquitin-like protein ligase binding 0.206 0.094 0.0189 6.36e-07 78 271 2.44
L8
GO:0016679 oxidoreductase activity, acting on diphenols and related substances as donors 0.333 0.152 0.0281 3.95e-06 7 7 Inf
GO:0008121 ubiquinol-cytochrome-c reductase activity 0.333 0.152 0.0281 3.95e-06 7 7 Inf
GO:0016681 oxidoreductase activity, acting on diphenols and related substances as donors, cytochrome as acceptor 0.333 0.152 0.0281 3.95e-06 7 7 Inf
L9
GO:0045296 cadherin binding 0.978 0.104 0.0187 7.64e-10 89 282 2.81

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa03010 Ribosome 1 0.397 0.0279 5.06e-39 92 129 14.2
L2
hsa05012 Parkinson disease 1 0.331 0.0277 1.67e-28 72 106 11.9
L3
hsa04110 Cell cycle 0.997 0.149 0.0271 1.5e-05 42 118 2.98
L4
hsa03050 Proteasome 1 0.191 0.0273 6.79e-10 27 44 8.52

topic_9

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L4
GO:0006996 organelle organization 1 0.171 0.0166 2.85e-12 799 2980 1.94
L5
GO:0030154 cell differentiation 0.912 -0.105 0.017 1 587 3040 1.1
GO:0048869 cellular developmental process 0.0703 -0.097 0.0169 1 633 3180 1.15
L6
GO:0099537 trans-synaptic signaling 0.297 -0.125 0.0202 1 69 521 0.678
GO:0099536 synaptic signaling 0.248 -0.124 0.0202 1 70 526 0.682
GO:0007268 chemical synaptic transmission 0.228 -0.124 0.0202 1 68 514 0.677
GO:0098916 anterograde trans-synaptic signaling 0.228 -0.124 0.0202 1 68 514 0.677
L7
GO:0044281 small molecule metabolic process 1 0.156 0.0178 3.03e-12 449 1540 2.04
L8
GO:0006401 RNA catabolic process 0.737 0.111 0.0184 1.44e-08 110 304 2.62
GO:0006402 mRNA catabolic process 0.17 0.106 0.0184 5.48e-08 101 279 2.62
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 0.0536 0.102 0.0185 3.35e-08 52 115 3.77
L9
GO:1990823 response to leukemia inhibitory factor 0.481 0.0885 0.0182 5.04e-07 41 89 3.89
GO:1990830 cellular response to leukemia inhibitory factor 0.481 0.0885 0.0182 5.04e-07 41 89 3.89

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0004888 transmembrane signaling receptor activity 0.675 -0.118 0.0202 1 66 527 0.633
GO:0038023 signaling receptor activity 0.313 -0.113 0.0198 1 97 697 0.715
L2
GO:0022836 gated channel activity 0.437 -0.115 0.0211 1 23 244 0.462
GO:0022839 ion gated channel activity 0.396 -0.115 0.0211 1 22 237 0.455
GO:0005216 ion channel activity 0.0914 -0.107 0.0207 1 32 295 0.54
GO:0022838 substrate-specific channel activity 0.0302 -0.103 0.0207 1 35 304 0.578
L4
GO:0003723 RNA binding 0.985 0.104 0.0178 1e-08 388 1370 1.92

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L4
hsa04080 Neuroactive ligand-receptor interaction 1 -0.231 0.0323 1 12 163 0.321

topic_10

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0043299 leukocyte degranulation 0.187 0.101 0.0188 4.82e-08 110 406 2.3
GO:0002446 neutrophil mediated immunity 0.175 0.101 0.0188 7.84e-08 105 386 2.31
GO:0002444 myeloid leukocyte mediated immunity 0.162 0.101 0.0188 7.17e-08 113 423 2.26
GO:0042119 neutrophil activation 0.11 0.0996 0.0188 1.46e-07 103 381 2.29
GO:0043312 neutrophil degranulation 0.0916 0.099 0.0188 2.04e-07 101 374 2.29
GO:0002275 myeloid cell activation involved in immune response 0.0789 0.0985 0.0188 1.45e-07 110 414 2.24
GO:0036230 granulocyte activation 0.0779 0.0984 0.0188 2.21e-07 103 384 2.27
GO:0002283 neutrophil activation involved in immune response 0.0739 0.0982 0.0188 2.69e-07 101 376 2.27
L3
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 0.569 0.152 0.0184 3.34e-12 44 92 5.61
GO:0006613 cotranslational protein targeting to membrane 0.356 0.152 0.0185 4.59e-12 45 96 5.4
GO:0045047 protein targeting to ER 0.0686 0.149 0.0186 1.44e-11 46 102 5.03
L4
GO:0030029 actin filament-based process 0.987 0.161 0.0185 2.43e-17 183 609 2.74
L5
GO:0048013 ephrin receptor signaling pathway 0.978 0.0947 0.0184 2.73e-10 36 75 5.63
L6
GO:0006396 RNA processing 0.998 -0.133 0.0207 1 80 757 0.697

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0038023 signaling receptor activity 0.853 -0.125 0.0206 1 73 697 0.689
GO:0060089 molecular transducer activity 0.0922 -0.117 0.0205 1 84 751 0.744
GO:0004888 transmembrane signaling receptor activity 0.0545 -0.117 0.0208 1 52 527 0.647
L2
GO:0045296 cadherin binding 1 0.175 0.0184 3.57e-19 109 282 3.94
L3
GO:0140098 catalytic activity, acting on RNA 0.998 -0.121 0.0217 1 21 265 0.51

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa04080 Neuroactive ligand-receptor interaction 1 -0.316 0.0359 1 5 163 0.165
L2
hsa04530 Tight junction 1 0.165 0.027 9.63e-10 58 144 3.76
L3
hsa03010 Ribosome 0.998 0.137 0.027 3.37e-06 46 129 3.05
L4
hsa05100 Bacterial invasion of epithelial cells 0.981 0.128 0.0269 1.53e-07 30 63 4.97

topic_8

gobp

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L2
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 0.915 0.301 0.0206 4.41e-56 78 92 46.2
GO:0006613 cotranslational protein targeting to membrane 0.0843 0.298 0.0206 9.03e-55 79 96 38.6
L4
GO:0006414 translational elongation 0.909 0.148 0.0187 5.9e-14 48 121 5.32
GO:0070125 mitochondrial translational elongation 0.0517 0.14 0.0186 2.46e-12 37 86 6.07
L5
GO:0022613 ribonucleoprotein complex biogenesis 1 0.169 0.0192 9.1e-25 126 391 4
L6
GO:0022900 electron transport chain 1 0.145 0.0187 5.98e-11 49 147 4.04
L7
GO:2000145 regulation of cell motility 0.597 -0.126 0.0216 1 47 686 0.565
GO:0030334 regulation of cell migration 0.344 -0.124 0.0217 1 44 644 0.564
GO:0051270 regulation of cellular component movement 0.0298 -0.113 0.0215 1 58 749 0.647
L9
GO:0072655 establishment of protein localization to mitochondrion 0.453 0.117 0.0189 3.83e-08 37 115 3.8
GO:0070585 protein localization to mitochondrion 0.277 0.115 0.0189 6.36e-08 37 117 3.71
GO:0006626 protein targeting to mitochondrion 0.268 0.114 0.0188 2.5e-08 31 86 4.51

gomf

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
GO:0003735 structural constituent of ribosome 1 0.274 0.019 2.09e-60 106 152 19.5
L2
GO:0004888 transmembrane signaling receptor activity 1 -0.219 0.0235 1 22 527 0.333
L5
GO:0003723 RNA binding 1 0.189 0.0187 1.27e-32 322 1370 2.83
L7
GO:0003954 NADH dehydrogenase activity 0.325 0.106 0.0184 6.24e-08 18 36 7.96
GO:0008137 NADH dehydrogenase (ubiquinone) activity 0.325 0.106 0.0184 6.24e-08 18 36 7.96
GO:0050136 NADH dehydrogenase (quinone) activity 0.325 0.106 0.0184 6.24e-08 18 36 7.96

kegg

geneSet description alpha beta beta.se pValueHypergeometric overlap geneSetSize oddsRatio
L1
hsa03010 Ribosome 1 0.467 0.0284 3.24e-55 98 129 23.5
L4
hsa00190 Oxidative phosphorylation 0.992 0.208 0.0271 9.62e-11 41 97 5.01
L5
hsa04060 Cytokine-cytokine receptor interaction 1 -0.309 0.037 1 4 173 0.151
L6
hsa03013 RNA transport 0.998 0.14 0.0276 0.000144 38 139 2.54
L7
hsa03050 Proteasome 0.985 0.126 0.0271 0.000128 17 44 4.2
hist(nmf$fl$L.lfsr[,2])


sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] htmltools_0.5.2  Matrix_1.4-0     forcats_0.5.1    stringr_1.4.0   
 [5] dplyr_1.0.8      purrr_0.3.4      readr_2.1.2      tidyr_1.2.0     
 [9] tibble_3.1.6     ggplot2_3.3.5    tidyverse_1.3.1  kableExtra_1.3.4
[13] DT_0.21.2        susieR_0.11.92  

loaded via a namespace (and not attached):
  [1] colorspace_2.0-3       ellipsis_0.3.2         rprojroot_2.0.2       
  [4] XVector_0.34.0         fs_1.5.2               rstudioapi_0.13       
  [7] bit64_4.0.5            AnnotationDbi_1.56.2   fansi_1.0.2           
 [10] lubridate_1.8.0        xml2_1.3.3             codetools_0.2-18      
 [13] doParallel_1.0.17      cachem_1.0.6           knitr_1.38            
 [16] jsonlite_1.8.0         workflowr_1.7.0        apcluster_1.4.9       
 [19] WebGestaltR_0.4.4      broom_0.7.12           dbplyr_2.1.1          
 [22] png_0.1-7              BiocManager_1.30.16    compiler_4.1.2        
 [25] httr_1.4.2             backports_1.4.1        assertthat_0.2.1      
 [28] fastmap_1.1.0          cli_3.2.0              later_1.3.0           
 [31] tools_4.1.2            igraph_1.2.11          GenomeInfoDbData_1.2.7
 [34] gtable_0.3.0           glue_1.6.2             doRNG_1.8.2           
 [37] Rcpp_1.0.8.2           Biobase_2.54.0         cellranger_1.1.0      
 [40] jquerylib_0.1.4        vctrs_0.3.8            Biostrings_2.62.0     
 [43] svglite_2.1.0          iterators_1.0.14       xfun_0.30             
 [46] rvest_1.0.2            lifecycle_1.0.1        irlba_2.3.5           
 [49] renv_0.15.4            rngtools_1.5.2         org.Hs.eg.db_3.14.0   
 [52] zlibbioc_1.40.0        scales_1.1.1           vroom_1.5.7           
 [55] hms_1.1.1              promises_1.2.0.1       parallel_4.1.2        
 [58] yaml_2.3.5             curl_4.3.2             memoise_2.0.1         
 [61] sass_0.4.0             reshape_0.8.8          stringi_1.7.6         
 [64] RSQLite_2.2.10         highr_0.9              S4Vectors_0.32.3      
 [67] foreach_1.5.2          BiocGenerics_0.40.0    GenomeInfoDb_1.30.1   
 [70] bitops_1.0-7           rlang_1.0.2            pkgconfig_2.0.3       
 [73] systemfonts_1.0.4      matrixStats_0.61.0     evaluate_0.15         
 [76] lattice_0.20-45        htmlwidgets_1.5.4      bit_4.0.4             
 [79] tidyselect_1.1.2       plyr_1.8.6             magrittr_2.0.2        
 [82] R6_2.5.1               IRanges_2.28.0         generics_0.1.2        
 [85] DBI_1.1.2              pillar_1.7.0           haven_2.4.3           
 [88] whisker_0.4            withr_2.5.0            KEGGREST_1.34.0       
 [91] RCurl_1.98-1.6         mixsqp_0.3-43          modelr_0.1.8          
 [94] crayon_1.5.0           utf8_1.2.2             tzdb_0.2.0            
 [97] rmarkdown_2.13         grid_4.1.2             readxl_1.3.1          
[100] blob_1.2.2             git2r_0.29.0           reprex_2.0.1          
[103] digest_0.6.29          webshot_0.5.2          httpuv_1.6.5          
[106] stats4_4.1.2           munsell_0.5.0          viridisLite_0.4.0     
[109] bslib_0.3.1