• About the data sets
    • 0. Load input data
    • 1. Data preprocessing
    • 2. Model building
    • 3. Pick optimal number of topics
    • 4. Visualize the results under 20 topics
    • 5. Adaptation to the code to generate calibrated empirical TPD scores

Last updated: 2022-07-19

Checks: 7 0

Knit directory: GSFA_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20220524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 358270c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/spca_LUHMES_data.Rmd
    Untracked:  code/music_LUHMES_Yifan.R
    Untracked:  code/run_music_LUHMES.R
    Untracked:  code/run_music_LUHMES_data.sbatch
    Untracked:  code/run_sceptre_LUHMES_data.sbatch
    Untracked:  code/run_sceptre_Tcells_stimulated_data.sbatch
    Untracked:  code/run_sceptre_Tcells_unstimulated_data.sbatch
    Untracked:  code/run_spca_LUHMES.R
    Untracked:  code/run_spca_TCells.R
    Untracked:  code/sceptre_LUHMES_data.R
    Untracked:  code/sceptre_Tcells_stimulated_data.R
    Untracked:  code/sceptre_Tcells_unstimulated_data.R

Unstaged changes:
    Modified:   analysis/sceptre_LUHMES_data.Rmd
    Modified:   code/run_sceptre_cropseq_data.sbatch
    Modified:   code/sceptre_analysis.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/music_LUHMES_data.Rmd) and HTML (docs/music_LUHMES_data.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 358270c kevinlkx 2022-07-19 run MUSIC on LUHMES data

slurm setting

sinteractive --partition=broadwl --account=pi-xinhe --mem=30G --time=10:00:00 --cpus-per-task=10

MUSIC website: https://github.com/bm2-lab/MUSIC

Scripts for running the analysis:

cd /project2/xinhe/kevinluo/GSFA/music_analysis/log

sbatch --mem=50G --cpus-per-task=10 ~/projects/GSFA_analysis/code/run_music_LUHMES_data.sbatch

About the data sets

CROP-seq datasets: /project2/xinhe/yifan/Factor_analysis/shared_data/ The data are Seurat objects, with raw gene counts stored in obj@assays$RNA@counts, and cell meta data stored in obj@meta.data. Normalized and scaled data used for GSFA are stored in obj@assays$RNA@scale.data , the rownames of which are the 6k genes used for GSFA.

Load packages

library(data.table)
library(Seurat)
library(MUSIC)
library(ggplot2)
theme_set(theme_bw() + theme(plot.title = element_text(size = 14, hjust = 0.5),
                             axis.title = element_text(size = 14),
                             axis.text = element_text(size = 13),
                             legend.title = element_text(size = 13),
                             legend.text = element_text(size = 12),
                             panel.grid.minor = element_blank())
)
library(ComplexHeatmap)

Set directories

data_dir <- "/project2/xinhe/yifan/Factor_analysis/LUHMES/"
setwd("/project2/xinhe/kevinluo/GSFA/music_analysis/LUHMES")
dir.create("./music_output", recursive = TRUE, showWarnings = FALSE)

0. Load input data

feature.names <- data.frame(fread(paste0(data_dir, "GSE142078_raw/GSM4219575_Run1_genes.tsv.gz"),
                                  header = FALSE), stringsAsFactors = FALSE)

# combined_obj <- readRDS("processed_data/seurat_obj.merged_scaled_detect_01.corrected_new.rds")
combined_obj <- readRDS("/project2/xinhe/yifan/Factor_analysis/shared_data/LUHMES_cropseq_data_seurat.rds")
expression_profile <- combined_obj@assays$RNA@counts
rownames(expression_profile) <- feature.names$V2[match(rownames(expression_profile),
                                                       feature.names$V1)]
targets <- names(combined_obj@meta.data)[4:18]
targets[11] <- "CTRL"
perturb_information <- apply(combined_obj@meta.data[4:18], 1,
                             function(x){ targets[which(x > 0)] })

1. Data preprocessing

crop_seq_list <- Input_preprocess(expression_profile, perturb_information)

crop_seq_qc <- Cell_qc(crop_seq_list$expression_profile,
                       crop_seq_list$perturb_information,
                       species = "Hs", plot = F)

crop_seq_imputation <- Data_imputation(crop_seq_qc$expression_profile,
                                       crop_seq_qc$perturb_information,
                                       cpu_num = 10)
saveRDS(crop_seq_imputation, "music_output/music_imputation.merged.rds")

crop_seq_filtered <- Cell_filtering(crop_seq_imputation$expression_profile,
                                    crop_seq_imputation$perturb_information,
                                    cpu_num = 10)
saveRDS(crop_seq_filtered, "music_output/music_filtered.merged.rds")

2. Model building

crop_seq_vargene <- Get_high_varGenes(crop_seq_filtered$expression_profile,
                                      crop_seq_filtered$perturb_information, plot = T)
saveRDS(crop_seq_vargene, "music_output/music_vargene.merged.rds")

## Get_topics() can take up to a few hours to finish, 
## depending on the size of data
system.time(
  topic_1 <- Get_topics(crop_seq_vargene$expression_profile,
                        crop_seq_vargene$perturb_information,
                        topic_number = 5))
saveRDS(topic_1, "music_output/music_merged_5_topics.rds")

system.time(
  topic_2 <- Get_topics(crop_seq_vargene$expression_profile,
                        crop_seq_vargene$perturb_information,
                        topic_number = 10))
saveRDS(topic_2, "music_output/music_merged_10_topics.rds")

system.time(
  topic_3 <- Get_topics(crop_seq_vargene$expression_profile,
                        crop_seq_vargene$perturb_information,
                        topic_number = 15))
saveRDS(topic_3, "music_output/music_merged_15_topics.rds")

system.time(
  topic_4 <- Get_topics(crop_seq_vargene$expression_profile,
                        crop_seq_vargene$perturb_information,
                        topic_number = 20))
saveRDS(topic_4, "music_output/music_merged_20_topics.rds")

3. Pick optimal number of topics

topic_model_list <- list()
topic_model_list$models <- list()
topic_model_list$perturb_information <- topic_1$perturb_information
topic_model_list$models[[1]] <- topic_1$models[[1]]
topic_model_list$models[[2]] <- topic_2$models[[1]]
topic_model_list$models[[3]] <- topic_3$models[[1]]
topic_model_list$models[[4]] <- topic_4$models[[1]]

saveRDS(topic_model_list, "music_output/topic_model_list.rds")

optimalModel <- Select_topic_number(topic_model_list$models,
                                    plot = T,
                                    plot_path = "music_output/select_topic_number_5_to_20.pdf")
# The paper said "the larger the score, the better the selected topic number".
# But we probably are going to set the number to 20 just to be comparable to GSFA.

4. Visualize the results under 20 topics

Gene ontology annotations for top topics

topic_res <- readRDS("music_output/music_merged_20_topics.rds")

topic_func <- Topic_func_anno(topic_res$models[[1]], species = "Hs")
saveRDS(topic_func, "music_output/topic_func.rds")
topic_func <- readRDS("music_output/topic_func.rds")
# pdf("music_output/music_merged_20_topics_GO_annotations.pdf",
#     width = 14, height = 12)
ggplot(topic_func$topic_annotation_result) +
  geom_point(aes(x = Cluster, y = Description,
                 size = Count, color = -log10(qvalue))) +
  scale_color_gradientn(colors = c("blue", "red")) +
  theme_bw() +
  theme(axis.title = element_blank(),
        axis.text.x = element_text(angle = 45, hjust = 1))
# dev.off()

Perturbation effect prioritizing

# calculate topic distribution for each cell.
distri_diff <- Diff_topic_distri(topic_res$models[[1]],
                                 topic_res$perturb_information,
                                 plot = T)
saveRDS(topic_func, "music_output/topic_func.rds")

t_D_diff_matrix <- dcast(distri_diff %>% dplyr::select(knockout, variable, t_D_diff),
                         knockout ~ variable)
rownames(t_D_diff_matrix) <- t_D_diff_matrix$knockout
t_D_diff_matrix$knockout <- NULL
# pdf("music_output/music_merged_20_topics_TPD_heatmap.pdf", width = 12, height = 8)
Heatmap(t_D_diff_matrix,
        name = "Topic probability difference (vs ctrl)",
        cluster_rows = T, cluster_columns = T,
        column_names_rot = 45,
        heatmap_legend_param = list(title_gp = gpar(fontsize = 12, fontface = "bold")))
# dev.off()
# calculate the overall perturbation effect ranking list without "offTarget_Info".
rank_overall_result <- Rank_overall(distri_diff)
head(rank_overall_result)
saveRDS(rank_overall_result, "music_output/rank_overall_result.rds")

# calculate the topic-specific ranking list.
rank_topic_specific_result <- Rank_specific(distri_diff)
head(rank_topic_specific_result)
saveRDS(rank_topic_specific_result, "music_output/rank_topic_specific_result.rds")

# calculate the perturbation correlation.
perturb_cor <- Correlation_perturbation(distri_diff,
                                        cutoff = 0.5, gene = "all", plot = T,
                                        plot_path = "music_output/correlation_network_20_topics.pdf")

head(perturb_cor)
saveRDS(perturb_cor, "music_output/perturb_cor.rds")

5. Adaptation to the code to generate calibrated empirical TPD scores

## Adapted over MUSIC's Diff_topic_distri() function
Empirical_topic_prob_diff <- function(model, perturb_information,
                                      permNum = 10^4, seed = 1000){
  require(reshape2)
  require(dplyr)
  require(ComplexHeatmap)
  options(warn = -1)
  prob_mat <- model@gamma
  row.names(prob_mat) <- model@documents
  topicNum <- ncol(prob_mat)
  topicName <- paste0('Topic_', 1:topicNum)
  colnames(prob_mat) <- topicName
  ko_name <- unique(perturb_information)
  prob_df <- data.frame(prob_mat, 
                        samples = rownames(prob_mat),
                        knockout = perturb_information)
  
  prob_df <- melt(prob_df, id = c('samples', 'knockout'), variable.name = "topic")
  
  summary_df <- prob_df %>%
    group_by(knockout, topic) %>%
    summarise(number = sum(value)) %>%
    ungroup() %>%
    group_by(knockout) %>%
    mutate(cellNum = sum(number)) %>%
    ungroup() %>%
    mutate(ratio = number/cellNum)
  
  summary_df$ctrlNum <- rep(summary_df$cellNum[summary_df$knockout == "CTRL"],
                            length(ko_name))
  summary_df$ctrl_ratio <- rep(summary_df$ratio[summary_df$knockout == "CTRL"],
                               length(ko_name))
  summary_df <- summary_df %>% mutate(diff_index = ratio - ctrl_ratio)
  
  test_df <- data.frame(matrix(nrow = length(ko_name) * topicNum, ncol = 5))
  colnames(test_df) <- c("knockout", "topic", "obs_t_stats", "obs_pval", "empirical_pval")
  k <- 1
  for(i in topicName){
    prob_df.topic <- prob_df[prob_df$topic == i, ]
    ctrl_topic <- prob_df.topic$value[prob_df.topic$knockout == "CTRL"]
    ctrl_topic_z <- (ctrl_topic - mean(ctrl_topic)) / sqrt(var(ctrl_topic))
    for(j in ko_name){
      ko_topic <- prob_df.topic$value[prob_df.topic$knockout == j]
      ko_topic_z <- (ko_topic - mean(ctrl_topic)) / sqrt(var(ctrl_topic))
      test_df$knockout[k] <- j
      test_df$topic[k] <- i
      test <- t.test(ko_topic_z, ctrl_topic_z)
      test_df$obs_t_stats[k] <- test$statistic
      test_df$obs_pval[k] <- test$p.value
      k <- k + 1
    }
  }
  
  ## Permutation on the perturbation conditions:
  # permNum <- 10^4
  print(paste0("Performing permutation for ", permNum, " rounds."))
  perm_t_stats <- matrix(0, nrow = nrow(test_df), ncol = permNum)
  set.seed(seed)
  for (perm in 1:permNum){
    perm_prob_df <- data.frame(prob_mat, 
                               samples = rownames(prob_mat),
                               knockout = perturb_information[sample(length(perturb_information))])
    perm_prob_df <- melt(perm_prob_df, id = c('samples', 'knockout'), variable.name = "topic")
    k <- 1
    for(i in topicName){
      perm_prob_df.topic <- perm_prob_df[perm_prob_df$topic == i, ]
      ctrl_topic <- perm_prob_df.topic$value[perm_prob_df.topic$knockout == "CTRL"]
      ctrl_topic_z <- (ctrl_topic - mean(ctrl_topic)) / sqrt(var(ctrl_topic))
      for(j in ko_name){
        ko_topic <- perm_prob_df.topic$value[perm_prob_df.topic$knockout == j]
        ko_topic_z <- (ko_topic - mean(ctrl_topic)) / sqrt(var(ctrl_topic))
        test <- t.test(ko_topic_z, ctrl_topic_z)
        perm_t_stats[k, perm] <- test$statistic
        k <- k + 1
      }
    }
    if (perm %% 1000 == 0){
      print(paste0(perm, " rounds finished."))
    }
  }
  ## Compute two-sided empirical p value:
  for (k in 1:nrow(test_df)){
    test_df$empirical_pval[k] <-
      2 * min(mean(perm_t_stats[k, ] <= test_df$obs_t_stats[k]),
              mean(perm_t_stats[k, ] >= test_df$obs_t_stats[k]))
  }
  test_df <- test_df %>%
    mutate(empirical_pval = ifelse(empirical_pval == 0, 1/permNum, empirical_pval)) %>%
    mutate(empirical_pval = ifelse(empirical_pval > 1, 1, empirical_pval))
  
  summary_df <- inner_join(summary_df, test_df, by = c("knockout", "topic"))
  summary_df <- summary_df %>%
    mutate(polar_log10_pval = ifelse(obs_t_stats > 0, -log10(empirical_pval), log10(empirical_pval)))
  return(summary_df)
}
summary_df <- Empirical_topic_prob_diff(topic_res$models[[1]],
                                        topic_res$perturb_information)
saveRDS(summary_df, "music_output/music_merged_20_topics_ttest_summary.rds")

summary_df <- readRDS("music_output/music_merged_20_topics_ttest_summary.rds")

log10_pval_mat <- dcast(summary_df %>% dplyr::select(knockout, topic, polar_log10_pval),
                        knockout ~ topic)
rownames(log10_pval_mat) <- log10_pval_mat$knockout
log10_pval_mat$knockout <- NULL
pdf("music_output/music_merged_20_topics_empirical_tstats_heatmap.pdf",
    width = 12, height = 8)
ht <- Heatmap(log10_pval_mat,
              name = "Polarized empirical t-test -log10(p-value)\n(KO vs ctrl cell topic probs)",
              col = circlize::colorRamp2(breaks = c(-4, 0, 4), colors = c("blue", "grey90", "red")),
              cluster_rows = T, cluster_columns = T,
              column_names_rot = 45,
              heatmap_legend_param = list(title_gp = gpar(fontsize = 12,
                                                          fontface = "bold")))
draw(ht)
dev.off()

sessionInfo()