Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • GSFA results
    • Load necessary packages and data
    • Factor ~ Perturbation Associations
      • Perturbation effects on factors (stimulated cells)
      • Perturbation effects on factors (unstimulated cells)
    • Factor Interpretation
      • Correlation within factors
      • Gene loading in factors
      • GO enrichment analysis in factors
  • Session Information

Last updated: 2022-08-01

Checks: 7 0

Knit directory: GSFA_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20220524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version aba9f4a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/interpret_gsfa_LUHMES.Rmd
    Untracked:  analysis/spca_LUHMES_data.Rmd
    Untracked:  analysis/twostep_clustering_LUHMES_data.Rmd
    Untracked:  code/music_LUHMES_Yifan.R
    Untracked:  code/plotting_functions.R
    Untracked:  code/run_music_LUHMES.R
    Untracked:  code/run_music_LUHMES_data.sbatch
    Untracked:  code/run_sceptre_LUHMES_data.sbatch
    Untracked:  code/run_sceptre_Tcells_stimulated_data.sbatch
    Untracked:  code/run_sceptre_Tcells_unstimulated_data.sbatch
    Untracked:  code/run_spca_LUHMES.R
    Untracked:  code/run_spca_TCells.R
    Untracked:  code/sceptre_LUHMES_data.R
    Untracked:  code/sceptre_Tcells_stimulated_data.R
    Untracked:  code/sceptre_Tcells_unstimulated_data.R
    Untracked:  code/seurat_sim_fpr_tpr.R

Unstaged changes:
    Modified:   analysis/music_LUHMES_data.Rmd
    Modified:   analysis/music_TCells_data.Rmd
    Modified:   analysis/sceptre_LUHMES_data.Rmd
    Modified:   code/run_sceptre_cropseq_data.sbatch
    Modified:   code/sceptre_analysis.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gsfa_TCells_data.Rmd) and HTML (docs/gsfa_TCells_data.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd aba9f4a kevinlkx 2022-08-01 reproduce GSFA results on T cells data (without DEG results)
Rmd c044fb0 kevinlkx 2022-08-01 wflow_rename("compare_gsfa_music_TCells.Rmd", "gsfa_TCells_data.Rmd")
html c044fb0 kevinlkx 2022-08-01 wflow_rename("compare_gsfa_music_TCells.Rmd", "gsfa_TCells_data.Rmd")

GSFA results

The processed dataset consists of 10677 unstimulated T cells and 14278 stimulated T cells.
They were subject to belong to one of the 21 perturbation conditions (CRISPR knock-out of 20 regulators of T cell proliferation or immune checkpoint genes, and negative control).
Top 6000 genes ranked by deviance statistics were kept. A modified two-group GSFA was performed on the data with 20 factors specified, and perturbation effects estimated separately for cells with/without TCR stimulation.

Load necessary packages and data

library(data.table)
library(Matrix)
library(tidyverse)
library(ggplot2)
theme_set(theme_bw() + theme(plot.title = element_text(size = 14, hjust = 0.5),
                             axis.title = element_text(size = 14),
                             axis.text = element_text(size = 12),
                             legend.title = element_text(size = 13),
                             legend.text = element_text(size = 12),
                             panel.grid.minor = element_blank())
)
library(gridExtra)
library(ComplexHeatmap)
library(kableExtra)
library(WebGestaltR)

source("code/plotting_functions.R")

The first thing we need is the output of GSFA fit_gsfa_multivar_2groups() run. The lighter version containing just the posterior mean estimates and LFSR of perturbation-gene effects is enough.

data_folder <- "/project2/xinhe/yifan/Factor_analysis/Stimulated_T_Cells/"
fit <- readRDS(paste0(data_folder,
                      "gsfa_output_detect_01/all_uncorrected_by_group.use_negctrl/All.gibbs_obj_k20.svd_negctrl.restart.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat1 <- fit$lfsr1[, -ncol(fit$lfsr1)]
lfsr_mat0 <- fit$lfsr0[, -ncol(fit$lfsr0)]
total_effect1 <- fit$total_effect1[, -ncol(fit$total_effect1)]
total_effect0 <- fit$total_effect0[, -ncol(fit$total_effect0)]
KO_names <- colnames(lfsr_mat1)

We also need the cell by perturbation matrix which was used as input G for GSFA.

metadata <- readRDS(paste0(data_folder, "processed_data/metadata.all_T_cells_merged.rds"))
G_mat <- metadata[, 4:24]

Finally, we load the mapping from gene name to ENSEMBL ID for all 6k genes used in GSFA, as well as selected neuronal marker genes. This is specific to this study and analysis.

feature.names <- data.frame(fread(paste0(data_folder, "GSE119450_RAW/D1N/genes.tsv"),
                                  header = FALSE), stringsAsFactors = FALSE)
genes_df <- feature.names[match(rownames(lfsr_mat1), feature.names$V1), ]
names(genes_df) <- c("ID", "Name")
interest_df <- readRDS(paste0(data_folder, "processed_data/selected_tcell_markers.rds"))

Factor ~ Perturbation Associations

Perturbation effects on factors (stimulated cells)

Fisrt of all, we look at the estimated effects of gene perturbations on factors inferred by GSFA.

We found that targeting of 9 genes, ARID1A, CBLB, CD5, CDKN1B, DGKA, LCP2, RASA2, SOCS1, and TCEB2, has significant effects (PIP > 0.95) on at least 1 of the 20 inferred factors.

Estimated effects of perturbations on factors (Figure S4A):

dotplot_beta_PIP(t(gibbs_PM$Gamma1_pm), t(gibbs_PM$beta1_pm),
                 marker_names = KO_names,
                 reorder_markers = c(KO_names[KO_names!="NonTarget"], "NonTarget"),
                 inverse_factors = F) +
  coord_flip()

Version Author Date
c044fb0 kevinlkx 2022-08-01

Here is a closer look at the estimated effects of selected perturbations on selected factors (Figure 3A):

targets <- c("ARID1A", "LCP2", "CD5", "CBLB", "RASA2", 
             "DGKA", "TCEB2", "SOCS1", "CDKN1B")
complexplot_perturbation_factor(gibbs_PM$Gamma1_pm[-nrow(gibbs_PM$Gamma1_pm), ],
                                gibbs_PM$beta1_pm[-nrow(gibbs_PM$beta1_pm), ],
                                marker_names = KO_names, reorder_markers = targets,
                                reorder_factors = c(2, 4, 9, 12))

Version Author Date
c044fb0 kevinlkx 2022-08-01

We can also assess the correlations between each pair of perturbation and inferred factor.
The distribution of correlation p values show significant signals in stimulated cells.

## Indices of stimulated cells:
stim_cells <-
  (1:nrow(G_mat))[startsWith(rownames(G_mat), "D1S") | 
                    startsWith(rownames(G_mat), "D2S")]
gibbs_res_tb <- make_gibbs_res_tb(gibbs_PM, G_mat, compute_pve = F,
                                  cell_indx = stim_cells)
heatmap_matrix <- gibbs_res_tb %>% select(starts_with("pval"))
rownames(heatmap_matrix) <- 1:nrow(heatmap_matrix)
colnames(heatmap_matrix) <- colnames(G_mat)

summ_pvalues(unlist(heatmap_matrix),
             title_text = "GSFA Stimulated\n(21 Targets x 20 Factors)")

Version Author Date
c044fb0 kevinlkx 2022-08-01

Perturbation effects on factors (unstimulated cells)

In unstimulated cells, only three pairs of associations were detected at PIP > 0.95, which is unsurprising given the role of these targeted genes in regulating T cell responses (Figure S4B):

dotplot_beta_PIP(t(gibbs_PM$Gamma0_pm), t(gibbs_PM$beta0_pm),
                 marker_names = KO_names,
                 reorder_markers = c(KO_names[KO_names!="NonTarget"], "NonTarget"),
                 inverse_factors = F) +
  coord_flip()

Version Author Date
c044fb0 kevinlkx 2022-08-01

Factor Interpretation

Correlation within factors

Since the GSFA model does not enforce orthogonality among factors, we first inspect the pairwise correlation within them to see if there is any redundancy. As we can see below, the inferred factors are mostly independent of each other.

plot_pairwise.corr_heatmap(input_mat_1 = gibbs_PM$Z_pm,
                           corr_type = "pearson",
                           name_1 = "Pairwise correlation within factors (Z)",
                           label_size = 10)

Version Author Date
c044fb0 kevinlkx 2022-08-01
plot_pairwise.corr_heatmap(input_mat_1 = (gibbs_PM$F_pm > 0.95) * 1,
                           corr_type = "jaccard",
                           name_1 = "Pairwise correlation within \nbinarized gene loadings (F_pm > 0.95)",
                           label_size = 10)

Version Author Date
c044fb0 kevinlkx 2022-08-01

Gene loading in factors

To understand these latent factors, we inspect the loadings (weights) of several marker genes for T cell activation or proliferation states in them.

gene_name type protein_name gene_ID
IL7R T cell resting state IL-7 receptor ENSG00000168685
CCR7 T cell resting state C-C motif chemokine receptor 7 ENSG00000126353
GZMB T cell activation Granzyme B ENSG00000100453
IFNG T cell activation Interferon gamma ENSG00000111537
CD44 T cell activation CD44 ENSG00000026508
IL2RA T cell activation IL-2 receptor ENSG00000134460
XCL1 T cell activation X-C motif chemokine ligand 1 ENSG00000143184
TNFRSF18 T cell activation GITR ENSG00000186891
ITGAL T cell activation LFA-1 ENSG00000005844
MKI67 Cell proliferation Marker of proliferation Ki-67 ENSG00000148773
TOP2A Cell proliferation DNA topoisomerase II alpha ENSG00000131747
CENPF Cell proliferation Centromere protein F ENSG00000117724

We visualize both the gene PIPs (dot size) and gene weights (dot color) in all factors (Figure S4C):

complexplot_gene_factor(genes_df, interest_df, gibbs_PM$F_pm, gibbs_PM$W_pm)

Version Author Date
c044fb0 kevinlkx 2022-08-01

A closer look at some factors that are associated with perturbations (Figure 3C):

complexplot_gene_factor(genes_df, interest_df, gibbs_PM$F_pm, gibbs_PM$W_pm,
                        reorder_factors = c(2, 4, 9, 12))

Version Author Date
c044fb0 kevinlkx 2022-08-01

GO enrichment analysis in factors

To further characterize these latent factors, we perform GO (gene ontology) enrichment analysis of genes loaded on the factors using WebGestalt.

Foreground genes: Genes w/ non-zero loadings in each factor (gene PIP > 0.95);
Background genes: all 6000 genes used in GSFA;
Statistical test: hypergeometric test (over-representation test);
Gene sets: GO Slim "Biological Process" (non-redundant).

## The "WebGestaltR" tool needs Internet connection.
enrich_db <- "geneontology_Biological_Process_noRedundant"
PIP_mat <- gibbs_PM$F_pm
enrich_res_by_factor <- list()
for (i in 1:ncol(PIP_mat)){
  enrich_res_by_factor[[i]] <- 
    WebGestaltR::WebGestaltR(enrichMethod = "ORA",
                             organism = "hsapiens",
                             enrichDatabase = enrich_db,
                             interestGene = genes_df[PIP_mat[, i] > 0.95, ]$ID,
                             interestGeneType = "ensembl_gene_id",
                             referenceGene = genes_df$ID,
                             referenceGeneType = "ensembl_gene_id",
                             isOutput = F)
}

Several GO “biological process” terms related to immune responses or cell cycle are enriched in factors 2, 4, 9, and 12 (Figure 3D):

factor_indx <- 2
terms_of_interest <- c("kinetochore organization", "chromosome segregation",
                       "cell cycle G2/M phase transition", "cytokinesis")
barplot_top_enrich_terms(enrich_res_by_factor[[factor_indx]],
                         terms_of_interest = terms_of_interest,
                         str_wrap_length = 50) +
  labs(title = paste0("Factor ", factor_indx))

Version Author Date
c044fb0 kevinlkx 2022-08-01
factor_indx <- 9
terms_of_interest <- c("microtubule cytoskeleton organization involved in mitosis",
                       "chromosome segregation", "cytokinesis", "cell cycle checkpoint")
barplot_top_enrich_terms(enrich_res_by_factor[[factor_indx]],
                         terms_of_interest = terms_of_interest,
                         str_wrap_length = 35) +
  labs(title = paste0("Factor ", factor_indx))

Version Author Date
c044fb0 kevinlkx 2022-08-01
factor_indx <- 4
terms_of_interest <- c("response to chemokine", "cell killing", "leukocyte migration",
                       "response to interferon-gamma", "cytokine secretion")
barplot_top_enrich_terms(enrich_res_by_factor[[factor_indx]],
                         terms_of_interest = terms_of_interest,
                         str_wrap_length = 35) +
  labs(title = paste0("Factor ", factor_indx))

Version Author Date
c044fb0 kevinlkx 2022-08-01
factor_indx <- 12
terms_of_interest <- c("leukocyte cell-cell adhesion", "extrinsic apoptotic signaling pathway",
                       "cell killing", "T cell activation", "NIK/NF-kappaB signaling")
barplot_top_enrich_terms(enrich_res_by_factor[[factor_indx]],
                         terms_of_interest = terms_of_interest,
                         str_wrap_length = 35) +
  labs(title = paste0("Factor ", factor_indx))

Version Author Date
c044fb0 kevinlkx 2022-08-01

Session Information

sessionInfo()
R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] lattice_0.20-45      WebGestaltR_0.4.4    kableExtra_1.3.4    
 [4] ComplexHeatmap_2.6.2 gridExtra_2.3        forcats_0.5.1       
 [7] stringr_1.4.0        dplyr_1.0.8          purrr_0.3.4         
[10] readr_2.1.2          tidyr_1.2.0          tibble_3.1.6        
[13] ggplot2_3.3.5        tidyverse_1.3.1      Matrix_1.4-1        
[16] data.table_1.14.2   

loaded via a namespace (and not attached):
 [1] matrixStats_0.61.0  fs_1.5.2            lubridate_1.8.0    
 [4] doParallel_1.0.17   webshot_0.5.2       RColorBrewer_1.1-3 
 [7] httr_1.4.2          rprojroot_2.0.2     doRNG_1.8.2        
[10] tools_4.0.4         backports_1.4.1     bslib_0.3.1        
[13] utf8_1.2.2          R6_2.5.1            DBI_1.1.2          
[16] BiocGenerics_0.36.1 colorspace_2.0-3    GetoptLong_1.0.5   
[19] withr_2.5.0         tidyselect_1.1.2    compiler_4.0.4     
[22] git2r_0.30.1        cli_3.2.0           rvest_1.0.2        
[25] Cairo_1.5-15        xml2_1.3.3          labeling_0.4.2     
[28] sass_0.4.1          scales_1.2.0        apcluster_1.4.10   
[31] systemfonts_1.0.4   digest_0.6.29       svglite_2.0.0      
[34] rmarkdown_2.13      pkgconfig_2.0.3     htmltools_0.5.2    
[37] highr_0.9           dbplyr_2.1.1        fastmap_1.1.0      
[40] rlang_1.0.2         GlobalOptions_0.1.2 readxl_1.4.0       
[43] rstudioapi_0.13     farver_2.1.0        shape_1.4.6        
[46] jquerylib_0.1.4     generics_0.1.2      jsonlite_1.8.0     
[49] magrittr_2.0.3      Rcpp_1.0.9          munsell_0.5.0      
[52] S4Vectors_0.28.1    fansi_1.0.3         lifecycle_1.0.1    
[55] stringi_1.7.6       whisker_0.4         yaml_2.3.5         
[58] plyr_1.8.6          parallel_4.0.4      promises_1.2.0.1   
[61] crayon_1.5.1        haven_2.5.0         pander_0.6.5       
[64] circlize_0.4.14     hms_1.1.1           knitr_1.38         
[67] pillar_1.7.0        igraph_1.2.11       rjson_0.2.21       
[70] rngtools_1.5.2      reshape2_1.4.4      codetools_0.2-18   
[73] stats4_4.0.4        reprex_2.0.1        glue_1.6.2         
[76] evaluate_0.15       modelr_0.1.8        foreach_1.5.2      
[79] png_0.1-7           vctrs_0.4.1         tzdb_0.3.0         
[82] httpuv_1.6.5        cellranger_1.1.0    gtable_0.3.0       
[85] clue_0.3-60         assertthat_0.2.1    xfun_0.30          
[88] broom_0.8.0         later_1.3.0         viridisLite_0.4.0  
[91] iterators_1.0.14    IRanges_2.24.1      cluster_2.1.2      
[94] workflowr_1.7.0     ellipsis_0.3.2     

sessionInfo()

R version 4.0.4 (2021-02-15) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages: [1] grid stats graphics grDevices utils datasets methods
[8] base

other attached packages: [1] lattice_0.20-45 WebGestaltR_0.4.4 kableExtra_1.3.4
[4] ComplexHeatmap_2.6.2 gridExtra_2.3 forcats_0.5.1
[7] stringr_1.4.0 dplyr_1.0.8 purrr_0.3.4
[10] readr_2.1.2 tidyr_1.2.0 tibble_3.1.6
[13] ggplot2_3.3.5 tidyverse_1.3.1 Matrix_1.4-1
[16] data.table_1.14.2

loaded via a namespace (and not attached): [1] matrixStats_0.61.0 fs_1.5.2 lubridate_1.8.0
[4] doParallel_1.0.17 webshot_0.5.2 RColorBrewer_1.1-3 [7] httr_1.4.2 rprojroot_2.0.2 doRNG_1.8.2
[10] tools_4.0.4 backports_1.4.1 bslib_0.3.1
[13] utf8_1.2.2 R6_2.5.1 DBI_1.1.2
[16] BiocGenerics_0.36.1 colorspace_2.0-3 GetoptLong_1.0.5
[19] withr_2.5.0 tidyselect_1.1.2 compiler_4.0.4
[22] git2r_0.30.1 cli_3.2.0 rvest_1.0.2
[25] Cairo_1.5-15 xml2_1.3.3 labeling_0.4.2
[28] sass_0.4.1 scales_1.2.0 apcluster_1.4.10
[31] systemfonts_1.0.4 digest_0.6.29 svglite_2.0.0
[34] rmarkdown_2.13 pkgconfig_2.0.3 htmltools_0.5.2
[37] highr_0.9 dbplyr_2.1.1 fastmap_1.1.0
[40] rlang_1.0.2 GlobalOptions_0.1.2 readxl_1.4.0
[43] rstudioapi_0.13 farver_2.1.0 shape_1.4.6
[46] jquerylib_0.1.4 generics_0.1.2 jsonlite_1.8.0
[49] magrittr_2.0.3 Rcpp_1.0.9 munsell_0.5.0
[52] S4Vectors_0.28.1 fansi_1.0.3 lifecycle_1.0.1
[55] stringi_1.7.6 whisker_0.4 yaml_2.3.5
[58] plyr_1.8.6 parallel_4.0.4 promises_1.2.0.1
[61] crayon_1.5.1 haven_2.5.0 pander_0.6.5
[64] circlize_0.4.14 hms_1.1.1 knitr_1.38
[67] pillar_1.7.0 igraph_1.2.11 rjson_0.2.21
[70] rngtools_1.5.2 reshape2_1.4.4 codetools_0.2-18
[73] stats4_4.0.4 reprex_2.0.1 glue_1.6.2
[76] evaluate_0.15 modelr_0.1.8 foreach_1.5.2
[79] png_0.1-7 vctrs_0.4.1 tzdb_0.3.0
[82] httpuv_1.6.5 cellranger_1.1.0 gtable_0.3.0
[85] clue_0.3-60 assertthat_0.2.1 xfun_0.30
[88] broom_0.8.0 later_1.3.0 viridisLite_0.4.0
[91] iterators_1.0.14 IRanges_2.24.1 cluster_2.1.2
[94] workflowr_1.7.0 ellipsis_0.3.2