Last updated: 2025-06-03

Checks: 7 0

Knit directory: footprint_clustering/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250530) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 62f2aa6. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/plot_aggregate_footprint_profiles.Rmd) and HTML (docs/plot_aggregate_footprint_profiles.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 62f2aa6 kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")
html 607fcbb kevinlkx 2025-06-03 Build site.
Rmd 33687fb kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")
html 8c5aaee kevinlkx 2025-06-03 Build site.
Rmd 75db1be kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")
html 1d1da22 kevinlkx 2025-06-03 Build site.
Rmd 8b47c80 kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")
html 7ca564b kevinlkx 2025-06-03 Build site.
Rmd 8ab13cb kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")
html a7416a5 kevinlkx 2025-06-03 Build site.
Rmd b689be2 kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")
html b3cb0f0 kevinlkx 2025-06-03 Build site.
Rmd 0f500a0 kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")
html 2c0e42e kevinlkx 2025-06-03 Build site.
Rmd be43eb7 kevinlkx 2025-06-03 wflow_publish("analysis/plot_aggregate_footprint_profiles.Rmd")

library(tidyverse)
library(data.table)
library(ggplot2)
source("code/plots.R")

Here, we explore the DNase-seq and ATAC-seq accessibility profiles round TF motif matches.

CTCF

CTCF profiles in GM12878

We scanned CTCF motif matches along the genome, then extended 100bp window on both sides of motif matches.

We downloaded DNase-seq, ATAC-seq and CTCF ChIP-seq data in GM12878 from ENCODE.

About the processed files:

  • CTCF_MA0139.2_1e-5.candidate.sites.rds: a data frame of candidate binding sites matching CTCF motif (MA0139.2) (result from FIMO, p-value < 1e-5).

  • CTCF.GM12878.sites.chip.labels.rds: a data frame with the CTCF motif matches (result from FIMO, as in *.candidate.sites.rds), as well as normalized ChIP-seq counts (“chip” column) and ChIP-seq peak labels (“chip_label”) in GM12878.

  • CTCF.GM12878.DNase.counts.mat.rds: DNase-seq count matrix, where the rows are the motif matches (in the same order as *.candidate.sites.rds), and the columns are the DNase-seq counts at each position in the window. The first half of the columns are counts on the forward strand, and the second half are counts on the reverse strand. We could simple combine the counts on both strands as shown below. After combining the strands, we will have counts for the 100 bp on the left flanking window, counts in motif region, and 100bp on the right flanking window.

  • CTCF.GM12878.ATAC.counts.mat.rds: ATAC-seq count matrix, similar to *.DNase.counts.mat.rds.

sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')
sites_chip_labels <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.GM12878.sites.chip.labels.rds')

dnase_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.GM12878.DNase.counts.mat.rds')
# combine counts on both strands
dnase_count_matrix <- dnase_count_matrix[,1:(ncol(dnase_count_matrix)/2)] + dnase_count_matrix[,(ncol(dnase_count_matrix)/2+1):ncol(dnase_count_matrix)]

atac_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.GM12878.ATAC.counts.mat.rds')
# combine counts on both strands
atac_count_matrix <- atac_count_matrix[,1:(ncol(atac_count_matrix)/2)] + atac_count_matrix[,(ncol(atac_count_matrix)/2+1):ncol(atac_count_matrix)]

Plot aggregate profiles of DNase-seq and ATAC-seq counts around motif sites.

pos_idx <- which(sites_chip_labels$chip_label == 1)
neg_idx <- which(sites_chip_labels$chip_label == 0)

dnase_pos_profile <- colMeans(dnase_count_matrix[pos_idx, ], na.rm = TRUE)
dnase_neg_profile <- colMeans(dnase_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(dnase_pos_profile, dnase_neg_profile, 
                      title = "Aggregate DNase-seq profiles around CTCF motifs in GM12878")

Version Author Date
2c0e42e kevinlkx 2025-06-03
atac_pos_profile <- colMeans(atac_count_matrix[pos_idx, ], na.rm = TRUE)
atac_neg_profile <- colMeans(atac_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(atac_pos_profile, atac_neg_profile, 
                      title = "Aggregate ATAC-seq profiles around CTCF motifs in GM12878")

Version Author Date
2c0e42e kevinlkx 2025-06-03

Heatmap of 2000 positive sites and 2000 negative sites

We randomly sample 2000 positive sites and 2000 negative sites, and plot the PWM scores, DNase-seq, ATAC-seq and ChIP-seq results.

set.seed(1)
sites_idx <- c(sample(pos_idx, 2000), sample(neg_idx, 2000))

pwm = sites_chip_labels$pwm.score[sites_idx]
chip = sites_chip_labels$chip[sites_idx]
chip_label = sites_chip_labels$chip_label[sites_idx]
dnase_data = dnase_count_matrix[sites_idx,]
atac_data = atac_count_matrix[sites_idx,]

rank = order(chip_label, chip)

data.l <- list(DNaase = dnase_data,
               ATAC = atac_data)
chip.df <- data.frame(chip = chip, chip_label = chip_label)

plot_data_matrix_heatmap(pwm, data.l, chip.df, rank, 
                         data_name = c("DNase-seq", "ATAC-seq"), 
                         chip_name = c("ChIP-seq\ncounts", "ChIP-seq\npeaks"), 
                         title = "CTCF sites in GM12878",
                         zMax_data = c(1, 3), 
                         zMax_chip = c(200, 1))

Version Author Date
2c0e42e kevinlkx 2025-06-03

CTCF profiles in K562

We scanned CTCF motif matches along the genome, then extended 100bp window on both sides of motif matches.

We downloaded DNase-seq, ATAC-seq and CTCF ChIP-seq data in K562 from ENCODE.

# sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')

sites_chip_labels <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.sites.chip.labels.rds')

dnase_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.DNase.counts.mat.rds')
# combine counts on both strands
dnase_count_matrix <- dnase_count_matrix[,1:(ncol(dnase_count_matrix)/2)] + dnase_count_matrix[,(ncol(dnase_count_matrix)/2+1):ncol(dnase_count_matrix)]

atac_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.ATAC.counts.mat.rds')
# combine counts on both strands
atac_count_matrix <- atac_count_matrix[,1:(ncol(atac_count_matrix)/2)] + atac_count_matrix[,(ncol(atac_count_matrix)/2+1):ncol(atac_count_matrix)]

Plot aggregate profiles of DNase-seq and ATAC-seq counts around motif sites.

pos_idx <- which(sites_chip_labels$chip_label == 1)
neg_idx <- which(sites_chip_labels$chip_label == 0)

dnase_pos_profile <- colMeans(dnase_count_matrix[pos_idx, ], na.rm = TRUE)
dnase_neg_profile <- colMeans(dnase_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(dnase_pos_profile, dnase_neg_profile, 
                      title = "Aggregate DNase-seq profiles around CTCF motifs in K562")

Version Author Date
2c0e42e kevinlkx 2025-06-03
atac_pos_profile <- colMeans(atac_count_matrix[pos_idx, ], na.rm = TRUE)
atac_neg_profile <- colMeans(atac_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(atac_pos_profile, atac_neg_profile, 
                      title = "Aggregate ATAC-seq profiles around CTCF motifs in K562")

Version Author Date
2c0e42e kevinlkx 2025-06-03

Heatmap of 2000 positive sites and 2000 negative sites

We randomly sample 2000 positive sites and 2000 negative sites, and plot the PWM scores, DNase-seq, ATAC-seq and ChIP-seq results.

set.seed(1)
sites_idx <- c(sample(pos_idx, 2000), sample(neg_idx, 2000))

pwm = sites_chip_labels$pwm.score[sites_idx]
chip = sites_chip_labels$chip[sites_idx]
chip_label = sites_chip_labels$chip_label[sites_idx]
dnase_data = dnase_count_matrix[sites_idx,]
atac_data = atac_count_matrix[sites_idx,]

rank = order(chip_label, chip)

data.l <- list(DNaase = dnase_data,
               ATAC = atac_data)
chip.df <- data.frame(chip = chip, chip_label = chip_label)

plot_data_matrix_heatmap(pwm, data.l, chip.df, rank, 
                         data_name = c("DNase-seq", "ATAC-seq"), 
                         chip_name = c("ChIP-seq\ncounts", "ChIP-seq\npeaks"), 
                         title = "CTCF sites in K562",
                         zMax_data = c(1, 3), 
                         zMax_chip = c(200, 1))

Version Author Date
2c0e42e kevinlkx 2025-06-03

REST

REST profiles in GM12878

We scanned REST motif matches along the genome, then extended 100bp window on both sides of motif matches.

We downloaded DNase-seq, ATAC-seq and REST ChIP-seq data in GM12878 from ENCODE.

# sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST_MA0138.3_1e-5.candidate.sites.rds')

sites_chip_labels <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.GM12878.sites.chip.labels.rds')

dnase_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.GM12878.DNase.counts.mat.rds')
# combine counts on both strands
dnase_count_matrix <- dnase_count_matrix[,1:(ncol(dnase_count_matrix)/2)] + dnase_count_matrix[,(ncol(dnase_count_matrix)/2+1):ncol(dnase_count_matrix)]

atac_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.GM12878.ATAC.counts.mat.rds')
# combine counts on both strands
atac_count_matrix <- atac_count_matrix[,1:(ncol(atac_count_matrix)/2)] + atac_count_matrix[,(ncol(atac_count_matrix)/2+1):ncol(atac_count_matrix)]

Plot aggregate profiles of DNase-seq and ATAC-seq counts around motif sites.

pos_idx <- which(sites_chip_labels$chip_label == 1)
neg_idx <- which(sites_chip_labels$chip_label == 0)

dnase_pos_profile <- colMeans(dnase_count_matrix[pos_idx, ], na.rm = TRUE)
dnase_neg_profile <- colMeans(dnase_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(dnase_pos_profile, dnase_neg_profile, 
                      title = "Aggregate DNase-seq profiles around REST motifs in GM12878")

Version Author Date
2c0e42e kevinlkx 2025-06-03
atac_pos_profile <- colMeans(atac_count_matrix[pos_idx, ], na.rm = TRUE)
atac_neg_profile <- colMeans(atac_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(atac_pos_profile, atac_neg_profile, 
                      title = "Aggregate ATAC-seq profiles around REST motifs in GM12878")

Version Author Date
2c0e42e kevinlkx 2025-06-03

Heatmap of 2000 positive sites and 2000 negative sites

We randomly sample 2000 positive sites and 2000 negative sites, and plot the PWM scores, DNase-seq, ATAC-seq and ChIP-seq results.

set.seed(1)
sites_idx <- c(sample(pos_idx, 2000), sample(neg_idx, 2000))

pwm = sites_chip_labels$pwm.score[sites_idx]
chip = sites_chip_labels$chip[sites_idx]
chip_label = sites_chip_labels$chip_label[sites_idx]
dnase_data = dnase_count_matrix[sites_idx,]
atac_data = atac_count_matrix[sites_idx,]

rank = order(chip_label, chip)

data.l <- list(DNaase = dnase_data,
               ATAC = atac_data)
chip.df <- data.frame(chip = chip, chip_label = chip_label)

plot_data_matrix_heatmap(pwm, data.l, chip.df, rank, 
                         data_name = c("DNase-seq", "ATAC-seq"), 
                         chip_name = c("ChIP-seq\ncounts", "ChIP-seq\npeaks"), 
                         title = "REST sites in GM12878",
                         zMax_data = c(1, 3), 
                         zMax_chip = c(200, 1))

Version Author Date
2c0e42e kevinlkx 2025-06-03

REST profiles in K562

We scanned REST motif matches along the genome, then extended 100bp window on both sides of motif matches.

We downloaded DNase-seq, ATAC-seq and REST ChIP-seq data in K562 from ENCODE.

# sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST_MA0138.3_1e-5.candidate.sites.rds')

sites_chip_labels <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.K562.sites.chip.labels.rds')

dnase_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.K562.DNase.counts.mat.rds')
# combine counts on both strands
dnase_count_matrix <- dnase_count_matrix[,1:(ncol(dnase_count_matrix)/2)] + dnase_count_matrix[,(ncol(dnase_count_matrix)/2+1):ncol(dnase_count_matrix)]

atac_count_matrix <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.K562.ATAC.counts.mat.rds')
# combine counts on both strands
atac_count_matrix <- atac_count_matrix[,1:(ncol(atac_count_matrix)/2)] + atac_count_matrix[,(ncol(atac_count_matrix)/2+1):ncol(atac_count_matrix)]

Plot aggregate profiles of DNase-seq and ATAC-seq counts around motif sites.

pos_idx <- which(sites_chip_labels$chip_label == 1)
neg_idx <- which(sites_chip_labels$chip_label == 0)

dnase_pos_profile <- colMeans(dnase_count_matrix[pos_idx, ], na.rm = TRUE)
dnase_neg_profile <- colMeans(dnase_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(dnase_pos_profile, dnase_neg_profile, 
                      title = "Aggregate DNase-seq profiles around REST motifs in K562")

Version Author Date
2c0e42e kevinlkx 2025-06-03
atac_pos_profile <- colMeans(atac_count_matrix[pos_idx, ], na.rm = TRUE)
atac_neg_profile <- colMeans(atac_count_matrix[neg_idx, ], na.rm = TRUE)
plot_pos_neg_profiles(atac_pos_profile, atac_neg_profile, 
                      title = "Aggregate ATAC-seq profiles around REST motifs in K562")

Version Author Date
2c0e42e kevinlkx 2025-06-03

Heatmap of 2000 positive sites and 2000 negative sites

We randomly sample 2000 positive sites and 2000 negative sites, and plot the PWM scores, DNase-seq, ATAC-seq and ChIP-seq results.

set.seed(1)
sites_idx <- c(sample(pos_idx, 2000), sample(neg_idx, 2000))

pwm = sites_chip_labels$pwm.score[sites_idx]
chip = sites_chip_labels$chip[sites_idx]
chip_label = sites_chip_labels$chip_label[sites_idx]
dnase_data = dnase_count_matrix[sites_idx,]
atac_data = atac_count_matrix[sites_idx,]

rank = order(chip_label, chip)

data.l <- list(DNaase = dnase_data,
               ATAC = atac_data)
chip.df <- data.frame(chip = chip, chip_label = chip_label)

plot_data_matrix_heatmap(pwm, data.l, chip.df, rank, 
                         data_name = c("DNase-seq", "ATAC-seq"), 
                         chip_name = c("ChIP-seq\ncounts", "ChIP-seq\npeaks"), 
                         title = "REST sites in K562",
                         zMax_data = c(1, 3), 
                         zMax_chip = c(200, 1))

Version Author Date
2c0e42e kevinlkx 2025-06-03

sessionInfo()
#> R version 4.2.0 (2022-04-22)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
#>  [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
#>  [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
#> [10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] data.table_1.14.2 forcats_0.5.1     stringr_1.5.1     dplyr_1.1.4      
#>  [5] purrr_1.0.2       readr_2.1.2       tidyr_1.3.1       tibble_3.2.1     
#>  [9] ggplot2_3.5.1     tidyverse_1.3.1   workflowr_1.7.0  
#> 
#> loaded via a namespace (and not attached):
#>  [1] tidyselect_1.2.1 xfun_0.30        bslib_0.3.1      haven_2.5.0     
#>  [5] colorspace_2.0-3 vctrs_0.6.5      generics_0.1.2   htmltools_0.5.2 
#>  [9] yaml_2.3.5       rlang_1.1.4      jquerylib_0.1.4  later_1.3.0     
#> [13] pillar_1.10.1    withr_2.5.0      glue_1.6.2       DBI_1.1.2       
#> [17] dbplyr_2.1.1     readxl_1.4.0     modelr_0.1.8     lifecycle_1.0.4 
#> [21] cellranger_1.1.0 munsell_0.5.0    gtable_0.3.0     rvest_1.0.2     
#> [25] evaluate_0.15    knitr_1.39       tzdb_0.3.0       callr_3.7.3     
#> [29] fastmap_1.1.0    httpuv_1.6.5     ps_1.7.0         highr_0.9       
#> [33] broom_0.8.0      Rcpp_1.0.12      promises_1.2.0.1 backports_1.4.1 
#> [37] scales_1.3.0     jsonlite_1.8.0   fs_1.5.2         hms_1.1.1       
#> [41] digest_0.6.29    stringi_1.7.6    processx_3.8.0   getPass_0.2-2   
#> [45] rprojroot_2.0.3  grid_4.2.0       cli_3.6.3        tools_4.2.0     
#> [49] magrittr_2.0.3   sass_0.4.1       crayon_1.5.1     whisker_0.4     
#> [53] pkgconfig_2.0.3  ellipsis_0.3.2   xml2_1.3.3       reprex_2.0.1    
#> [57] lubridate_1.8.0  assertthat_0.2.1 rmarkdown_2.14   httr_1.4.3      
#> [61] rstudioapi_0.13  R6_2.5.1         git2r_0.30.1     compiler_4.2.0