Last updated: 2020-06-09

Checks: 7 0

Knit directory: neural_scRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7cca30c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    .__workflowr.yml
    Ignored:    ._neural_scRNAseq.Rproj
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/._.DS_Store
    Ignored:    analysis/._01-preprocessing.Rmd
    Ignored:    analysis/._01-preprocessing.html
    Ignored:    analysis/._02.1-SampleQC.Rmd
    Ignored:    analysis/._04-clustering.Rmd
    Ignored:    analysis/._04-clustering.knit.md
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/01-preprocessing_cache/
    Ignored:    analysis/02-1-SampleQC_cache/
    Ignored:    analysis/02-quality_control_cache/
    Ignored:    analysis/02.1-SampleQC_cache/
    Ignored:    analysis/03-filtering_cache/
    Ignored:    analysis/04-clustering_cache/
    Ignored:    analysis/sample5_QC_cache/
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._metadata.csv
    Ignored:    data/._metadata.xlsx
    Ignored:    data/.smbdeleteAAA17ed8b4b
    Ignored:    data/data_sushi/
    Ignored:    data/filtered_feature_matrices/
    Ignored:    data/metadata.csv
    Ignored:    data/metadata.xlsx
    Ignored:    output/.DS_Store
    Ignored:    output/._.DS_Store
    Ignored:    output/figures/
    Ignored:    output/sce_01_preprocessing.rds
    Ignored:    output/sce_02_quality_control.rds
    Ignored:    output/sce_03_filtering.rds
    Ignored:    output/sce_preprocessing.rds
    Ignored:    output/so_04_clustering.rds

Untracked files:
    Untracked:  analysis/sample5_QC.Rmd
    Untracked:  scripts/

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/05-annotation.Rmd) and HTML (docs/05-annotation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html a4d0e04 khembach 2020-05-29 Build site.
Rmd 97d5a52 khembach 2020-05-29 cluster analysis

Load packages

library(ComplexHeatmap)
library(cowplot)
library(ggplot2)
library(dplyr)
library(muscat)
library(purrr)
library(RColorBrewer)
library(viridis)
library(scran)
library(Seurat)
library(SingleCellExperiment)

Load data & convert to SCE

so <- readRDS(file.path("output", "so_04_clustering.rds"))
sce <- as.SingleCellExperiment(so, assay = "RNA")
colData(sce) <- as.data.frame(colData(sce)) %>% 
    mutate_if(is.character, as.factor) %>% 
    DataFrame(row.names = colnames(sce))

Nb. of clusters by resolution

cluster_cols <- grep("res.[0-9]", colnames(colData(sce)), value = TRUE)
sapply(colData(sce)[cluster_cols], nlevels)
integrated_snn_res.0.1 integrated_snn_res.0.2 integrated_snn_res.0.4 
                     8                     12                     17 
integrated_snn_res.0.8   integrated_snn_res.1 integrated_snn_res.1.2 
                    24                     29                     31 
  integrated_snn_res.2 
                    39 

Cluster-sample counts

# set cluster IDs to resolution 0.4 clustering
so <- SetIdent(so, value = "integrated_snn_res.0.4")
so@meta.data$cluster_id <- Idents(so)
sce$cluster_id <- Idents(so)
(n_cells <- table(sce$cluster_id, sce$sample_id))
    
     1NSC 2NSC 3NC52 4NC52 5NC96 6NC96
  0  4850 5041   186    98   308    82
  1     0    0  1552  1279   492   627
  2  1037 1011   337   288   563   391
  3    12   10   572   383  1806   372
  4  1351 1221    69    56    76    16
  5     0    0  1017   847   380   415
  6     2    9   628   620   528   774
  7   253  236   577   606   376   369
  8     0    0  1007   867   250   285
  9     0    0   924   764   327   379
  10  688  716   130   121   188   119
  11    3    3   582   524   211   248
  12    0    0   365   281   186   235
  13    0    0   339   247   141   174
  14    1    1   205   260   210   194
  15   51   70   148   153    64    89
  16   83   90    49    44    83    24

Relative cluster-abundances

fqs <- prop.table(n_cells, margin = 2)
mat <- as.matrix(unclass(fqs))
Heatmap(mat,
    col = rev(brewer.pal(11, "RdGy")[-6]),
    name = "Frequency",
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    row_title = "cluster_id",
    column_title = "sample_id",
    column_title_side = "bottom",
    rect_gp = gpar(col = "white"),
    cell_fun = function(i, j, x, y, width, height, fill)
        grid.text(round(mat[j, i] * 100, 2), x = x, y = y, 
            gp = gpar(col = "white", fontsize = 8)))

Version Author Date
a4d0e04 khembach 2020-05-29

DR colored by cluster ID

cs <- sample(colnames(so), 5e3)
.plot_dr <- function(so, dr, id)
    DimPlot(so, cells = cs, group.by = id, reduction = dr, pt.size = 0.4) +
        guides(col = guide_legend(nrow = 11, 
            override.aes = list(size = 3, alpha = 1))) +
        theme_void() + theme(aspect.ratio = 1)
ids <- c("cluster_id", "group_id", "sample_id")
for (id in ids) {
    cat("## ", id, "\n")
    p1 <- .plot_dr(so, "tsne", id)
    lgd <- get_legend(p1)
    p1 <- p1 + theme(legend.position = "none")
    p2 <- .plot_dr(so, "umap", id) + theme(legend.position = "none")
    ps <- plot_grid(plotlist = list(p1, p2), nrow = 1)
    p <- plot_grid(ps, lgd, nrow = 1, rel_widths = c(1, 0.2))
    print(p)
    cat("\n\n")
}

cluster_id

Version Author Date
a4d0e04 khembach 2020-05-29

group_id

Version Author Date
a4d0e04 khembach 2020-05-29

sample_id

Version Author Date
a4d0e04 khembach 2020-05-29

sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/local/R/R-4.0.0/lib/libRblas.so
LAPACK: /usr/local/R/R-4.0.0/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] parallel  stats4    grid      stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] Seurat_3.1.5                scran_1.16.0               
 [3] SingleCellExperiment_1.10.1 SummarizedExperiment_1.18.1
 [5] DelayedArray_0.14.0         matrixStats_0.56.0         
 [7] Biobase_2.48.0              GenomicRanges_1.40.0       
 [9] GenomeInfoDb_1.24.0         IRanges_2.22.2             
[11] S4Vectors_0.26.1            BiocGenerics_0.34.0        
[13] viridis_0.5.1               viridisLite_0.3.0          
[15] RColorBrewer_1.1-2          purrr_0.3.4                
[17] muscat_1.2.0                dplyr_0.8.5                
[19] ggplot2_3.3.0               cowplot_1.0.0              
[21] ComplexHeatmap_2.4.2        workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] backports_1.1.7           circlize_0.4.9           
  [3] blme_1.0-4                igraph_1.2.5             
  [5] plyr_1.8.6                lazyeval_0.2.2           
  [7] TMB_1.7.16                splines_4.0.0            
  [9] BiocParallel_1.22.0       listenv_0.8.0            
 [11] scater_1.16.0             digest_0.6.25            
 [13] foreach_1.5.0             htmltools_0.4.0          
 [15] gdata_2.18.0              lmerTest_3.1-2           
 [17] magrittr_1.5              memoise_1.1.0            
 [19] cluster_2.1.0             doParallel_1.0.15        
 [21] ROCR_1.0-11               limma_3.44.1             
 [23] globals_0.12.5            annotate_1.66.0          
 [25] prettyunits_1.1.1         colorspace_1.4-1         
 [27] rappdirs_0.3.1            ggrepel_0.8.2            
 [29] blob_1.2.1                xfun_0.14                
 [31] jsonlite_1.6.1            crayon_1.3.4             
 [33] RCurl_1.98-1.2            genefilter_1.70.0        
 [35] lme4_1.1-23               zoo_1.8-8                
 [37] ape_5.3                   survival_3.1-12          
 [39] iterators_1.0.12          glue_1.4.1               
 [41] gtable_0.3.0              zlibbioc_1.34.0          
 [43] XVector_0.28.0            leiden_0.3.3             
 [45] GetoptLong_0.1.8          BiocSingular_1.4.0       
 [47] future.apply_1.5.0        shape_1.4.4              
 [49] scales_1.1.1              DBI_1.1.0                
 [51] edgeR_3.30.0              Rcpp_1.0.4.6             
 [53] xtable_1.8-4              progress_1.2.2           
 [55] clue_0.3-57               reticulate_1.16          
 [57] dqrng_0.2.1               bit_1.1-15.2             
 [59] rsvd_1.0.3                tsne_0.1-3               
 [61] htmlwidgets_1.5.1         httr_1.4.1               
 [63] gplots_3.0.3              ellipsis_0.3.1           
 [65] ica_1.0-2                 farver_2.0.3             
 [67] pkgconfig_2.0.3           XML_3.99-0.3             
 [69] uwot_0.1.8                locfit_1.5-9.4           
 [71] labeling_0.3              tidyselect_1.1.0         
 [73] rlang_0.4.6               reshape2_1.4.4           
 [75] later_1.0.0               AnnotationDbi_1.50.0     
 [77] munsell_0.5.0             tools_4.0.0              
 [79] RSQLite_2.2.0             ggridges_0.5.2           
 [81] evaluate_0.14             stringr_1.4.0            
 [83] yaml_2.2.1                knitr_1.28               
 [85] bit64_0.9-7               fs_1.4.1                 
 [87] fitdistrplus_1.1-1        caTools_1.18.0           
 [89] RANN_2.6.1                pbapply_1.4-2            
 [91] future_1.17.0             nlme_3.1-148             
 [93] whisker_0.4               pbkrtest_0.4-8.6         
 [95] compiler_4.0.0            plotly_4.9.2.1           
 [97] beeswarm_0.2.3            png_0.1-7                
 [99] variancePartition_1.18.0  tibble_3.0.1             
[101] statmod_1.4.34            geneplotter_1.66.0       
[103] stringi_1.4.6             lattice_0.20-41          
[105] Matrix_1.2-18             nloptr_1.2.2.1           
[107] vctrs_0.3.0               pillar_1.4.4             
[109] lifecycle_0.2.0           lmtest_0.9-37            
[111] GlobalOptions_0.1.1       RcppAnnoy_0.0.16         
[113] BiocNeighbors_1.6.0       data.table_1.12.8        
[115] bitops_1.0-6              irlba_2.3.3              
[117] patchwork_1.0.0           httpuv_1.5.2             
[119] colorRamps_2.3            R6_2.4.1                 
[121] promises_1.1.0            KernSmooth_2.23-17       
[123] gridExtra_2.3             vipor_0.4.5              
[125] codetools_0.2-16          boot_1.3-25              
[127] MASS_7.3-51.6             gtools_3.8.2             
[129] assertthat_0.2.1          DESeq2_1.28.1            
[131] rprojroot_1.3-2           rjson_0.2.20             
[133] withr_2.2.0               sctransform_0.2.1        
[135] GenomeInfoDbData_1.2.3    hms_0.5.3                
[137] tidyr_1.1.0               glmmTMB_1.0.1            
[139] minqa_1.2.4               rmarkdown_2.1            
[141] DelayedMatrixStats_1.10.0 Rtsne_0.15               
[143] git2r_0.27.1              numDeriv_2016.8-1.1      
[145] ggbeeswarm_0.6.0