Last updated: 2020-10-09

Checks: 7 0

Knit directory: neural_scRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20200522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a653577. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    ._Rplots.pdf
    Ignored:    ._Rplots_largeViz.pdf
    Ignored:    ._Rplots_separate.pdf
    Ignored:    .__workflowr.yml
    Ignored:    ._neural_scRNAseq.Rproj
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/._.DS_Store
    Ignored:    analysis/._01-preprocessing.Rmd
    Ignored:    analysis/._01-preprocessing.html
    Ignored:    analysis/._02.1-SampleQC.Rmd
    Ignored:    analysis/._03-filtering.Rmd
    Ignored:    analysis/._04-clustering.Rmd
    Ignored:    analysis/._04-clustering.knit.md
    Ignored:    analysis/._04.1-cell_cycle.Rmd
    Ignored:    analysis/._05-annotation.Rmd
    Ignored:    analysis/._Lam-0-NSC_no_integration.Rmd
    Ignored:    analysis/._Lam-01-NSC_integration.Rmd
    Ignored:    analysis/._Lam-02-NSC_annotation.Rmd
    Ignored:    analysis/._NSC-1-clustering.Rmd
    Ignored:    analysis/._NSC-2-annotation.Rmd
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/._additional_filtering.Rmd
    Ignored:    analysis/._additional_filtering_clustering.Rmd
    Ignored:    analysis/._index.Rmd
    Ignored:    analysis/._organoid-01-1-qualtiy-control.Rmd
    Ignored:    analysis/._organoid-01-clustering.Rmd
    Ignored:    analysis/._organoid-02-integration.Rmd
    Ignored:    analysis/._organoid-03-cluster_analysis.Rmd
    Ignored:    analysis/._organoid-04-group_integration.Rmd
    Ignored:    analysis/._organoid-04-stage_integration.Rmd
    Ignored:    analysis/._organoid-05-group_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-05-stage_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-06-1-prepare-sce.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-Seurat.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-function.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis.Rmd
    Ignored:    analysis/._organoid-06-group-integration-conos-analysis.Rmd
    Ignored:    analysis/._organoid-07-conos-visualization.Rmd
    Ignored:    analysis/._organoid-07-group-integration-conos-visualization.Rmd
    Ignored:    analysis/._organoid-08-conos-comparison.Rmd
    Ignored:    analysis/._organoid-0x-sample_integration.Rmd
    Ignored:    analysis/01-preprocessing_cache/
    Ignored:    analysis/02-1-SampleQC_cache/
    Ignored:    analysis/02-quality_control_cache/
    Ignored:    analysis/02.1-SampleQC_cache/
    Ignored:    analysis/03-filtering_cache/
    Ignored:    analysis/04-clustering_cache/
    Ignored:    analysis/04.1-cell_cycle_cache/
    Ignored:    analysis/05-annotation_cache/
    Ignored:    analysis/Lam-01-NSC_integration_cache/
    Ignored:    analysis/Lam-02-NSC_annotation_cache/
    Ignored:    analysis/NSC-1-clustering_cache/
    Ignored:    analysis/NSC-2-annotation_cache/
    Ignored:    analysis/TDP-01-preprocessing_cache/
    Ignored:    analysis/TDP-02-quality_control_cache/
    Ignored:    analysis/additional_filtering_cache/
    Ignored:    analysis/additional_filtering_clustering_cache/
    Ignored:    analysis/organoid-01-1-qualtiy-control_cache/
    Ignored:    analysis/organoid-01-clustering_cache/
    Ignored:    analysis/organoid-02-integration_cache/
    Ignored:    analysis/organoid-03-cluster_analysis_cache/
    Ignored:    analysis/organoid-04-group_integration_cache/
    Ignored:    analysis/organoid-04-stage_integration_cache/
    Ignored:    analysis/organoid-05-group_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-05-stage_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_test_cache/
    Ignored:    analysis/organoid-06-group-integration-conos-analysis_cache/
    Ignored:    analysis/organoid-07-conos-visualization_cache/
    Ignored:    analysis/organoid-07-group-integration-conos-visualization_cache/
    Ignored:    analysis/organoid-08-conos-comparison_cache/
    Ignored:    analysis/organoid-0x-sample_integration_cache/
    Ignored:    analysis/sample5_QC_cache/
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._.smbdeleteAAA17ed8b4b
    Ignored:    data/._Lam_figure2_markers.R
    Ignored:    data/._known_NSC_markers.R
    Ignored:    data/._known_cell_type_markers.R
    Ignored:    data/._metadata.csv
    Ignored:    data/data_sushi/
    Ignored:    data/filtered_feature_matrices/
    Ignored:    output/.DS_Store
    Ignored:    output/._.DS_Store
    Ignored:    output/._NSC_cluster1_marker_genes.txt
    Ignored:    output/._organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/Lam-01-clustering.rds
    Ignored:    output/NSC_1_clustering.rds
    Ignored:    output/NSC_cluster1_marker_genes.txt
    Ignored:    output/NSC_cluster2_marker_genes.txt
    Ignored:    output/NSC_cluster3_marker_genes.txt
    Ignored:    output/NSC_cluster4_marker_genes.txt
    Ignored:    output/NSC_cluster5_marker_genes.txt
    Ignored:    output/NSC_cluster6_marker_genes.txt
    Ignored:    output/NSC_cluster7_marker_genes.txt
    Ignored:    output/additional_filtering.rds
    Ignored:    output/conos/
    Ignored:    output/conos_organoid-06-conos-analysis.rds
    Ignored:    output/conos_organoid-06-group-integration-conos-analysis.rds
    Ignored:    output/figures/
    Ignored:    output/organoid_integration_cluster10_marker_genes.txt
    Ignored:    output/organoid_integration_cluster11_marker_genes.txt
    Ignored:    output/organoid_integration_cluster12_marker_genes.txt
    Ignored:    output/organoid_integration_cluster13_marker_genes.txt
    Ignored:    output/organoid_integration_cluster14_marker_genes.txt
    Ignored:    output/organoid_integration_cluster15_marker_genes.txt
    Ignored:    output/organoid_integration_cluster16_marker_genes.txt
    Ignored:    output/organoid_integration_cluster17_marker_genes.txt
    Ignored:    output/organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/organoid_integration_cluster2_marker_genes.txt
    Ignored:    output/organoid_integration_cluster3_marker_genes.txt
    Ignored:    output/organoid_integration_cluster4_marker_genes.txt
    Ignored:    output/organoid_integration_cluster5_marker_genes.txt
    Ignored:    output/organoid_integration_cluster6_marker_genes.txt
    Ignored:    output/organoid_integration_cluster7_marker_genes.txt
    Ignored:    output/organoid_integration_cluster8_marker_genes.txt
    Ignored:    output/organoid_integration_cluster9_marker_genes.txt
    Ignored:    output/sce_01_preprocessing.rds
    Ignored:    output/sce_02_quality_control.rds
    Ignored:    output/sce_03_filtering.rds
    Ignored:    output/sce_03_filtering_all_genes.rds
    Ignored:    output/sce_06-1-prepare-sce.rds
    Ignored:    output/sce_TDP_01_preprocessing.rds
    Ignored:    output/sce_TDP_02_quality_control.rds
    Ignored:    output/sce_TDP_03_filtering.rds
    Ignored:    output/sce_TDP_03_filtering_all_genes.rds
    Ignored:    output/sce_organoid-01-clustering.rds
    Ignored:    output/sce_preprocessing.rds
    Ignored:    output/so_04-group_integration.rds
    Ignored:    output/so_04-stage_integration.rds
    Ignored:    output/so_04_1_cell_cycle.rds
    Ignored:    output/so_04_clustering.rds
    Ignored:    output/so_0x-sample_integration.rds
    Ignored:    output/so_additional_filtering_clustering.rds
    Ignored:    output/so_integrated_organoid-02-integration.rds
    Ignored:    output/so_merged_organoid-02-integration.rds
    Ignored:    output/so_organoid-01-clustering.rds
    Ignored:    output/so_sample_organoid-01-clustering.rds

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  Rplots_largeViz.pdf
    Untracked:  Rplots_separate.pdf
    Untracked:  analysis/Lam-0-NSC_no_integration.Rmd
    Untracked:  analysis/additional_filtering.Rmd
    Untracked:  analysis/additional_filtering_clustering.Rmd
    Untracked:  analysis/organoid-01-1-qualtiy-control.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-Seurat.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-function.Rmd
    Untracked:  analysis/organoid-07-conos-visualization.Rmd
    Untracked:  analysis/organoid-07-group-integration-conos-visualization.Rmd
    Untracked:  analysis/organoid-08-conos-comparison.Rmd
    Untracked:  analysis/organoid-0x-sample_integration.Rmd
    Untracked:  analysis/sample5_QC.Rmd
    Untracked:  data/Homo_sapiens.GRCh38.98.sorted.gtf
    Untracked:  data/Kanton_et_al/
    Untracked:  data/Lam_et_al/
    Untracked:  data/Sep2020/
    Untracked:  scripts/

Unstaged changes:
    Modified:   analysis/05-annotation.Rmd
    Modified:   analysis/Lam-02-NSC_annotation.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/organoid-02-integration.Rmd
    Modified:   analysis/organoid-04-group_integration.Rmd
    Modified:   analysis/organoid-06-conos-analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/TDP-03-filtering.Rmd) and HTML (docs/TDP-03-filtering.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a653577 khembach 2020-10-09 manual cutoffs for cell filtering
html 5a50966 khembach 2020-10-07 Build site.
Rmd e5acfd9 khembach 2020-10-07 Cell filtering of TDP experiment

Load packages

library(scater)
library(LSD)
library(dplyr)
library(edgeR)
library(ggrepel)

Load data

sce <- readRDS(file.path("output", "sce_TDP_02_quality_control.rds"))

Identification of outlier cells

Based on the QC metrics, we now identify outlier cells:

cols <- c("sum", "detected", "subsets_Mt_percent")
log <- c(TRUE, TRUE, FALSE)
type <- c("both", "both", "higher")

drop_cols <- paste0(cols, "_drop")
for (i in seq_along(cols))
    colData(sce)[[drop_cols[i]]] <- isOutlier(sce[[cols[i]]], 
        nmads = 3, type = type[i], log = log[i], batch = sce$sample_id)

# Overlap of outlier cells from two metrics
sapply(drop_cols, function(i) 
    sapply(drop_cols, function(j)
        sum(sce[[i]] & sce[[j]])))
                        sum_drop detected_drop subsets_Mt_percent_drop
sum_drop                    3644          3644                     221
detected_drop               3644          7701                     686
subsets_Mt_percent_drop      221           686                    4229
colData(sce)$discard <- rowSums(data.frame(colData(sce)[,drop_cols])) > 0
table(colData(sce)$discard)

FALSE  TRUE 
61769 11244 
## Plot the metrics and highlight the discarded cells
plotColData(sce, x = "sample_id", y = "sum", colour_by = "discard") + 
  scale_y_log10()

plotColData(sce, x = "sample_id", y = "detected", colour_by = "discard") + 
  scale_y_log10()

plotColData(sce, x = "sample_id", y = "subsets_Mt_percent", 
            colour_by = "discard")

We decided to additionally filter the cells in the TDP experiment samples. We use the same cutoffs as for the 96 days old neural cultures from the first experiment. We also remove the cell population with low number of UMIs and detected genes from the old neural cultures (223 days).

## filter the cells with less than 5000 UMIs in the TDP experiment samples
tdp_samples <- c("TDP2wON", "TDP4wOFF", "TDP4wONa", "TDP4wONb")
colData(sce)$manual_discard_sum <- colData(sce)$sum < 5000 & 
  colData(sce)$sample_id %in% tdp_samples
## filter the cells with less than 2500 detected genes
colData(sce)$manual_discard_detected <- colData(sce)$detected < 2500 & 
  colData(sce)$sample_id %in% tdp_samples

## day 223
colData(sce)$manual_discard_sum <- colData(sce)$manual_discard_sum | 
  colData(sce)$sum < 2000 & 
  colData(sce)$sample_id %in% c("NC223a", "NC223b")
colData(sce)$manual_discard_detected <- colData(sce)$manual_discard_detected |
  colData(sce)$detected < 1500 & 
  colData(sce)$sample_id %in% c("NC223a", "NC223b")

## highlight all manually discarded cells
colData(sce)$manual_discard <- colData(sce)$manual_discard_sum |
                                   colData(sce)$manual_discard_detected
plotColData(sce, x = "sample_id", y = "sum", colour_by = "manual_discard") + 
  scale_y_log10()

plotColData(sce, x = "sample_id", y = "detected", colour_by = "manual_discard") + 
  scale_y_log10()

## highlight all discarded cells
colData(sce)$discard <- colData(sce)$manual_discard |
                                   colData(sce)$discard
plotColData(sce, x = "sample_id", y = "detected", colour_by = "discard") + 
  scale_y_log10()

plotColData(sce, x = "sample_id", y = "sum", colour_by = "discard") + 
  scale_y_log10()

plotColData(sce, x = "sample_id", y = "subsets_Mt_percent", 
            colour_by = "discard")

Plot the library size against the number of detected genes before and after filtering.

cd <- colData(sce)
layout(matrix(1:12, nrow = 3, byrow = TRUE))

for (i in levels(sce$sample_id)) {
  tmp <- cd[cd$sample_id == i,]
  heatscatter(tmp$sum, tmp$detected, log = "xy", 
              main = paste0(i, "-unfiltered"), xlab = "total counts", 
              ylab = "detected genes")
  heatscatter(tmp$sum[!tmp$discard], tmp$detected[!tmp$discard], 
              log = "xy", main = paste0(i, "-filtered"), xlab = "total counts", 
              ylab = "detected genes")    
}

Version Author Date
5a50966 khembach 2020-10-07

Removal of outlier cells

We remove the outlier cells and filter the genes:

## summary of the kept cells
nr <- table(cd$sample_id)
nr_fil <- table(cd$sample_id[!cd$discard])
print(rbind(
    unfiltered = nr, filtered = nr_fil, 
    "%" = round(nr_fil / nr * 100, digits = 0)))
           NC223a NC223b TDP2wON TDP4wOFF TDP4wONa TDP4wONb
unfiltered  12647  14221   11030     8758    14112    12245
filtered     5350   7363    7406     6077     9665     7722
%              42     52      67       69       68       63
## discard the outlier cells
dim(sce)
[1] 19741 73013
sce <- sce[,!cd$discard]
dim(sce)
[1] 19741 43583
## we filter genes and require > 1 count in at least 20 cells
sce_filtered <- sce[rowSums(counts(sce) > 1) >= 20, ]
dim(sce_filtered)
[1] 13968 43583

Save data to RDS

saveRDS(sce_filtered, file.path("output", "sce_TDP_03_filtering.rds"))
saveRDS(sce, file.path("output", "sce_TDP_03_filtering_all_genes.rds"))

sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/local/R/R-4.0.0/lib/libRblas.so
LAPACK: /usr/local/R/R-4.0.0/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] HDF5Array_1.16.1            rhdf5_2.32.2               
 [3] ggrepel_0.8.2               edgeR_3.30.3               
 [5] limma_3.44.3                dplyr_1.0.2                
 [7] LSD_4.1-0                   scater_1.16.2              
 [9] ggplot2_3.3.2               SingleCellExperiment_1.10.1
[11] SummarizedExperiment_1.18.1 DelayedArray_0.14.0        
[13] matrixStats_0.56.0          Biobase_2.48.0             
[15] GenomicRanges_1.40.0        GenomeInfoDb_1.24.2        
[17] IRanges_2.22.2              S4Vectors_0.26.1           
[19] BiocGenerics_0.34.0         workflowr_1.6.2            

loaded via a namespace (and not attached):
 [1] viridis_0.5.1             BiocSingular_1.4.0       
 [3] viridisLite_0.3.0         DelayedMatrixStats_1.10.1
 [5] GenomeInfoDbData_1.2.3    vipor_0.4.5              
 [7] yaml_2.2.1                pillar_1.4.6             
 [9] backports_1.1.9           lattice_0.20-41          
[11] glue_1.4.2                digest_0.6.25            
[13] promises_1.1.1            XVector_0.28.0           
[15] colorspace_1.4-1          cowplot_1.0.0            
[17] htmltools_0.5.0           httpuv_1.5.4             
[19] Matrix_1.2-18             pkgconfig_2.0.3          
[21] zlibbioc_1.34.0           purrr_0.3.4              
[23] scales_1.1.1              whisker_0.4              
[25] later_1.1.0.1             BiocParallel_1.22.0      
[27] git2r_0.27.1              tibble_3.0.3             
[29] generics_0.0.2            farver_2.0.3             
[31] ellipsis_0.3.1            withr_2.2.0              
[33] magrittr_1.5              crayon_1.3.4             
[35] evaluate_0.14             fs_1.4.2                 
[37] beeswarm_0.2.3            tools_4.0.0              
[39] lifecycle_0.2.0           stringr_1.4.0            
[41] Rhdf5lib_1.10.0           munsell_0.5.0            
[43] locfit_1.5-9.4            irlba_2.3.3              
[45] compiler_4.0.0            rsvd_1.0.3               
[47] rlang_0.4.7               grid_4.0.0               
[49] RCurl_1.98-1.2            BiocNeighbors_1.6.0      
[51] labeling_0.3              bitops_1.0-6             
[53] rmarkdown_2.3             gtable_0.3.0             
[55] codetools_0.2-16          R6_2.4.1                 
[57] gridExtra_2.3             knitr_1.29               
[59] rprojroot_1.3-2           stringi_1.4.6            
[61] ggbeeswarm_0.6.0          Rcpp_1.0.5               
[63] vctrs_0.3.4               tidyselect_1.1.0         
[65] xfun_0.15