Last updated: 2020-11-11

Checks: 7 0

Knit directory: neural_scRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20200522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 209f182. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    ._Rplots.pdf
    Ignored:    ._Rplots_largeViz.pdf
    Ignored:    ._Rplots_separate.pdf
    Ignored:    .__workflowr.yml
    Ignored:    ._neural_scRNAseq.Rproj
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/._.DS_Store
    Ignored:    analysis/._01-preprocessing.Rmd
    Ignored:    analysis/._01-preprocessing.html
    Ignored:    analysis/._02.1-SampleQC.Rmd
    Ignored:    analysis/._03-filtering.Rmd
    Ignored:    analysis/._04-clustering.Rmd
    Ignored:    analysis/._04-clustering.knit.md
    Ignored:    analysis/._04.1-cell_cycle.Rmd
    Ignored:    analysis/._05-annotation.Rmd
    Ignored:    analysis/._Lam-0-NSC_no_integration.Rmd
    Ignored:    analysis/._Lam-01-NSC_integration.Rmd
    Ignored:    analysis/._Lam-02-NSC_annotation.Rmd
    Ignored:    analysis/._NSC-1-clustering.Rmd
    Ignored:    analysis/._NSC-2-annotation.Rmd
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/._additional_filtering.Rmd
    Ignored:    analysis/._additional_filtering_clustering.Rmd
    Ignored:    analysis/._index.Rmd
    Ignored:    analysis/._organoid-01-1-qualtiy-control.Rmd
    Ignored:    analysis/._organoid-01-clustering.Rmd
    Ignored:    analysis/._organoid-02-integration.Rmd
    Ignored:    analysis/._organoid-03-cluster_analysis.Rmd
    Ignored:    analysis/._organoid-04-group_integration.Rmd
    Ignored:    analysis/._organoid-04-stage_integration.Rmd
    Ignored:    analysis/._organoid-05-group_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-05-stage_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-06-1-prepare-sce.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-Seurat.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-function.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis.Rmd
    Ignored:    analysis/._organoid-06-group-integration-conos-analysis.Rmd
    Ignored:    analysis/._organoid-07-conos-visualization.Rmd
    Ignored:    analysis/._organoid-07-group-integration-conos-visualization.Rmd
    Ignored:    analysis/._organoid-08-conos-comparison.Rmd
    Ignored:    analysis/._organoid-0x-sample_integration.Rmd
    Ignored:    analysis/01-preprocessing_cache/
    Ignored:    analysis/02-1-SampleQC_cache/
    Ignored:    analysis/02-quality_control_cache/
    Ignored:    analysis/02.1-SampleQC_cache/
    Ignored:    analysis/03-filtering_cache/
    Ignored:    analysis/04-clustering_cache/
    Ignored:    analysis/04.1-cell_cycle_cache/
    Ignored:    analysis/05-annotation_cache/
    Ignored:    analysis/06-clustering-all-timepoints_cache/
    Ignored:    analysis/07-cluster-analysis-all-timepoints_cache/
    Ignored:    analysis/Lam-01-NSC_integration_cache/
    Ignored:    analysis/Lam-02-NSC_annotation_cache/
    Ignored:    analysis/NSC-1-clustering_cache/
    Ignored:    analysis/NSC-2-annotation_cache/
    Ignored:    analysis/TDP-01-preprocessing_cache/
    Ignored:    analysis/TDP-02-quality_control_cache/
    Ignored:    analysis/TDP-03-filtering_cache/
    Ignored:    analysis/TDP-04-clustering_cache/
    Ignored:    analysis/TDP-05-00-filtering-plasmid-QC_cache/
    Ignored:    analysis/TDP-05-plasmid_expression_cache/
    Ignored:    analysis/additional_filtering_cache/
    Ignored:    analysis/additional_filtering_clustering_cache/
    Ignored:    analysis/organoid-01-1-qualtiy-control_cache/
    Ignored:    analysis/organoid-01-clustering_cache/
    Ignored:    analysis/organoid-02-integration_cache/
    Ignored:    analysis/organoid-03-cluster_analysis_cache/
    Ignored:    analysis/organoid-04-group_integration_cache/
    Ignored:    analysis/organoid-04-stage_integration_cache/
    Ignored:    analysis/organoid-05-group_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-05-stage_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_test_cache/
    Ignored:    analysis/organoid-06-group-integration-conos-analysis_cache/
    Ignored:    analysis/organoid-07-conos-visualization_cache/
    Ignored:    analysis/organoid-07-group-integration-conos-visualization_cache/
    Ignored:    analysis/organoid-08-conos-comparison_cache/
    Ignored:    analysis/organoid-0x-sample_integration_cache/
    Ignored:    analysis/sample5_QC_cache/
    Ignored:    analysis/timepoints-01-organoid-integration_cache/
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._.smbdeleteAAA17ed8b4b
    Ignored:    data/._Lam_figure2_markers.R
    Ignored:    data/._Reactive_astrocytes_markers.xlsx
    Ignored:    data/._known_NSC_markers.R
    Ignored:    data/._known_cell_type_markers.R
    Ignored:    data/._metadata.csv
    Ignored:    data/._reactive_astrocyte_markers.R
    Ignored:    data/._~$Reactive_astrocytes_markers.xlsx
    Ignored:    data/data_sushi/
    Ignored:    data/filtered_feature_matrices/
    Ignored:    output/.DS_Store
    Ignored:    output/._.DS_Store
    Ignored:    output/._NSC_cluster1_marker_genes.txt
    Ignored:    output/._organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/Lam-01-clustering.rds
    Ignored:    output/NSC_1_clustering.rds
    Ignored:    output/NSC_cluster1_marker_genes.txt
    Ignored:    output/NSC_cluster2_marker_genes.txt
    Ignored:    output/NSC_cluster3_marker_genes.txt
    Ignored:    output/NSC_cluster4_marker_genes.txt
    Ignored:    output/NSC_cluster5_marker_genes.txt
    Ignored:    output/NSC_cluster6_marker_genes.txt
    Ignored:    output/NSC_cluster7_marker_genes.txt
    Ignored:    output/additional_filtering.rds
    Ignored:    output/conos/
    Ignored:    output/conos_organoid-06-conos-analysis.rds
    Ignored:    output/conos_organoid-06-group-integration-conos-analysis.rds
    Ignored:    output/figures/
    Ignored:    output/organoid_integration_cluster10_marker_genes.txt
    Ignored:    output/organoid_integration_cluster11_marker_genes.txt
    Ignored:    output/organoid_integration_cluster12_marker_genes.txt
    Ignored:    output/organoid_integration_cluster13_marker_genes.txt
    Ignored:    output/organoid_integration_cluster14_marker_genes.txt
    Ignored:    output/organoid_integration_cluster15_marker_genes.txt
    Ignored:    output/organoid_integration_cluster16_marker_genes.txt
    Ignored:    output/organoid_integration_cluster17_marker_genes.txt
    Ignored:    output/organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/organoid_integration_cluster2_marker_genes.txt
    Ignored:    output/organoid_integration_cluster3_marker_genes.txt
    Ignored:    output/organoid_integration_cluster4_marker_genes.txt
    Ignored:    output/organoid_integration_cluster5_marker_genes.txt
    Ignored:    output/organoid_integration_cluster6_marker_genes.txt
    Ignored:    output/organoid_integration_cluster7_marker_genes.txt
    Ignored:    output/organoid_integration_cluster8_marker_genes.txt
    Ignored:    output/organoid_integration_cluster9_marker_genes.txt
    Ignored:    output/sce_01_preprocessing.rds
    Ignored:    output/sce_02_quality_control.rds
    Ignored:    output/sce_03_filtering.rds
    Ignored:    output/sce_03_filtering_all_genes.rds
    Ignored:    output/sce_06-1-prepare-sce.rds
    Ignored:    output/sce_TDP_01_preprocessing.rds
    Ignored:    output/sce_TDP_02_quality_control.rds
    Ignored:    output/sce_TDP_03_filtering.rds
    Ignored:    output/sce_TDP_03_filtering_all_genes.rds
    Ignored:    output/sce_organoid-01-clustering.rds
    Ignored:    output/sce_preprocessing.rds
    Ignored:    output/so_04-group_integration.rds
    Ignored:    output/so_04-stage_integration.rds
    Ignored:    output/so_04_1_cell_cycle.rds
    Ignored:    output/so_04_clustering.rds
    Ignored:    output/so_06-clustering_all_timepoints.rds
    Ignored:    output/so_0x-sample_integration.rds
    Ignored:    output/so_TDP_04_clustering.rds
    Ignored:    output/so_TDP_05_plasmid_expression.rds
    Ignored:    output/so_additional_filtering_clustering.rds
    Ignored:    output/so_integrated_organoid-02-integration.rds
    Ignored:    output/so_merged_organoid-02-integration.rds
    Ignored:    output/so_organoid-01-clustering.rds
    Ignored:    output/so_sample_organoid-01-clustering.rds
    Ignored:    scripts/._bu_Rcode.R
    Ignored:    scripts/._plasmid_expression.sh
    Ignored:    scripts/._prepare_salmon_transcripts.R

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  Rplots_largeViz.pdf
    Untracked:  Rplots_separate.pdf
    Untracked:  analysis/Lam-0-NSC_no_integration.Rmd
    Untracked:  analysis/additional_filtering.Rmd
    Untracked:  analysis/additional_filtering_clustering.Rmd
    Untracked:  analysis/organoid-01-1-qualtiy-control.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-Seurat.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-function.Rmd
    Untracked:  analysis/organoid-07-conos-visualization.Rmd
    Untracked:  analysis/organoid-07-group-integration-conos-visualization.Rmd
    Untracked:  analysis/organoid-08-conos-comparison.Rmd
    Untracked:  analysis/organoid-0x-sample_integration.Rmd
    Untracked:  analysis/sample5_QC.Rmd
    Untracked:  data/Homo_sapiens.GRCh38.98.sorted.gtf
    Untracked:  data/Kanton_et_al/
    Untracked:  data/Lam_et_al/
    Untracked:  data/Reactive_astrocytes_markers.xlsx
    Untracked:  data/Sep2020/
    Untracked:  data/reactive_astrocyte_markers.R
    Untracked:  data/reference/
    Untracked:  data/~$Reactive_astrocytes_markers.xlsx
    Untracked:  scripts/bu_Rcode.R
    Untracked:  timepoints-01-organoid-integration.Rmd

Unstaged changes:
    Modified:   analysis/05-annotation.Rmd
    Modified:   analysis/Lam-02-NSC_annotation.Rmd
    Modified:   analysis/TDP-04-clustering.Rmd
    Modified:   analysis/TDP-05-00-filtering-plasmid-QC.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/organoid-02-integration.Rmd
    Modified:   analysis/organoid-04-group_integration.Rmd
    Modified:   analysis/organoid-06-conos-analysis.Rmd
    Modified:   analysis/timepoints-01-organoid-integration.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/TDP-06-cluster_analysis.Rmd) and HTML (docs/TDP-06-cluster_analysis.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 209f182 khembach 2020-11-11 analyse expression of reactive astrocyte markers
html ecbde99 khembach 2020-10-16 Build site.
Rmd 87ac379 khembach 2020-10-16 DR with TDP expression
html 3a0cb5c khembach 2020-10-16 Build site.
Rmd a528e83 khembach 2020-10-16 cluster analysis TDP experiment

Load packages

library(ComplexHeatmap)
library(cowplot)
library(ggplot2)
library(dplyr)
library(muscat)
library(purrr)
library(RColorBrewer)
library(viridis)
library(scran)
library(Seurat)
library(SingleCellExperiment)
library(stringr)
library(RCurl)
library(BiocParallel)

Load data & convert to SCE

so <- readRDS(file.path("output", "so_TDP_05_plasmid_expression.rds"))
sce <- as.SingleCellExperiment(so, assay = "RNA")
colData(sce) <- as.data.frame(colData(sce)) %>% 
    mutate_if(is.character, as.factor) %>% 
    DataFrame(row.names = colnames(sce))

Number of clusters by resolution

cluster_cols <- grep("res.[0-9]", colnames(colData(sce)), value = TRUE)
sapply(colData(sce)[cluster_cols], nlevels)
RNA_snn_res.0.2 RNA_snn_res.0.4 RNA_snn_res.0.8   RNA_snn_res.1 
             10              17              25              25 

Cluster-sample counts

# set cluster IDs to resolution 0.4 clustering
so <- SetIdent(so, value = "RNA_snn_res.0.4")
so@meta.data$cluster_id <- Idents(so)
sce$cluster_id <- Idents(so)
(n_cells <- table(sce$cluster_id, sce$sample_id))
    
     TDP2wON TDP4wOFF TDP4wONa TDP4wONb
  0     1203     1042     1627     1400
  1     1171      935     1617      942
  2      872      780     1022     1059
  3      718      613      915      756
  4      674      599      850      825
  5      608      552      986      771
  6      489      331      490      500
  7      576      414      478      242
  8      368      334      518      428
  9      251      178      397      298
  10     207      174      306      253
  11      64       64      232      143
  12      93        4       85       37
  13      51       14       42       32
  14      41       17       25       26
  15      12       25       32        9
  16       8        1       43        1

Relative cluster-abundances

fqs <- prop.table(n_cells, margin = 2)
mat <- as.matrix(unclass(fqs))
Heatmap(mat,
    col = rev(brewer.pal(11, "RdGy")[-6]),
    name = "Frequency",
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    row_title = "cluster_id",
    column_title = "sample_id",
    column_title_side = "bottom",
    rect_gp = gpar(col = "white"),
    cell_fun = function(i, j, x, y, width, height, fill)
        grid.text(round(mat[j, i] * 100, 2), x = x, y = y, 
            gp = gpar(col = "white", fontsize = 8)))

Version Author Date
ecbde99 khembach 2020-10-16

Cell cycle scoring with Seurat

We assign each cell a cell cycle scores and visualize them in the DR plots. We use known G2/M and S phase markers that come with the Seurat package. The markers are anticorrelated and cells that to not express the markers should be in G1 phase.

We compute cell cycle phase:

# A list of cell cycle markers, from Tirosh et al, 2015
cc_file <- getURL("https://raw.githubusercontent.com/hbc/tinyatlas/master/cell_cycle/Homo_sapiens.csv") 
cc_genes <- read.csv(text = cc_file)
# match the marker genes to the features
m <- match(cc_genes$geneID[cc_genes$phase == "S"], 
           str_split(rownames(GetAssayData(so)),
                     pattern = "\\.", simplify = TRUE)[,1])
s_genes <- rownames(GetAssayData(so))[m]
(s_genes <- s_genes[!is.na(s_genes)])
 [1] "ENSG00000012963.UBR7"     "ENSG00000049541.RFC2"    
 [3] "ENSG00000051180.RAD51"    "ENSG00000073111.MCM2"    
 [5] "ENSG00000075131.TIPIN"    "ENSG00000076003.MCM6"    
 [7] "ENSG00000076248.UNG"      "ENSG00000077514.POLD3"   
 [9] "ENSG00000092470.WDR76"    "ENSG00000092853.CLSPN"   
[11] "ENSG00000093009.CDC45"    "ENSG00000094804.CDC6"    
[13] "ENSG00000095002.MSH2"     "ENSG00000100297.MCM5"    
[15] "ENSG00000101868.POLA1"    "ENSG00000104738.MCM4"    
[17] "ENSG00000111247.RAD51AP1" "ENSG00000112312.GMNN"    
[19] "ENSG00000117748.RPA2"     "ENSG00000118412.CASP8AP2"
[21] "ENSG00000119969.HELLS"    "ENSG00000131153.GINS2"   
[23] "ENSG00000132646.PCNA"     "ENSG00000132780.NASP"    
[25] "ENSG00000136492.BRIP1"    "ENSG00000136982.DSCC1"   
[27] "ENSG00000143476.DTL"      "ENSG00000144354.CDCA7"   
[29] "ENSG00000151725.CENPU"    "ENSG00000156802.ATAD2"   
[31] "ENSG00000159259.CHAF1B"   "ENSG00000162607.USP1"    
[33] "ENSG00000163950.SLBP"     "ENSG00000167325.RRM1"    
[35] "ENSG00000168496.FEN1"     "ENSG00000171848.RRM2"    
[37] "ENSG00000175305.CCNE2"    "ENSG00000176890.TYMS"    
[39] "ENSG00000197299.BLM"      "ENSG00000198056.PRIM1"   
[41] "ENSG00000276043.UHRF1"   
m <- match(cc_genes$geneID[cc_genes$phase == "G2/M"], 
           str_split(rownames(GetAssayData(so)), 
                     pattern = "\\.", simplify = TRUE)[,1])
g2m_genes <- rownames(GetAssayData(so))[m]
(g2m_genes <- g2m_genes[!is.na(g2m_genes)])
 [1] "ENSG00000010292.NCAPD2"  "ENSG00000011426.ANLN"   
 [3] "ENSG00000013810.TACC3"   "ENSG00000072571.HMMR"   
 [5] "ENSG00000075218.GTSE1"   "ENSG00000080986.NDC80"  
 [7] "ENSG00000087586.AURKA"   "ENSG00000088325.TPX2"   
 [9] "ENSG00000089685.BIRC5"   "ENSG00000092140.G2E3"   
[11] "ENSG00000094916.CBX5"    "ENSG00000100401.RANGAP1"
[13] "ENSG00000102974.CTCF"    "ENSG00000111665.CDCA3"  
[15] "ENSG00000112742.TTK"     "ENSG00000113810.SMC4"   
[17] "ENSG00000114346.ECT2"    "ENSG00000115163.CENPA"  
[19] "ENSG00000117399.CDC20"   "ENSG00000117724.CENPF"  
[21] "ENSG00000120802.TMPO"    "ENSG00000123975.CKS2"   
[23] "ENSG00000126787.DLGAP5"  "ENSG00000129195.PIMREG" 
[25] "ENSG00000131747.TOP2A"   "ENSG00000134222.PSRC1"  
[27] "ENSG00000134690.CDCA8"   "ENSG00000136108.CKAP2"  
[29] "ENSG00000137804.NUSAP1"  "ENSG00000137807.KIF23"  
[31] "ENSG00000138160.KIF11"   "ENSG00000138182.KIF20B" 
[33] "ENSG00000138778.CENPE"   "ENSG00000139354.GAS2L3" 
[35] "ENSG00000143228.NUF2"    "ENSG00000143401.ANP32E" 
[37] "ENSG00000143815.LBR"     "ENSG00000148773.MKI67"  
[39] "ENSG00000157456.CCNB2"   "ENSG00000164104.HMGB2"  
[41] "ENSG00000169607.CKAP2L"  "ENSG00000169679.BUB1"   
[43] "ENSG00000170312.CDK1"    "ENSG00000173207.CKS1B"  
[45] "ENSG00000175063.UBE2C"   "ENSG00000175216.CKAP5"  
[47] "ENSG00000184661.CDCA2"   "ENSG00000188229.TUBB4B" 
[49] "ENSG00000189159.JPT1"   
so <- CellCycleScoring(so, s.features = s_genes, g2m.features = g2m_genes,
                       set.ident = TRUE)

DR colored by cluster ID

cs <- sample(colnames(so), 5e3)
.plot_dr <- function(so, dr, id)
    DimPlot(so, cells = cs, group.by = id, reduction = dr, pt.size = 0.4) +
        guides(col = guide_legend(nrow = 11, 
            override.aes = list(size = 3, alpha = 1))) +
        theme_void() + theme(aspect.ratio = 1)
ids <- c("cluster_id", "sample_id", "Phase")
for (id in ids) {
    cat("## ", id, "\n")
    p1 <- .plot_dr(so, "tsne", id)
    lgd <- get_legend(p1)
    p1 <- p1 + theme(legend.position = "none")
    p2 <- .plot_dr(so, "umap", id) + theme(legend.position = "none")
    ps <- plot_grid(plotlist = list(p1, p2), nrow = 1)
    p <- plot_grid(ps, lgd, nrow = 1, rel_widths = c(1, 0.2))
    print(p)
    cat("\n\n")
}

cluster_id

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

sample_id

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

Phase

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

Find markers using scran

We identify candidate marker genes for each cluster that enable a separation of that group from all other groups.

scran_markers <- findMarkers(sce, 
    groups = sce$cluster_id, block = sce$sample_id, 
    direction = "up", lfc = 2, full.stats = TRUE)

Heatmap of mean marker-exprs. by cluster

We aggregate the cells to pseudobulks and plot the average expression of the condidate marker genes in each of the clusters.

## including marker genes of rank 1 and 2
gs <- lapply(scran_markers, function(u) rownames(u)[u$Top %in% 1:2])

## candidate cluster markers
lapply(gs, function(x) str_split(x, pattern = "\\.", simplify = TRUE)[,2])
$`0`
 [1] "SAMD11"  "SCG2"    "SCRG1"   "FABP7"   "TAC1"    "STMN2"   "RTN1"   
 [8] "MT-ND4L" "NOC2L"   "UTS2"    "IGFBP2"  "IGFBP5"  "VGF"     "SEZ6L2" 
[15] "MT-ND5" 

$`1`
 [1] "C1orf61" "FABP5"   "VIM"     "GFAP"    "MT-CO1"  "MT-ND4L" "FGFBP2" 
 [8] "SPARCL1" "SPP1"    "METRN"   "S100B"   "MT-ND1"  "MT-ND4" 

$`2`
 [1] "UTS2"    "IGFBP2"  "SCRG1"   "PNOC"    "STMN2"   "RTN1"    "SEZ6L2" 
 [8] "SAMD11"  "VGF"     "LAPTM4B" "PCP4"    "MT-ND4L"

$`3`
[1] "S100A10" "IGFBP5"  "FABP7"   "TAC1"    "STMN2"   "UTS2"    "SCG2"   
[8] "VGF"     "MT-ND5" 

$`4`
[1] "S100A10" "VGF"     "PNOC"    "STMN2"   "IGFBP5"  "SCRG1"   "TAC1"   
[8] "MT-ND5" 

$`5`
[1] "UTS2"   "TRH"    "CRH"    "STMN2"  "NTS"    "TAC1"   "CSRP2"  "RTN1"  
[9] "MT-ND5"

$`6`
 [1] "IGFBP5"  "NEFM"    "PNOC"    "STMN2"   "LAPTM4B" "RTN1"    "MT-ND4L"
 [8] "SAMD11"  "GAP43"   "SPP1"    "VGF"     "MT-ND5" 

$`7`
 [1] "PTGDS"   "DLK1"    "METRN"   "TTYH1"   "MT-CO1"  "C1orf61" "CLU"    
 [8] "LY6H"    "VIM"     "MT-CO3" 

$`8`
[1] "UTS2"   "CRH"    "STMN2"  "PCP4"   "MT-ND5"

$`9`
 [1] "S100A10" "TAC1"    "CRH"     "STMN2"   "LYPD1"   "IGFBP5"  "VGF"    
 [8] "NTS"     "RTN1"    "HOXB5"  

$`10`
[1] "S100A10" "PCSK1"   "TAC1"    "VGF"     "STMN2"   "TRH"     "DLK1"   

$`11`
 [1] "WDPCP"   "IGFBP5"  "NRN1"    "TAC1"    "CRH"     "STMN2"   "SNCG"   
 [8] "RTN1"    "MT-ND5"  "CHL1"    "GPX1"    "ATP2B1"  "CALB2"   "MT-ND4L"

$`12`
[1] "FGF18"  "NPTX2"  "STMN2"  "MEF2A"  "PCP4"   "MT-CO2"

$`13`
 [1] "VIM"     "CKB"     "PCLAF"   "METRN"   "GFAP"    "MT-CO1"  "MT-ND4L"
 [8] "C1orf61" "SPP1"    "TYMS"    "MT-ND4" 

$`14`
[1] "SPP1"  "VIM"   "CRYAB" "FTL"   "DDIT3"

$`15`
[1] "S100A11" "COL1A1"  "LGALS1"  "COL3A1" 

$`16`
[1] "UTS2"    "C1orf61" "CRH"     "STMN2"   "CLU"     "VIM"     "METRN"  
sub <- sce[unique(unlist(gs)), ]
pbs <- aggregateData(sub, assay = "logcounts", by = "cluster_id", fun = "mean")
mat <- t(muscat:::.scale(assay(pbs)))
## remove the Ensembl ID from the gene names
colnames(mat) <- str_split(colnames(mat), pattern = "\\.", simplify = TRUE)[,2] 
Heatmap(mat,
    name = "scaled avg.\nexpression",
    col = viridis(10),
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    row_title = "cluster_id",
    rect_gp = gpar(col = "white"))

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

Known marker genes

## source file with list of known marker genes
source(file.path("data", "known_cell_type_markers.R"))

fs <- lapply(fs, sapply, function(g)
    grep(pattern = paste0("\\.", g, "$"), rownames(sce), value = TRUE)
  )

fs <- lapply(fs, function(x) unlist(x[lengths(x) !=0]) )

gs <- gsub(".*\\.", "", unlist(fs))
ns <- vapply(fs, length, numeric(1))
ks <- rep.int(names(fs), ns)
labs <- lapply(fs, function(x) gsub(".*\\.", "",x))

Heatmap of mean marker-exprs. by cluster

# split cells by cluster
cs_by_k <- split(colnames(sce), sce$cluster_id)
# compute cluster-marker means
ms_by_cluster <- lapply(fs, function(gs) vapply(cs_by_k, function(i)
        Matrix::rowMeans(logcounts(sce)[gs, i, drop = FALSE]), 
        numeric(length(gs))))
# prep. for plotting & scale b/w 0 and 1
mat <- do.call("rbind", ms_by_cluster)
mat <- muscat:::.scale(mat)
rownames(mat) <- gs
cols <- muscat:::.cluster_colors[seq_along(fs)]
cols <- setNames(cols, names(fs))
row_anno <- rowAnnotation(
    df = data.frame(label = factor(ks, levels = names(fs))),
    col = list(label = cols), gp = gpar(col = "white"))
# percentage of cells from each of the samples per cluster
sample_props <- prop.table(n_cells, margin = 1)
col_mat <- as.matrix(unclass(sample_props))
sample_cols <- c("#882255", "#11588A",  "#117733", "#44AA99")
sample_cols <- setNames(sample_cols, colnames(col_mat))
col_anno <- HeatmapAnnotation(
    perc_sample = anno_barplot(col_mat, gp = gpar(fill = sample_cols), 
                               height = unit(2, "cm"),
                               border = FALSE),
    annotation_label = "fraction of sample\nin cluster",
    gap = unit(10, "points"))
col_lgd <- Legend(labels = names(sample_cols),
       title = "sample",
       legend_gp = gpar(fill = sample_cols))

hm <- Heatmap(mat,
    name = "scaled avg.\nexpression",
    col = viridis(10),
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    column_title = "cluster_id",
    column_title_side = "bottom",
    column_names_side = "bottom",
    column_names_rot = 0, 
    column_names_centered = TRUE,
    rect_gp = gpar(col = "white"),
    left_annotation = row_anno,
    top_annotation = col_anno)
draw(hm, annotation_legend_list = list(col_lgd))

Version Author Date
3a0cb5c khembach 2020-10-16

DR colored by marker expression

# downsample to 5000 cells
cs <- sample(colnames(sce), 5e3)
sub <- subset(so, cells = cs)
# UMAPs colored by marker-expression
for (m in seq_along(fs)) {
    cat("## ", names(fs)[m], "\n")
    ps <- lapply(seq_along(fs[[m]]), function(i) {
        if (!fs[[m]][i] %in% rownames(so)) return(NULL)
        FeaturePlot(sub, features = fs[[m]][i], reduction = "umap", 
                    pt.size = 0.4) +
            theme(aspect.ratio = 1, legend.position = "none") +
            ggtitle(labs[[m]][i]) + theme_void() + theme(aspect.ratio = 1)
    })
    # arrange plots in grid
    ps <- ps[!vapply(ps, is.null, logical(1))]
    p <- plot_grid(plotlist = ps, ncol = 4, label_size = 10)
    print(p)
    cat("\n\n")
}

NSC

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

proliferating

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

neuronal

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

mature_astrocytes

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

glial_astrocytic

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

radial_glia

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

oligodendrocyte

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

GABAergic_neurons

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

glycinergic_neurons

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

glutaminergic_neurons

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

dopaminergic_neurons

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16

apoptotic

Version Author Date
ecbde99 khembach 2020-10-16
3a0cb5c khembach 2020-10-16
## plot the expression of the endogenous TDP-43 and TDP-HA
tdp <- c("ENSG00000120948.TARDBP", "ENSG00000120948.TARDBP-alevin", "TDP43-HA")
names(tdp) <- c("TARDBP", "TARDBP-alevin", "TDP-HA")
cat("## TDP-43\n")

TDP-43

ps <- lapply(seq_along(tdp), function(i) {
    if (!tdp[i] %in% rownames(so)) return(NULL)
    FeaturePlot(sub, features = tdp[i], reduction = "umap", pt.size = 0.4) +
        theme(aspect.ratio = 1, legend.position = "none") +
        ggtitle(names(tdp)[i]) + theme_void() + theme(aspect.ratio = 1)
})
# arrange plots in grid
ps <- ps[!vapply(ps, is.null, logical(1))]
p <- plot_grid(plotlist = ps, ncol = 4, label_size = 10)
print(p)

Version Author Date
ecbde99 khembach 2020-10-16
cat("\n\n")

Reactive astrocyte markers

## source file with list of known marker genes
source(file.path("data", "reactive_astrocyte_markers.R"))
fs <- lapply(fs, sapply, function(g)
    grep(pattern = paste0("\\.", g, "$"), rownames(sce), value = TRUE)
  )

fs <- lapply(fs, function(x) unlist(x[lengths(x) !=0]) )

gs <- gsub(".*\\.", "", unlist(fs))
ns <- vapply(fs, length, numeric(1))
ks <- rep.int(names(fs), ns)
labs <- lapply(fs, function(x) gsub(".*\\.", "",x))

Heatmap of reactive astrocyte markers

# compute cluster-marker means
ms_by_cluster <- lapply(fs, function(gs) vapply(cs_by_k, function(i)
        Matrix::rowMeans(logcounts(sce)[gs, i, drop = FALSE]), 
        numeric(length(gs))))
# prep. for plotting & scale b/w 0 and 1
mat <- do.call("rbind", ms_by_cluster)
mat <- muscat:::.scale(mat)
rownames(mat) <- gs
cols <- muscat:::.cluster_colors[seq_along(fs)]
cols <- setNames(cols, names(fs))
row_anno <- rowAnnotation(
    df = data.frame(label = factor(ks, levels = names(fs))),
    col = list(label = cols), gp = gpar(col = "white"))
# percentage of cells from each of the samples per cluster
sample_props <- prop.table(n_cells, margin = 1)
col_mat <- as.matrix(unclass(sample_props))
sample_cols <- c("#882255", "#11588A",  "#117733", "#44AA99")
sample_cols <- setNames(sample_cols, colnames(col_mat))
col_anno <- HeatmapAnnotation(
    perc_sample = anno_barplot(col_mat, gp = gpar(fill = sample_cols), 
                               height = unit(2, "cm"),
                               border = FALSE),
    annotation_label = "fraction of sample\nin cluster",
    gap = unit(10, "points"))
col_lgd <- Legend(labels = names(sample_cols),
       title = "sample",
       legend_gp = gpar(fill = sample_cols))

hm <- Heatmap(mat,
    name = "scaled avg.\nexpression",
    col = viridis(10),
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    column_title = "cluster_id",
    column_title_side = "bottom",
    column_names_side = "bottom",
    column_names_rot = 0, 
    column_names_centered = TRUE,
    rect_gp = gpar(col = "white"),
    left_annotation = row_anno,
    top_annotation = col_anno)
draw(hm, annotation_legend_list = list(col_lgd))

DR colored by reactive astrocyte marker expression

# UMAPs colored by marker-expression
for (m in seq_along(fs)) {
    cat("### ", names(fs)[m], "\n")
    ps <- lapply(seq_along(fs[[m]]), function(i) {
        if (!fs[[m]][i] %in% rownames(so)) return(NULL)
        FeaturePlot(sub, features = fs[[m]][i], reduction = "umap", 
                    pt.size = 0.4) +
            theme(aspect.ratio = 1, legend.position = "none") +
            ggtitle(labs[[m]][i]) + theme_void() + theme(aspect.ratio = 1)
    })
    # arrange plots in grid
    ps <- ps[!vapply(ps, is.null, logical(1))]
    p <- plot_grid(plotlist = ps, ncol = 4, label_size = 10)
    print(p)
    cat("\n\n")
}

panreactive_genes

A1

A2

senescence_down

senescence_up


sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/local/R/R-4.0.0/lib/libRblas.so
LAPACK: /usr/local/R/R-4.0.0/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] parallel  stats4    grid      stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] BiocParallel_1.22.0         RCurl_1.98-1.2             
 [3] stringr_1.4.0               Seurat_3.1.5               
 [5] scran_1.16.0                SingleCellExperiment_1.10.1
 [7] SummarizedExperiment_1.18.1 DelayedArray_0.14.0        
 [9] matrixStats_0.56.0          Biobase_2.48.0             
[11] GenomicRanges_1.40.0        GenomeInfoDb_1.24.2        
[13] IRanges_2.22.2              S4Vectors_0.26.1           
[15] BiocGenerics_0.34.0         viridis_0.5.1              
[17] viridisLite_0.3.0           RColorBrewer_1.1-2         
[19] purrr_0.3.4                 muscat_1.2.1               
[21] dplyr_1.0.2                 ggplot2_3.3.2              
[23] cowplot_1.0.0               ComplexHeatmap_2.4.2       
[25] workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] backports_1.1.9           circlize_0.4.10          
  [3] blme_1.0-4                igraph_1.2.5             
  [5] plyr_1.8.6                lazyeval_0.2.2           
  [7] TMB_1.7.16                splines_4.0.0            
  [9] listenv_0.8.0             scater_1.16.2            
 [11] digest_0.6.25             foreach_1.5.0            
 [13] htmltools_0.5.0           gdata_2.18.0             
 [15] lmerTest_3.1-2            magrittr_1.5             
 [17] memoise_1.1.0             cluster_2.1.0            
 [19] doParallel_1.0.15         ROCR_1.0-11              
 [21] limma_3.44.3              globals_0.12.5           
 [23] annotate_1.66.0           prettyunits_1.1.1        
 [25] colorspace_1.4-1          rappdirs_0.3.1           
 [27] ggrepel_0.8.2             blob_1.2.1               
 [29] xfun_0.15                 jsonlite_1.7.0           
 [31] crayon_1.3.4              genefilter_1.70.0        
 [33] lme4_1.1-23               zoo_1.8-8                
 [35] ape_5.4                   survival_3.2-3           
 [37] iterators_1.0.12          glue_1.4.2               
 [39] gtable_0.3.0              zlibbioc_1.34.0          
 [41] XVector_0.28.0            leiden_0.3.3             
 [43] GetoptLong_1.0.1          BiocSingular_1.4.0       
 [45] future.apply_1.6.0        shape_1.4.4              
 [47] scales_1.1.1              DBI_1.1.0                
 [49] edgeR_3.30.3              Rcpp_1.0.5               
 [51] xtable_1.8-4              progress_1.2.2           
 [53] clue_0.3-57               reticulate_1.16          
 [55] dqrng_0.2.1               bit_1.1-15.2             
 [57] rsvd_1.0.3                tsne_0.1-3               
 [59] htmlwidgets_1.5.1         httr_1.4.1               
 [61] gplots_3.0.4              ellipsis_0.3.1           
 [63] ica_1.0-2                 farver_2.0.3             
 [65] pkgconfig_2.0.3           XML_3.99-0.4             
 [67] uwot_0.1.8                locfit_1.5-9.4           
 [69] labeling_0.3              tidyselect_1.1.0         
 [71] rlang_0.4.7               reshape2_1.4.4           
 [73] later_1.1.0.1             AnnotationDbi_1.50.1     
 [75] munsell_0.5.0             tools_4.0.0              
 [77] generics_0.0.2            RSQLite_2.2.0            
 [79] ggridges_0.5.2            evaluate_0.14            
 [81] yaml_2.2.1                knitr_1.29               
 [83] bit64_0.9-7               fs_1.4.2                 
 [85] fitdistrplus_1.1-1        caTools_1.18.0           
 [87] RANN_2.6.1                pbapply_1.4-2            
 [89] future_1.17.0             nlme_3.1-148             
 [91] whisker_0.4               pbkrtest_0.4-8.6         
 [93] compiler_4.0.0            plotly_4.9.2.1           
 [95] beeswarm_0.2.3            png_0.1-7                
 [97] variancePartition_1.18.2  tibble_3.0.3             
 [99] statmod_1.4.34            geneplotter_1.66.0       
[101] stringi_1.4.6             lattice_0.20-41          
[103] Matrix_1.2-18             nloptr_1.2.2.2           
[105] vctrs_0.3.4               pillar_1.4.6             
[107] lifecycle_0.2.0           lmtest_0.9-37            
[109] GlobalOptions_0.1.2       RcppAnnoy_0.0.16         
[111] BiocNeighbors_1.6.0       data.table_1.12.8        
[113] bitops_1.0-6              irlba_2.3.3              
[115] patchwork_1.0.1           httpuv_1.5.4             
[117] colorRamps_2.3            R6_2.4.1                 
[119] promises_1.1.1            KernSmooth_2.23-17       
[121] gridExtra_2.3             vipor_0.4.5              
[123] codetools_0.2-16          boot_1.3-25              
[125] MASS_7.3-51.6             gtools_3.8.2             
[127] DESeq2_1.28.1             rprojroot_1.3-2          
[129] rjson_0.2.20              withr_2.2.0              
[131] sctransform_0.2.1         GenomeInfoDbData_1.2.3   
[133] hms_0.5.3                 tidyr_1.1.0              
[135] glmmTMB_1.0.2.1           minqa_1.2.4              
[137] rmarkdown_2.3             DelayedMatrixStats_1.10.1
[139] Rtsne_0.15                git2r_0.27.1             
[141] numDeriv_2016.8-1.1       ggbeeswarm_0.6.0