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Lay Abstract

The Plague is a disease that has profoundly impacted human history and is
responsible for some of the most fatal pandemics ever recorded. It may surprise
many to know that this disease is not a bygone of a past era, but in fact is still
present in many regions of the world. Although researchers have been studying
plague for hundreds of years, there are many aspects of its epidemiology that
are enigmatic. In this thesis, I focus on how DNA from the plague bacterium
can be used to estimate where and when this disease appeared in the past. To
do so, I reconstruct the evolutionary relationships between modern and ancient
strains of plague, using publicly available data and new DNA sequences retrieved
from the skeletal remains of plague victims in Denmark. This work offers a new
methodological framework for large-scale genetic analysis, provides a critique
on what questions DNA evidence can and cannot answer, and expands our
knowledge of the global diversity of plague.
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Abstract

Pandemics of plague have reemerged multiple times throughout human history
with tremendous mortality and extensive geographic spread. The First Pandemic
(6th - 8th century) devastated the Mediterranean world, the Second Pandemic
(14th - 19th century) swept across much of Afro-Eurasia, and the Third Pandemic
(19th - 20th century) reached every continent except for Antarctica, and continues
to persist in various endemic foci around the world. Despite centuries of historical
research, the epidemiology of these pandemics remains enigmatic. However,
recent technological advancements have yielded a novel form of evidence: ancient
DNA of the plague bacterium Yersinia pestis. In this thesis, I explore how
genomic data can be used to unravel the mysteries of when and where this
disease appeared in the past. In particular, I focus on phylogenetic approaches
to studying this ‘small microbe’ with ‘big data’ (ie. 100s - 1000s of genomes). I
begin by describing novel software I developed that supports the acquisition and
curation of large amounts of DNA sequences in public databases. I then use this
tool to create an updated global phylogeny of Y. pestis, which includes ~600
genomes with standardized metadata. I devise and validate a new approach for
temporal modeling (ie. molecular clock) that produces robust divergence dates
in pandemic lineages of Y. pestis. In addition, I critically examine the questions
that genomic evidence can and cannot address in isolation, such as whether
the timing and spread of short-term epidemics can be confidently reconstructed.
Finally, I apply this theoretical and methodological insight to a case study in
which I reconstruct the appearance, persistence, and disappearance of plague
in Denmark during the Second Pandemic. The three papers enclosed in this
sandwich-thesis contribute to a larger body of work on the anthropology of plague,
which seeks to understand how disease exposure and experience change over time
and between human populations. Furthermore, this dissertation more broadly
impacts both prospective studies of infectious disease, such as environmental
surveillance and outbreak monitoring, and retrospective studies, which seek to
date the emergence and spread of past pandemics.
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‘You have to know the past to understand the present.’
- Carl Sagan
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Chapter 1

Introduction

In 2011, I learned about a researcher named Dr. Hendrik Poinar. His team had
just published a seminal paper, in which they identified the causative agent
of the infamous Black Death (Bos et al., 2011). I discovered that this morbid
term describes a pandemic that devastated the world in the 14th century, with
unprecedented mortality and spread. In less than 10 years (1346-1353) the Black
Death swept across Afro-Eurasia, killing 50% of the population (Benedictow,
2004). Outbreaks of this new and mysterious disease, often referred to as The
Plague, reoccurred every 10 years on average (Christensen, 2003). This epidemic
cycling continued for 500 long years in Europe, but in Western Asia, the disease
never truly disappeared (Varlık, 2020). The 10-year window of the Black Death
alone has an estimated global mortality of 200 million people, making it the
most fatal pandemic in human history (Sampath et al., 2021), and also one of
the most mysterious.

The cryptic nature of this medieval disease led to significant debate among
contemporaries. The dominant theory of contagion at the time was miasma, in
which diseases were spread through noxious air (Ober & Aloush, 1982). However,
Ibn al-Khatib, a notable Islamic scholar, took issue with this theory. After
studying outbreaks of The Plague in the 14th century, he proposed an alternative
hypothesis in which minute bodies were transmissible between humans (Syed,
1981). Like most controversial theories, this idea was not readily embraced. Some
400 years later, the British botanist Richard Bradley wrote a radical treatise
on The Plague (Bradley, 1721) where he similarly proposed that infectious
diseases were caused by living, microscopic agents. Again, this theory was
rejected. It was not until the 19th century that this “new” perspective would
receive widespread acceptance (Santer, 2009). It is quite remarkable that our
modern conceptions of epidemiology and bacteriology can be traced back to
diverse “founders” throughout history, who all happened to be grappling with
the perplexing nature of The Plague.
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After it was established that a living organism caused the Black Death,
the intuitive next step was to precisely identify the organism. The symptoms
described in historical texts seemed to incriminate bubonic plague (Benedictow,
2004), a bacterial pathogen that passes from rodents to humans, and leads to
grotesquely swollen lymph nodes (buboes). On the other hand, the rapid spread
of the Black Death suggests this was a contagion primarily driven by human
to human transmission, which more closely fit the profile of an Ebola-like virus
(Scott & Duncan, 2001). In the 1990s and 2000s, geneticists began contributing
novel evidence to the debate, by retrieving pathogenic DNA from skeletal remains
(Drancourt et al., 1998). The plague bacterium, Yersinia pestis, played a central
role in these molecular investigations, as researchers sought to either establish or
refute its presence in medieval victims (Gilbert et al., 2004b). The competitive
nature of this discourse fueled significant technological progress, and over the
next decade, the study of ancient DNA became a well-established discipline.
However, the origins of the Black Death remained unresolved, due to numerous
controversies surrounding DNA contamination and scientific rigor (Cooper &
Poinar, 2000).

As an undergraduate student of forensic anthropology, I was fascinated by
the rapid pace at which the field of ancient DNA was developing. I attribute
my developing academic obsession to two early-career experiences. First, was
reading the highly entertaining back-and-forth commentaries in academic journals
(Gilbert et al., 2004a), where plague researchers would occasionally exchange
personal insults (Raoult, 2003). It was clear that these researchers cared deeply
about their work. Despite the occasional toxicity, I found these displays of passion
to be engaging and refreshing, compared to the otherwise emotionally-sterile
field of scientific publishing.

The second defining experience, was the perplexing and often frustrating
task of diagnosing infectious diseases from skeletal remains. I was intrigued by
the idea of reconstructing an individual’s life story from their skeleton, and using
this information to solve the mysteries of the dead. However, while some forms
of trauma leave diagnostic marks on bone (ex. sharp force), acute infectious
diseases rarely manifest in the skeleton (Brown & Inhorn, 2013; Ortner, 2007)
and thus are ‘invisible’ to an anthropologist. Because of this, I found the new
field of ancient DNA to be extremely appealing, as it offered a novel solution to
this problem. Anthropologists could now retrieve the precise pathogen that had
infected an individual, and contribute new insight regarding disease exposure
and experience throughout human history. These experiences suggested to me
that studying the ancient DNA of pathogens would be an exciting, dynamic,
and productive line of research for a graduate degree. I’m happy to say that 10
years later, I still agree with this statement, and by writing this dissertation I
hope to convince you, the reader, as well.

Which brings us back to Dr. Hendrik Poinar and his team’s seminal work
on the mysterious Black Death. The study, led by first author Kirsten Bos, had
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found DNA evidence of the plague bacterium Y. pestis in several Black Death
victims buried in a mass grave in London (Bos et al., 2011). However, they did
not just retrieve a few strands of DNA, they captured millions of molecules (10.5
million to be precise) which allowed them to reconstruct the entire Y. pestis
genome, comprising four million DNA bases. The amount of molecular evidence
was staggering, and offered irrefutable proof that the plague bacterium was
present during the time of Black Death. However, with a sample size of N=1,
the genetic link between Y. pestis and this ancient pandemic was tentative at
best.

Armed with the proposal of finding more evidence of Y. pestis in the
archaeological record, I applied to work for Dr. Hendrik Poinar at the McMaster
Ancient DNA Centre. In 2014, I had the delight and privilege of being accepted
into the graduate program at McMaster University. Alongside other members
of the “McMaster Plague Team”, I set about the daunting task of screening
the skeletal remains of more than 1000 individuals for molecular evidence of Y.
pestis. This material was generously provided by archaeological collaborators,
who were similarly invested in the idea that ancient DNA techniques could
identify infectious diseases in their sites. These archaeological remains reflected
nearly a millennium of human history, with sampling ages ranging from the
9th to the 19th century CE. The geographic diversity was also immense, with
individuals sampled across Europe, Africa, and Asia.

Of the 1000+ individuals screened, approximately 30% originated in Den-
mark. Due to this large sample size, we, the “Plague Team”, had the greatest
success in identifying ancient Y. pestis in this region. Over a period of 5 years, we
retrieved Y. pestis DNA from 13 Danish individuals dated to the medieval and
early modern periods. To contextualize these plague isolates, we reconstructed
their evolutionary relationships using a large comparative dataset of global Y.
pestis. In Chapter 4, I present the results of this collaborative study, which
marks the first longitudinal analysis of an ancient pathogen in a single region.
I explore whether the genetic evidence of Y. pestis aligns with the historical
narrative of the Black Death, and whether or not subsequent epidemics can be
attributed to long-distance reintroductions. However, while this high-throughput
study was the first one I embarked on, as the chapter numbering indicates, it
would be the last project I completed due to several unforeseen complications.

While the McMaster Plague Team was busy screening for Y. pestis, so too
were other ancient DNA centres throughout the world. Between 2011 and 2021,
more than 100 ancient Y. pestis genomes were published, making plague the
most intensively sequenced historical disease. The sequencing of modern isolates
accelerated in tandem, with over 1500 genomes produced from culture collections
of 20th and 21st century plague outbreaks (Zhou et al., 2020). Because of this
influx of evidence, the research questions changed accordingly. Geneticists were
no longer interested in just establishing the presence of Y. pestis during the
short time frame of the Black Death (1346-1353), they wanted to know how
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it behaved and spread throughout the long 500 years of this pandemic. The
longitudinal study design of Chapter 4 was therefore well-positioned to address
these nuanced epidemiological questions. However, this novel genetic evidence
also introduced new complexities.

It quickly became clear that isolates of Y. pestis sampled during epidemic
periods were highly similar in terms of genetic content, if not indistinguishable
clones (Spyrou et al., 2019). This called into question the resolution of genomic
evidence, and whether the geographic origins and spread of the Black Death
could be accurately inferred using ancient DNA studies. This was further
confounded by the finding that the rate of evolutionary change in Y. pestis
could vary tremendously (Cui et al., 2013) which led to the discovery that
previously published temporal models were erroneous (Wagner et al., 2014).
It became increasingly uncertain whether genetic evidence could be used to
produce informative estimates of the timing of plague’s frequent reemergences
(Duchêne et al., 2016). As I read these critical studies, I began developing an
idea to address the substantial gaps in our evolutionary theory and methodology
concerning the plague bacterium Y. pestis. This idea culminated in Chapter 3,
where I curated and contextualized the largest global data set of plague genomes.
I critiqued the existing spatiotemporal models of plague’s evolutionary history,
and with the assistance of my co-authors, devised a new methodological approach.
This method would then be repurposed for Chapter 4, so that I could infer the
emergence and disappearance of Y. pestis in Denmark with greater accuracy.
However, as the chapter numbering once again reflects, there was one final
obstacle.

Synthesizing the largest genomic data set was a lofty ambition, especially
considering that there were few software tools available to perform such a task.
New plague genomes of Y. pestis were being published monthly, and at times
even weekly, with such volume that manual tracking became impossible. My
excel spreadsheet of genetic metadata became riddled with errors and fields with
missing data. The era of “Big Data” had arrived, and I was woefully unequipped
to effectively manage this deluge of information. In response, I ventured into
the tumultuous waters of software development. In Chapter 2, I describe my
original software that automates the acquisition and organization of genetic
metadata. Academic publishing in the field of software was a unique experience,
as I had to both produce a scholarly manuscript and demonstrate expertise as a
service-provider. This database tool has continually proven to be indispensable,
and is the backbone upon which the studies in Chapter 3 and Chapter 4 would
be rebuilt upon.

At this point, I re-introduce the dissertation as a collection of three hierar-
chical, but independently published, studies. I first describe an original piece
of software in Chapter 2, which automates the retrieval and organization of
publicly available sequence data. In Chapter 3, I outline how this tool was used
to generate an updated and curated phylogeny of Y. pestis, which yielded novel
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insight regarding the timing and origins of past pandemics. In this chapter,
I also conduct a critical examination of the historical questions that genomic
evidence can, or cannot, address. In Chapter 4, I use these theories and methods
to reconstruct the emergence and continuity of plague in Denmark over a period
of 400 years. I conclude in Chapter 5 with a discussion of the contributions of
each study, with a particular focus on their significance within the broader field
of anthropology.
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Chapter 2

NCBImeta: Efficient and
comprehensive metadata retrieval
from NCBI databases
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2.1 Summary
NCBImeta is a command-line application that downloads and organizes biological
metadata from the National Centre for Biotechnology Information (NCBI). While
the NCBI web portal provides an interface for searching and filtering molecular
data, the output offers limited options for record retrieval and comparison on
a much larger and broader scale. NCBImeta tackles this problem by creating a
reformatted local database of NCBI metadata based on user search queries and
customizable fields. The output of NCBImeta, optionally a SQLite database or
text file(s), can then be used by computational biologists for applications such
as record filtering, project discovery, sample interpretation, and meta-analyses
of published work.

2.2 Background
Recent technological advances in DNA sequencing have propelled biological
research into the realm of big data. Due to the tremendous output of Next
Generation Sequencing (NGS) platforms, numerous fields have transformed
to explore this novel high-throughput data. Projects that quickly adapted to
incorporate these innovative techniques included monitoring the emergence of
antibiotic resistance genes (Zankari et al., 2012), epidemic source tracking in
human rights cases (Eppinger et al., 2014), and global surveillance of uncharac-
terized organisms (Connor et al., 2015). However, the startling rate at which
sequence data are being deposited online have presented significant hurdles to
the efficient reuse of published data. In response, there is growing recognition
within the computational community that effective data mining techniques are a
dire necessity (Mackenzie et al., 2016; Nakazato et al., 2013).

An essential step in the data mining process is the efficient retrieval of
comprehensive metadata. These metadata fields are diverse in nature, but often
include the characteristics of the biological source material, the composition
of the raw data, the objectives of the research initiative, and the structure of
the post-processed data. Several software applications have been developed to
facilitate bulk metadata retrieval from online repositories. Of the available tools,
SRAdb [(Zhu et al., 2013)], the Pathogen Metadata Platform (Chang et al., 2016),
MetaSRA (Bernstein et al., 2017), and pysradb (Choudhary, 2019) are among the
most widely utilised and actively maintained. While these software extensions
offer substantial improvements over the NCBI web browser experience, there
remain several outstanding issues.

1. Existing tools assume external programming language proficiency (ex. R,
Python, SQL), thus reducing tool accessibility.

2. Available software focuses on implementing access to singular NCBI
databases in isolation, for example, the raw data repository the Sequence
Read Archive (SRA). This does not empower researchers to incorporate
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evidence from multiple databases, as it fails to fully leverage the power
of interconnected information within the relational database scheme of
NCBI.

3. Existing software provides only intermittent database updates, where users
are dependent on developers releasing new snapshots to gain access to
the latest information. This gives researchers less autonomy over what
data they may incorporate as newer records are inaccessible, and may even
introduce sampling bias depending on when the snapshots are generated.

In response, NCBImeta aims to provide a more user-inclusive experience to
metadata retrieval, that emphasizes real-time access and provides generalized
frameworks for a wide variety of NCBI’s databases.

2.3 NCBImeta
NBCImeta is a command-line application that executes user queries and meta-
data retrieval from the NCBI suite of databases. The software is written in
Python 3, using the BioPython module (Cock et al., 2009) to connect to, search,
and download XML records with NCBI’s E-Utilities (Kans, 2013/2019). The
lxml package is utilised to perform XPath queries to retrieve nodes containing
biological metadata of interest. SQLite is employed as the database management
system for storing fetched records, as implemented with the sqlite3 python
module. Accessory scripts are provided to supply external annotation files, to
join tables within the local database so as to re-create the relational database
structure, and finally to export the database as tabular text for downstream anal-
yses. NCBImeta currently interfaces with the molecular and literature databases
(Entrez Help, 2006/2016) described in Table 2.3.1.

Table 2.3.1: NCBI databases supported in NCBImeta.

Database Description
Assembly Descriptions of the names and structure of genomic assemblies,

statistical reports, and sequence data links.
BioSample Characteristics of the biological source materials used in

experiments.
BioProject Goals and progress of the experimental initiatives, originating from

an individual organization or a consortium.
Nucleotide Sequences collected from a variety of sources, including GenBank,

RefSeq, TPA and PDB.
PubMed Bibliographic information and citations for biomedical literature

from MEDLINE, life science journals, and other online publications.
SRA Composition of raw sequencing data and post-processed alignments

generated via high-throughput sequencing platforms.

8
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The typical workflow of NCBImeta follows four major steps as outlined in
Figure 2.3.1. Users first configure the program with their desired search terms.
NCBImeta is then executed on the command-line to fetch relevant records and
organize them into a local database. Next, the user optionally edits the database
to, for example, add their own custom metadata. Finally, the resulting database,
kept in SQLite format or exported to text, delivers 100+ biologically-relevant
metadata fields to researcher’s fingertips. This process not only saves significant
time compared to manual record retrieval through the NCBI web portal, but
additionally unlocks attributes for comparison that were not easily accessible
via the web-browser interface.

Figure 2.3.1: NCBImeta user workflow.

NCBImeta’s implementation offers a novel approach to metadata management
and presentation that improves upon the prevously described limitations of
existing software in a number of ways. First, NCBImeta is run on the command-
line, and the final database can be exported to a text file, thus no knowledge
of an external programming language is required to generate or explore the
output. Second, a general parsing framework for tables and metadata fields was
developed which can be extended to work with diverse database types contained
within NCBI’s infrastructure. Finally, a query system was implemented for
record retrieval that allows users to access records in real-time, as opposed to
working with intermittent or out-dated database snapshots.

2.4 Use Case
The following section demonstrates how NCBImeta can be used to obtain current
and comprehensive metadata for a pathogenic bacteria, Pseudomonas aerugi-
nosa, from various sequencing projects across the globe. P. aeruginosa is an
opportunistic pathogen associated with the disease cystic fibrosis (CF) and is
highly adaptable to diverse ecological niches (Stewart et al., 2014). As such, it is
a target of great interest for comparative genomics and there are currently over
15,000 genomic sequence records available which are spread across two or more
databases. In cases such as this, it is critical to leverage the tremendous power
of these existing datasets while being conscious of the labor typically required to
retrieve and contextualize this information. NCBImeta renders the problem of
acquiring and sifting through this metadata trivial and facilitates the integration
of information from multiple sources.

9
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To identify publicly available P. aeruginosa genomes, NCBImeta is configured
to search through the tables Assembly (assembled genomes) and SRA (raw
data). For additional context, NCBImeta is used to retrieve metadata from
the Nucleotide table for descriptive statistics of the genomic content, from the
BioProject table to examine the research methodology of the initiative, from
Pubmed to identify existing publications, and finally from the Biosample table
to explore characteristics of the biological material. A small subset of the 100+
retrieved columns is shown in Figure 2.4.1, to provide a visual example of the
output format and the metadata that is retrieved.

Figure 2.4.1: A subset of the 100+ metadata columns retrieved for P. aeruginosa
sequencing projects. Viewed with DB Browser for SQLite (https://sqlitebrowse
r.org/).

Subsequently, the output of NCBImeta can be used for exploratory data
visualization and analysis. The text file export function of NCBImeta ensures
downstream compatibility with both user-friendly online tools (ex. Google Sheets
Charts) as well as more advanced visualization packages (Wickham, 2016). In
Figure 2.4.2, the geospatial distribution of P. aeruginosa isolates are plotted
alongside key aspects of genomic composition (ex. number of genes).

Finally, NCBImeta can be used to streamline the process of primary data
acquisition following careful filtration. FTP links are provided as metadata fields
for databases attached to an FTP server (ex. Assembly, SRA) which can be
used to download biological data for downstream analysis.

2.5 Future Work
The development of NCBImeta has primarily focused on a target audience of
researchers whose analytical focus is prokaryotic genomics and the samples of
interest are the organisms themselves. Chief among those include individuals
pursuing questions concerning epidemiology, phylogeography, and comparative
genomics. Future releases of NCBImeta will seek to broaden database representa-
tion to include gene-centric and transcriptomics research (ex. NCBI’s Gene and
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Figure 2.4.2: Metadata visualization of P. aeruginosa sequencing projects. A)
The geographic distribution of samples in this region highlights a large number
originating in Japan. Visualized with Palladio (https://hdlab.stanford.edu/palla
dio/). B) The number of genes per organism reveals a multi-modal distribution
within the species.

GEO databases).

2.6 Availability
NCBImeta is a command-line application written in Python 3 that is sup-
ported on Linux and macOS systems. It is distributed for use under the
OSD-compliant MIT license (https://opensource.org/licenses/MIT). Source
code, documentation, and example files are available on the GitHub reposi-
tory (https://github.com/ktmeaton/NCBImeta).
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Chapter 5

Conclusion

5.1 Main Findings and Contributions
In this dissertation, I developed computational methods for genomics research
and used them to reconstruct past and present pandemics of plague. In Chapter 2,
I resented a novel software called NCBImeta that facilitates the acquisition of
sequence data and metadata from the NCBI repository. This specialized tool
supports genomics research in the era of big data, where manual processing of
abundant sequence records (10,000+) is impossible. As a paper on software
development, its contributions and significance to the field of anthropology are
understandably unclear. I targeted this article exclusively towards computational
biologists because, at the time, few anthropologists had expressed interested in
the issue of collecting and curating sequencing data. Reflecting this, NCBImeta
has mainly been cited across biological fields including studies of the human
microbiome (Agostinetto et al., 2021), plant-associated bacteria in agriculture
(Strafella et al., 2021), and emerging infectious diseases in public health (Matthew
Gopez & Philip Mabon, personal communication, https://github.com/ktmeato
n/NCBImeta/pull/9).

In 2021, I took a more active approach in my discipline and used this
software to support several bodies of anthropological research. NCBImeta was
recently used in an environmental reconstruction of Beringia (Murchie et al.,
Accepted, 2021), the former land-bridge that facilitated early human migrations
into North America from northeast Asia. The study by Murchie et al. furthers
our understanding of the peopling of the Americas, and the possible interactions
between early human populations and large animals (ie. megafauna) before
the Last Glacial Period (~12,000 years ago). NCBImeta was also recently used
to curate sequence data in a case study of the zoonotic disease brucellosis in
the 14th century (Hider et al., In Prep). The pioneering work by Hider et
al. demonstrates how pathogen DNA preserves differently throughout the body,
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ranging from being the dominant microorganism in several tissues while being
completely absent in others. It raises an important cautionary note for ancient
DNA analysis and the anthropology of disease, by empirically demonstrating how
sampling strategies can bias our understanding of what diseases were present in
past populations.

In Chapter 3, I explored the challenges in estimating where and when plague
appeared in the past, and why these estimates are often not reproducible between
studies. I used the software tool from Chapter 2 to collect all publicly available
Y. pestis genomes, and carefully curated their collection dates, locations, and
hosts. My co-authors and I then used this data set for phylodynamic analysis,
and devised a new approach for modeling the rates of evolutionary change
(ie. molecular clock). We used these results to explain why divergence dates
varied between studies, and outlined a critical framework for identifying which
divergence dates should be considered non-informative. In addition, we found
that past pandemics of plague may have emerged decades, or even centuries,
before they were historically documented in European sources. These early dates
are in agreement with recent historical work that examines more diverse (ie.
non-European) sources. Through this finding, we demonstrated how genomic
dating plays an important role in expanding the timelines of past pandemics to
make space for more diverse narratives.

In contrast to our claims of the ‘power’ of genomic evidence, a prominent
takeway from Chapter 3 was our discussion of the limitations of DNA. In
particular, we found that Y. pestis genomes in isolation are not suitable for
reconstructing evolutionary relationships during short-term epidemics. This
is because the evolutionary rate of past pandemic lineages is approximately
1 substitution every 10 years. Isolates collected within this time frame (<10
years) are often identical, which means that the directionality of spread cannot
be confidently inferred. To mitigate this weakness, complementary evidence
is needed that has a higher temporal resolution. Historical case records are
an excellent candidate, where plague cases are recorded annually if not weekly
(Roosen & Curtis, 2018). Based on initial comments from readers of the preprint,
this conclusion was particularly exciting as it provided guidance on how to
avoid over-interpreting ancient DNA evidence, and suggested a new avenue for
inter-disciplinary collaboration (Boris Schmidt, personal communication).

In Chapter 4, I applied this updated genomic dataset and molecular clock
method to a new problem. While in Chapter 3 we were concerned with estimating
the first emergence of pandemic lineages, in Chapter 4 we reconstructed the
persistence or continuity of ancient pandemics. We designed a unique longitudinal
study, where we sampled skeletal remains spanning 800 years (1000 - 1800
CE) dated to before, during, and after the Second Pandemic (14thth - 18th

century). Our sampling strategy focused on Scandinavia, particularly Denmark,
as this region is underrepresented in the historical narrative and because the
Anthropological DataBase Odense University collection (ADBOU, University of
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Southern Denmark) has exquisitely curated over 17,000 skeletal remains dated
from the Viking Age (10th century) to the Early Modern Period (18th century).
Using ancient DNA techniques, we recovered evidence of Y. pestis throughout
the 14th to 17th centuries, which perfectly aligns with the historical narrative,
limited as it is. Furthermore, our positivity rate for Y. pestis (3.3% - 14.3%)
overlaps with mortality estimates from several historical outbreaks during the
Second Pandemic. Our results strengthen the argument that Y. pestis was the
causative agent of the Second Pandemic, and suggests that plague was a relatively
new disease in medieval Denmark. These findings are being expanded on in
two upcoming studies. The first, is an examination of how Danish populations
responded to this new disease with regards to changes in the human immune
system (Klunk et al., In Prep, 2021). The second, is a reconstruction of how
and when virulence in Y. pestis became attenuated during the Second Pandemic.
Taken together, we anticipate these studies will deepen our understanding of
disease exposure and experience in Denmark and across Europe.

5.2 Future Directions
5.2.1 Same ‘Plague’, New Problems
A reoccurring problem in plague research is how best to integrate multidisci-
plinary sources, as there is great interest in combining genetic, historical, and
environmental records to better understand past pandemics of plague (Dean
et al., 2018; Schmid et al., 2015). An approach that is commonly used in
ancient DNA studies of Y. pestis involves two steps: (1) reconstructing the
relationships between epidemics using genetic evidence, and then (2) interpreting
those relationships using historical records (Guellil et al., 2020; Namouchi et
al., 2018; Spyrou et al., 2019). However, a major limitation of this method is
that multidisciplinary sources are only integrated during the final interpretation
phase. This runs the risk that errors and uncertainty associated with the genetic
analysis will propagate, leading to high levels of ambiguity when attempting to
provide historical context for this genetic ‘noise’.

An alternative method, is to leverage the strengths and mitigate the weak-
nesses of interdisciplinary sources in a joint phylogenetic analysis. This novel
approach treats historical records (ex. location and date of an outbreak) as
special ‘sequence-free’ samples. These records are then combined with DNA evi-
dence to jointly infer a phylogeny, which can then be used to estimate the timing
and location of historical events. Recent studies have demonstrated how critical
this approach is, as case occurrence records can effectively correct for sampling
biases in sparse genomic datasets (Featherstone et al., 2021; Kalkauskas et al.,
2021). However, incorporating sequence-free datasets is still a relatively recent
method, and to date has only been applied to the study of viruses. Furthermore,
it has only been tested on outbreaks occurring over a relatively small geographic
area and time range. It remains unknown whether this approach is feasible
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for bacterial genomics, let alone ancient DNA, where genomes are larger and
sampled across greater temporal and geographic scopes. This presents a key line
of inquiry for future research, for which the plague bacterium Y. pestis would be
an excellent case study.

5.2.2 New ‘Plague’, Same Problems
During the course of this dissertation, my interest in global pandemics turned
from an academic curiosity to a lived experience. In 2019, the novel coronavirus
SARS-CoV-2 emerged to cause a global pandemic, with over 270 million cases
recorded worldwide. While there are many unique aspects of this pandemic, one
that has captured my attention is that it is the first pandemic to be monitored
with real-time genomic surveillance (Oude Munnink et al., 2021). Over two
million genomic sequences have been deposited in public repositories, which can
be used to inform public health responses (Public Health Ontario, 2021). However,
this avalanche of data has also caused numerous problems, as researchers are
struggling to manage this information and utilize it effectively (Morel et al.,
2021). As a result, database tools such as NCBImeta presented in Chapter 2, are
playing an important role in information management.

One field of ongoing research involves improving the scalability of these
tools. For example, NCBImeta was developed for a data set of ‘only’ 15,000
records, and in its current implementation, cannot process the 1+ million SARS-
CoV-2 records on NCBI. A second critical avenue is integrating information from
multiple repositories, as surveillance data is inconsistently being deposited in
national and international databases (CanCOGeN, n.d.; GISAID, n.d.; NCBI,
n.d.). Progress towards these two objectives will result in more diverse genomic
data being analyzed (geographically and temporally), which may improve of our
understanding of transmission and spread between and within countries.

Another parallel between this dissertation and the ongoing pandemic involves
spatiotemporal modeling. In Chapter 3, we discovered that in our expanded
genomic data set, Y. pestis’ rate of spread tends to outpace its rate of evolu-
tionary change. This leads to identical Y. pestis isolates found across multiple
countries, such as the case throughout the Black Death (1346-1353). However,
we sporadically observed the opposite trend, in which Y. pestis strains collected
in a short time frame (<10 years) were extremely different. This tremendous
diversity in evolutionary rates meant that we were unable to estimate a single
molecular clock for Y. pestis. These issues, clonal spread and rate variation,
were also recently documented in SARS-CoV-2 (Ferreira et al., 2021). Ferreira et
al. describe this as a paradox in which we “become increasingly uncertain about
the relationships among specific lineages as we collect greater amounts of data”.
This runs counterintuitive to the general expectation in scientific studies that
the more data we collect, the closer we get to the ‘truth’. Overall, this presents
a complex theoretical problem that is becoming increasingly prevalent across
various disciplines moving into the era of ‘big data’.
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