Last updated: 2024-11-24

Checks: 7 0

Knit directory: demor2/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20241122) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6b55299. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tidyr.Rmd) and HTML (docs/tidyr.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 6b55299 Chun-Hui Lin 2024-11-24 Add forcats- and tidyr-related files.

Some notes on data tidying from the tidyr site.

Pivoting

Wide to Long

  • pivot_longer()

    • names_prefix= argument: remove matching text form the start of each variable name.
    • names_sep= argument: specify positions or regular expression to break on.
    • names_pattern= argument: specify regular expression to split variable name into multiple columns.
    • names_transform= argument: convert variable type to integer.
    • values_drop_na= argument: drop NA rows if TRUE.
  • Regular Expressions

    • .: matches any character.
    • ?: 0 or 1.
    • *: 0 or more.
# Numeric data in columns names
billboard %>% 
  pivot_longer(
    cols = tidyselect::starts_with("wk"), 
    names_to = "week", 
    names_prefix = "wk",
    names_transform = as.integer, # equivalent: readr::parse_number
    values_to = "rank",
    values_drop_na = TRUE,
  )
# A tibble: 5,307 × 5
   artist  track                   date.entered  week  rank
   <chr>   <chr>                   <date>       <int> <dbl>
 1 2 Pac   Baby Don't Cry (Keep... 2000-02-26       1    87
 2 2 Pac   Baby Don't Cry (Keep... 2000-02-26       2    82
 3 2 Pac   Baby Don't Cry (Keep... 2000-02-26       3    72
 4 2 Pac   Baby Don't Cry (Keep... 2000-02-26       4    77
 5 2 Pac   Baby Don't Cry (Keep... 2000-02-26       5    87
 6 2 Pac   Baby Don't Cry (Keep... 2000-02-26       6    94
 7 2 Pac   Baby Don't Cry (Keep... 2000-02-26       7    99
 8 2Ge+her The Hardest Part Of ... 2000-09-02       1    91
 9 2Ge+her The Hardest Part Of ... 2000-09-02       2    87
10 2Ge+her The Hardest Part Of ... 2000-09-02       3    92
# ℹ 5,297 more rows
# Many variables in column names
(who_wide = who %>% 
  pivot_longer(
    cols = new_sp_m014:newrel_f65,
    names_to = c("diagnosis", "gender", "age"), 
    names_pattern = "new_?(.*)_(.)(.*)",
    names_transform = list(
      gender = as.factor, # equivalent: readr::parse_factor
      age = ~ readr::parse_factor(
        .x,
        levels = c("014", "1524", "2534", "3544", "4554", "5564", "65"), 
        ordered = TRUE
      )
    ),
    values_to = "count",
    values_drop_na = TRUE,
  ))
# A tibble: 76,046 × 8
   country     iso2  iso3   year diagnosis gender age   count
   <chr>       <chr> <chr> <dbl> <chr>     <fct>  <ord> <dbl>
 1 Afghanistan AF    AFG    1997 sp        m      014       0
 2 Afghanistan AF    AFG    1997 sp        m      1524     10
 3 Afghanistan AF    AFG    1997 sp        m      2534      6
 4 Afghanistan AF    AFG    1997 sp        m      3544      3
 5 Afghanistan AF    AFG    1997 sp        m      4554      5
 6 Afghanistan AF    AFG    1997 sp        m      5564      2
 7 Afghanistan AF    AFG    1997 sp        m      65        0
 8 Afghanistan AF    AFG    1997 sp        f      014       5
 9 Afghanistan AF    AFG    1997 sp        f      1524     38
10 Afghanistan AF    AFG    1997 sp        f      2534     36
# ℹ 76,036 more rows
# Multiple observations per row
household %>% 
  pivot_longer(
    cols = !family, 
    names_to = c(".value", "child"), # part of the column name specify the value being measured
    names_sep = "_", 
    values_drop_na = TRUE
  )
# A tibble: 9 × 4
  family child  dob        name  
   <int> <chr>  <date>     <chr> 
1      1 child1 1998-11-26 Susan 
2      1 child2 2000-01-29 Jose  
3      2 child1 1996-06-22 Mark  
4      3 child1 2002-07-11 Sam   
5      3 child2 2004-04-05 Seth  
6      4 child1 2004-10-10 Craig 
7      4 child2 2009-08-27 Khai  
8      5 child1 2000-12-05 Parker
9      5 child2 2005-02-28 Gracie

Long to Wide

  • pivot_wider()

    • name_glue= argument: use name_from columns to create custom column names.
    • name_expand= argument: show implicit factor levels if TRUE.
    • values_fill= argument: specify the value filled in with when missing.
    • values_fn= argument: specify the function apply to the value.
    • unused_fn= argument: summarize the values from the unused column by specified function.
# Capture-recapture data
fish_encounters %>% 
  pivot_wider(
    names_from = station, 
    values_from = seen,
    values_fill = 0
  )
# A tibble: 19 × 12
   fish  Release I80_1 Lisbon  Rstr Base_TD   BCE   BCW  BCE2  BCW2   MAE   MAW
   <fct>   <int> <int>  <int> <int>   <int> <int> <int> <int> <int> <int> <int>
 1 4842        1     1      1     1       1     1     1     1     1     1     1
 2 4843        1     1      1     1       1     1     1     1     1     1     1
 3 4844        1     1      1     1       1     1     1     1     1     1     1
 4 4845        1     1      1     1       1     0     0     0     0     0     0
 5 4847        1     1      1     0       0     0     0     0     0     0     0
 6 4848        1     1      1     1       0     0     0     0     0     0     0
 7 4849        1     1      0     0       0     0     0     0     0     0     0
 8 4850        1     1      0     1       1     1     1     0     0     0     0
 9 4851        1     1      0     0       0     0     0     0     0     0     0
10 4854        1     1      0     0       0     0     0     0     0     0     0
11 4855        1     1      1     1       1     0     0     0     0     0     0
12 4857        1     1      1     1       1     1     1     1     1     0     0
13 4858        1     1      1     1       1     1     1     1     1     1     1
14 4859        1     1      1     1       1     0     0     0     0     0     0
15 4861        1     1      1     1       1     1     1     1     1     1     1
16 4862        1     1      1     1       1     1     1     1     1     0     0
17 4863        1     1      0     0       0     0     0     0     0     0     0
18 4864        1     1      0     0       0     0     0     0     0     0     0
19 4865        1     1      1     0       0     0     0     0     0     0     0
# Aggregation
warpbreaks %>% 
  pivot_wider(
    names_from = wool, 
    values_from = breaks,
    values_fn = mean
  )
# A tibble: 3 × 3
  tension     A     B
  <fct>   <dbl> <dbl>
1 L        44.6  28.2
2 M        24    28.8
3 H        24.6  18.8
# Generate column name from multiple variables
who_wide %>%
  pivot_wider(
    names_from = c(diagnosis, gender, age),
    values_from = count,
    names_glue = "cnt_{diagnosis}_{gender}_{age}"
  )
# A tibble: 3,484 × 60
   country     iso2  iso3   year cnt_sp_m_014 cnt_sp_m_1524 cnt_sp_m_2534
   <chr>       <chr> <chr> <dbl>        <dbl>         <dbl>         <dbl>
 1 Afghanistan AF    AFG    1997            0            10             6
 2 Afghanistan AF    AFG    1998           30           129           128
 3 Afghanistan AF    AFG    1999            8            55            55
 4 Afghanistan AF    AFG    2000           52           228           183
 5 Afghanistan AF    AFG    2001          129           379           349
 6 Afghanistan AF    AFG    2002           90           476           481
 7 Afghanistan AF    AFG    2003          127           511           436
 8 Afghanistan AF    AFG    2004          139           537           568
 9 Afghanistan AF    AFG    2005          151           606           560
10 Afghanistan AF    AFG    2006          193           837           791
# ℹ 3,474 more rows
# ℹ 53 more variables: cnt_sp_m_3544 <dbl>, cnt_sp_m_4554 <dbl>,
#   cnt_sp_m_5564 <dbl>, cnt_sp_m_65 <dbl>, cnt_sp_f_014 <dbl>,
#   cnt_sp_f_1524 <dbl>, cnt_sp_f_2534 <dbl>, cnt_sp_f_3544 <dbl>,
#   cnt_sp_f_4554 <dbl>, cnt_sp_f_5564 <dbl>, cnt_sp_f_65 <dbl>,
#   cnt_sn_m_014 <dbl>, cnt_sn_m_1524 <dbl>, cnt_sn_m_2534 <dbl>,
#   cnt_sn_m_3544 <dbl>, cnt_sn_m_4554 <dbl>, cnt_sn_m_5564 <dbl>, …
# Tidy census
daily %>% 
  pivot_wider(
    names_from = day, 
    values_from = value, 
    names_expand = TRUE,
    values_fill = 0
  )
# A tibble: 4 × 5
   ...1   Fri   Mon   Thu   Tue
  <dbl> <dbl> <dbl> <dbl> <dbl>
1     1     0     0     0     2
2     2     0     0     3     0
3     3     1     0     0     0
4     4     0     5     0     0
# Unused columns
updates %>% 
  pivot_wider(
    id_cols = county, 
    names_from = system, 
    values_from = value,
    unused_fn = list(date = max)
  )
# A tibble: 2 × 5
  county       A     B     C date      
  <chr>    <dbl> <dbl> <dbl> <date>    
1 Wake       3.2     4   5.5 2020-01-03
2 Guilford   2      NA   1.2 2020-01-04

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS 15.1.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Detroit
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.3 forcats_1.0.0   stringr_1.5.1   dplyr_1.1.4    
 [5] purrr_1.0.2     readr_2.1.5     tibble_3.2.1    ggplot2_3.5.1  
 [9] tidyverse_2.0.0 tidyr_1.3.1     workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] sass_0.4.9        utf8_1.2.4        generics_0.1.3    stringi_1.8.4    
 [5] hms_1.1.3         digest_0.6.37     magrittr_2.0.3    timechange_0.3.0 
 [9] evaluate_1.0.0    grid_4.4.0        fastmap_1.2.0     rprojroot_2.0.4  
[13] jsonlite_1.8.9    processx_3.8.4    whisker_0.4.1     ps_1.7.6         
[17] promises_1.3.0    httr_1.4.7        fansi_1.0.6       scales_1.3.0     
[21] jquerylib_0.1.4   cli_3.6.3         crayon_1.5.2      rlang_1.1.4      
[25] bit64_4.0.5       munsell_0.5.1     withr_3.0.1       cachem_1.1.0     
[29] yaml_2.3.10       parallel_4.4.0    tools_4.4.0       tzdb_0.4.0       
[33] colorspace_2.1-1  httpuv_1.6.15     vctrs_0.6.5       R6_2.5.1         
[37] lifecycle_1.0.4   git2r_0.33.0      bit_4.0.5         fs_1.6.4         
[41] vroom_1.6.5       pkgconfig_2.0.3   callr_3.7.6       pillar_1.9.0     
[45] bslib_0.8.0       later_1.3.2       gtable_0.3.5      glue_1.7.0       
[49] Rcpp_1.0.13       xfun_0.47         tidyselect_1.2.1  rstudioapi_0.16.0
[53] knitr_1.48        htmltools_0.5.8.1 rmarkdown_2.28    compiler_4.4.0   
[57] getPass_0.2-4