Last updated: 2019-05-06
Checks: 6 0
Knit directory: W_shredder/
This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20180716)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: Proc_B_manuscript/.DS_Store
Ignored: data/sim_results/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | fafb914 | lukeholman | 2019-05-06 | wflow_publish(files = "*") |
html | 4d78c50 | lukeholman | 2019-05-06 | Build site. |
Rmd | 8d839bb | lukeholman | 2019-05-06 | wflow_publish(files = "*") |
html | 5a70362 | lukeholman | 2019-05-06 | Build site. |
Rmd | 97abdcf | lukeholman | 2019-04-24 | writing and new data finally done |
Rmd | 5aea3e0 | Luke Holman | 2019-03-06 | tweak future library |
Rmd | 3b6cc7a | Luke Holman | 2019-02-05 | Making graphs, fixed combine file |
Rmd | 30a3a54 | Luke Holman | 2019-01-03 | Fixed bug with combining results script |
Rmd | d07c759 | Luke Holman | 2018-12-30 | fix mclapply typo |
Rmd | 6cbc988 | Luke Holman | 2018-12-29 | Merge branch ‘master’ of https://github.com/lukeholman/W_shredder |
Rmd | 09b03be | Luke Holman | 2018-12-29 | tweaks on desktop |
Rmd | 4109a65 | Luke Holman | 2018-12-28 | better file combiner? |
Rmd | 9eb5c95 | Luke Holman | 2018-12-28 | minor tweaks |
Rmd | 53e047e | Luke Holman | 2018-12-21 | added a check for a rare error |
Rmd | 84db6b2 | Luke Holman | 2018-12-03 | No procedure for checking completed runs |
Rmd | 40f47e1 | Luke Holman | 2018-11-30 | Tweak combine script |
Rmd | 2efe487 | Luke Holman | 2018-11-30 | New script to combine files and some writing |
Rmd | 0a7c263 | Luke Holman | 2018-11-23 | bug fixed?? |
Rmd | dc4d673 | Luke Holman | 2018-11-23 | typo |
Rmd | 8b21bb0 | Luke Holman | 2018-11-23 | check for corrupted file |
Rmd | bb8119e | Luke Holman | 2018-11-23 | while loop added |
Rmd | 1971a25 | Luke Holman | 2018-11-23 | new try |
Rmd | 1561ebd | Luke Holman | 2018-11-23 | tweak |
Rmd | 52b42b1 | Luke Holman | 2018-11-23 | continuing |
Rmd | f45dd96 | Luke Holman | 2018-11-23 | baffling bug - server is weird? |
Rmd | d1c12ac | Luke Holman | 2018-11-23 | found bug, testing |
Rmd | 52be32d | Luke Holman | 2018-11-23 | bug hunt |
Rmd | e60d0d1 | Luke Holman | 2018-11-23 | bug hunt |
Rmd | 95857d7 | Luke Holman | 2018-11-23 | more bug hunt |
Rmd | fd8f8be | Luke Holman | 2018-11-23 | bug hunt |
Rmd | 50c5c82 | Luke Holman | 2018-11-22 | Added readr library |
Rmd | 79a4634 | Luke Holman | 2018-11-21 | Change counting of old parameters |
Rmd | 4fd5699 | Luke Holman | 2018-11-21 | silly bug |
Rmd | 7bf9997 | Luke Holman | 2018-11-20 | added print to find bug |
Rmd | 6c9cb6f | Luke Holman | 2018-11-15 | Fix bugs |
Rmd | 4e630f4 | Luke Holman | 2018-11-15 | Make combine_results_files.R |
Rmd | 2c0e001 | Luke Holman | 2018-11-15 | Bug fix |
Rmd | e4c137b | Luke Holman | 2018-11-15 | tweak |
Rmd | 4be43ee | Luke Holman | 2018-11-14 | fixing bugs |
Rmd | 1d21bf4 | Luke Holman | 2018-11-14 | fixing wd issues |
Rmd | 7c0f4de | Luke Holman | 2018-11-14 | Fix gene conversion NHEJ bug |
Rmd | 96fd5b1 | Luke Holman | 2018-11-14 | Fix bug |
Rmd | 6a905d0 | Luke Holman | 2018-11-14 | return output as well as saving |
Rmd | 1cafc43 | Luke Holman | 2018-11-14 | Added fitness to density calculation |
Rmd | a166609 | Luke Holman | 2018-11-13 | rcpp woes |
Rmd | 774f266 | Luke Holman | 2018-11-13 | rcpp on cluster issue |
Rmd | 80dcce8 | Luke Holman | 2018-11-13 | Fix stringr issue |
Rmd | e45a2c8 | Luke Holman | 2018-11-13 | link to stringr |
Rmd | 1a4ca77 | Luke Holman | 2018-11-13 | test random_picker |
Rmd | 14d82d2 | Luke Holman | 2018-11-13 | Push to new repo |
Rmd | de9e0ff | Luke Holman | 2018-11-13 | Added slurm capacity |
Rmd | 99e93c7 | Luke Holman | 2018-11-03 | Many bug fixes with density dependence |
html | 99e93c7 | Luke Holman | 2018-11-03 | Many bug fixes with density dependence |
packages <- c("dplyr", "purrr", "tidyr", "stringr", "reshape2",
"parallel", "Rcpp", "rslurm", "readr", "tibble")
shh <- suppressMessages(lapply(packages, library, character.only = TRUE, quietly = TRUE))
For every combination of male and female genotypes (i.e. mating types), we can calculate the types of zygotes that can be produced, as well as the relative frequency of each zygote type. It’s computationally efficient to do this before running the simulation and store all the information in a big table, and then look it up later as needed. The types of zygotes produced by each mating type depend on three parameters which are passed as arguments, namely:
W_shredding_rate
, the rate at which Z* chromosomes shred susceptible W+ chromosomes in femalesZ_conversion_rate
, the rate at which Z* chromosomes convert susceptible Z+ chromosomes in malesZr_creation_rate
, the rate at which Z* chromosomes convert susceptible Z+ chromosomes to resistant Zr chromosomes in males, for example by non-homologous end joining (NHEJ)make_mating_type_table <- function(W_shredding_rate,
Z_conversion_rate,
Zr_creation_rate){
# Step 1: write out the possible alleles at all 3 loci
# (the sex chrs, and the two autosomal resistance loci)
males_sex <- c("Z+Z+", "Z*Z*", "ZrZr", "Z*Z+", "Z*Zr", "Z+Zr")
females_sex <- c("Z+W+", "Z*W+", "ZrW+", "Z+Wr", "Z*Wr", "ZrWr")
autosomal_W_rescue <- c("aa", "Aa", "AA") # Big A is rescue allele for W-shredding
autosomal_Z_rescue <- c("bb", "Bb", "BB") # Big B is rescue allele for Z-conversion
# Step 2: Combine the 3 loci's alleles to find all possible male and female genotypes
get_possible_genotypes <- function(sex_chr){
expand.grid(sex_chr,
autosomal_W_rescue,
autosomal_Z_rescue,
stringsAsFactors = FALSE) %>%
apply(1, paste0, collapse = "")
}
male_genotypes <- get_possible_genotypes(sex_chr = males_sex)
female_genotypes <- get_possible_genotypes(sex_chr = females_sex)
# Step 3: Find all possible mating types
mating_types <- expand.grid(male_genotypes,
female_genotypes,
stringsAsFactors = FALSE) %>%
as.data.frame() %>%
mutate(male = Var1, female = Var2) %>%
select(female, male)
# Step 4: Find the types and frequencies of gametes produced by each mating type
## 4a: Identify mating types that experience W-shredding and/or Z-conversion
## Note that the A and B alleles are dominant - one copy confers protection
W.shredding <- grepl("Z[*]W[+]", mating_types$female) &
!(grepl("A", mating_types$female))
Z.conversion <- grepl("Z[*]Z[+]", mating_types$male) &
!(grepl("B", mating_types$male))
## 4b: Find the proportions of each type of sex chromosome in the gametes,
## allowing for W shredding and Z conversion
female_gametes_sex <- data.frame(
type1 = substr(mating_types$female, 1, 2),
type2 = substr(mating_types$female, 3, 4),
prop1 = 0.5,
prop2 = 0.5,
stringsAsFactors = FALSE) %>%
mutate(prop1 = replace(prop1, W.shredding, 0.5 + (0.5 * W_shredding_rate)),
prop2 = 1 - prop1)
### NB: Z*Z+ males can create Zr gametes by NHEJ, hence 'type3' column
male_gametes_sex <- data.frame(type1 = substr(mating_types$male, 1, 2),
type2 = substr(mating_types$male, 3, 4),
type3 = "Zr",
prop1 = 0.5, prop2 = 0, prop3 = 0,
stringsAsFactors = FALSE) %>%
mutate(prop1 = replace(prop1, Z.conversion,
0.5 + 0.5 * Z_conversion_rate), # fair meiosis + gene conversion
prop3 = replace(prop3, Z.conversion,
0.5 * Z_conversion_rate * Zr_creation_rate), # gene conversion * Zr_creation_rate
prop1 = prop1 - prop3, # The new Zr chromosomes are taken out of those that undergo gene conversion
prop2 = 1 - prop1 - prop3) # The Z+ chromosomes escaping conversion to Z* or NHEJ to Zr
male_gametes_sex[male_gametes_sex$prop3 == 0,
names(male_gametes_sex) %in% c("type3", "prop3")] <- NA
## 4c: Find the proportions of each autosomal allele in the gametes
get_gametes_autosomes <- function(genotype_column){
lapply(strsplit(substr(genotype_column, 5, 8), split = ""), function(x){
c(paste(x[1], x[3], sep = ""), # NB this bit assumes A and B loci are unlinked
paste(x[1], x[4], sep = ""),
paste(x[2], x[3], sep = ""),
paste(x[2], x[4], sep = "")
)
}) %>% do.call("rbind", .)
}
female_gametes_autosomes <- get_gametes_autosomes(mating_types$female)
male_gametes_autosomes <- get_gametes_autosomes(mating_types$male)
## 4d: Combine sex and autosomal alleles to find complete
## gametic genotypes, and their corresponding frequencies
get_complete_gametes <- function(gametes_sex,
gametes_autosomes,
male){ # logical: are we doing males?
# Make vector showing if there are 1, 2 or 4 possible
# autosome genotypes in the gametes, for each of the mating types
possible.autosomes <- lapply(1:nrow(gametes_autosomes),
function(i) unique(gametes_autosomes[i, ]))
n_unique_autosomes <- sapply(possible.autosomes, length)
# Count if there are 2 or 3 possible sex chromosomes in the sperm (from NHEJ)
# Note that for simpler coding, I treat sex chr homozygotes as having 2 alleles
# (not 1) for this section (it is quickly fixed later by 'simplying')
sex <- rep(2, nrow(gametes_sex)) # always 2 for females, and for most males
if(male) sex[!is.na(gametes_sex$type3)] <- 3 # 3 sex chromosomes in Z*Z+ male sperm
# Paste the sex and autosomes together
paster <- function(i){ # i is the mating type index
sex <- sex[i] # 2 or 3 sex chrs in the focal sex for this mating type
possible.sex.chr <- as.character(gametes_sex[i, 1:sex]) # columns 1-2 or 1-3
sex.chr.freqs <- as.numeric(gametes_sex[i, 2 + as.numeric(male) + (1:sex)]) # cols 3-4 or 4-6
possible.autosomes <- possible.autosomes[[i]] # 1, 2 or 4 autosome genotypes
expand.grid(sex = possible.sex.chr, # combine and paste genotypes
auto = possible.autosomes,
stringsAsFactors = FALSE) %>%
mutate(genotype = map2_chr(sex, auto, paste0, collapse = "")) %>%
mutate(prop = rep(sex.chr.freqs * 1 / n_unique_autosomes[i], # find corresponding freqs
n_unique_autosomes[i])) %>%
group_by(genotype) %>%
summarise(prop = sum(prop))
}
lapply(1:nrow(gametes_sex), paster) # returns a list
} # end of get_complete_gametes()
complete_female_gametes <- get_complete_gametes(female_gametes_sex,
female_gametes_autosomes,
male = FALSE)
complete_male_gametes <- get_complete_gametes(male_gametes_sex,
male_gametes_autosomes,
male = TRUE)
# Step 5: find the zygote frequencies for each mating type
get_zygotes <- function(mating_types,
complete_female_gametes,
complete_male_gametes){
n_mating_types <- length(complete_female_gametes)
# Combine the gametes to make zygotes
zygotes <- lapply(1:n_mating_types, function(i){
combos <- expand.grid(complete_female_gametes[[i]]$genotype,
complete_male_gametes[[i]]$genotype,
stringsAsFactors = FALSE)
props <- expand.grid(complete_female_gametes[[i]]$prop,
complete_male_gametes[[i]]$prop)
combos$prop <- props[,1] * props[,2]
# Discard info on parental origin of alleles
for(j in 1:nrow(combos)) combos[j, 1:2] <- sort(combos[j, 1:2])
# Combine probabilities of identical genotypes
combos %>%
group_by(Var1, Var2) %>%
summarise(prop = sum(prop)) %>%
mutate(mating_type = i)
}) %>%
bind_rows() %>% as.data.frame() %>% mutate(genotype = NA)
for(i in 1:nrow(zygotes)){
A_geno <- c(substr(zygotes$Var1[i], 3, 3),
substr(zygotes$Var2[i], 3, 3)) %>%
sort(decreasing = TRUE)
B_geno <- c(substr(zygotes$Var1[i], 4, 4),
substr(zygotes$Var2[i], 4, 4)) %>%
sort(decreasing = TRUE)
sex_geno <- c(substr(zygotes$Var1[i], 1, 2),
substr(zygotes$Var2[i], 1, 2))
forwards <- paste0(sex_geno, collapse = "")
if(forwards %in% c(males_sex, females_sex)){ # I define Z*Z+ as a 'real' genotype but not Z+Z*
zygotes$genotype[i] <- paste0(c(forwards,
A_geno,
B_geno),
collapse = "")
} else { # if genotype is not real, paste it the other way around
zygotes$genotype[i] <- paste0(c(paste0(rev(sex_geno), collapse = ""),
A_geno,
B_geno),
collapse = "")
}
} # end of for loop
data.frame(mating_type = zygotes$mating_type,
mother = mating_types$female[zygotes$mating_type],
father = mating_types$male[zygotes$mating_type],
zygote = zygotes$genotype,
prop = zygotes$prop, stringsAsFactors = FALSE)
} # end of get_zygotes()
get_zygotes(mating_types, complete_female_gametes, complete_male_gametes)
}
This function supplements a mating_type_table with all the extra progeny classes that can appear by a mutation of one of the normal progeny classes. We assume that Z+ chromosomes can mutate to Zr and vice versa, and W+ to Wr and vice versa. We assume that mutations are equally likely in both directions, meaning that mutation will not consistently affect the allele frequencies. Also, in simulations where the Zr_mutation_rate
and Wr_mutation_rate
are non-zero, we set the initial frequency of Zr and/or Wr to the mutation rate (so that resistance mutations will generally already be present at the start of the burn in phase)
add_mutants <- function(mating_type_table, Zr_mutation_rate, Wr_mutation_rate){
zygote_has_two_Z <- grepl("Z[+]Z[+]", mating_type_table$zygote)
zygote_has_one_Z <- grepl("Z[+]", mating_type_table$zygote) & !zygote_has_two_Z
zygote_has_two_Zr <- grepl("ZrZr", mating_type_table$zygote)
zygote_has_one_Zr <- grepl("Zr", mating_type_table$zygote) & !zygote_has_two_Zr
zygote_has_W <- grepl("W[+]", mating_type_table$zygote)
zygote_has_Wr <- grepl("Wr", mating_type_table$zygote)
# Create the mutant zygotes...
Z_mutants1 <- mating_type_table %>% # single Z+ -> Zr mutants in Z+/- individuals
filter(zygote_has_one_Z) %>%
mutate(zygote = str_replace_all(zygote, "Z[+]", "Zr"),
prop = prop * Zr_mutation_rate)
Z_mutants2 <- mating_type_table %>% # single Z+ -> Zr mutants in Z+Z+ individuals
filter(zygote_has_two_Z) %>%
mutate(zygote = str_replace_all(zygote, "Z[+]Z[+]", "Z+Zr"),
prop = prop * Zr_mutation_rate * 2)
Z_mutants3 <- mating_type_table %>% # double Z+ -> Zr mutants in Z+Z+ individuals
filter(zygote_has_two_Z) %>%
mutate(zygote = str_replace_all(zygote, "Z[+]Z[+]", "ZrZr"),
prop = prop * Zr_mutation_rate * Zr_mutation_rate)
Zr_mutants1 <- mating_type_table %>% # single Zr -> Z+ mutants in Zr/- individuals
filter(zygote_has_one_Zr) %>%
mutate(zygote = str_replace_all(zygote, "Zr", "Z+"),
prop = prop * Zr_mutation_rate)
Zr_mutants2 <- mating_type_table %>% # single Zr -> Z+ mutants in ZrZr individuals
filter(zygote_has_two_Zr) %>%
mutate(zygote = str_replace_all(zygote, "ZrZr", "Z+Zr"),
prop = prop * Zr_mutation_rate * 2)
Zr_mutants3 <- mating_type_table %>% # double Zr -> Z+ mutants in ZrZr individuals
filter(zygote_has_two_Zr) %>%
mutate(zygote = str_replace_all(zygote, "ZrZr", "Z+Z+"),
prop = prop * Zr_mutation_rate * Zr_mutation_rate)
W_mutants <- mating_type_table %>%
filter(zygote_has_W) %>%
mutate(zygote = str_replace_all(zygote, "W[+]", "Wr"),
prop = prop * Wr_mutation_rate)
Wr_mutants <- mating_type_table %>%
filter(zygote_has_Wr) %>%
mutate(zygote = str_replace_all(zygote, "Wr", "W+"),
prop = prop * Wr_mutation_rate)
# Subtract the mutants from the non-mutants' frequencies
mating_type_table$prop[zygote_has_one_Z] <-
mating_type_table$prop[zygote_has_one_Z] - Z_mutants1$prop
mating_type_table$prop[zygote_has_two_Z] <-
mating_type_table$prop[zygote_has_two_Z] - Z_mutants2$prop - Z_mutants3$prop
mating_type_table$prop[zygote_has_one_Zr] <-
mating_type_table$prop[zygote_has_one_Zr] - Zr_mutants1$prop
mating_type_table$prop[zygote_has_two_Zr] <-
mating_type_table$prop[zygote_has_two_Zr] - Zr_mutants2$prop - Zr_mutants3$prop
mating_type_table$prop[zygote_has_W] <-
mating_type_table$prop[zygote_has_W] - W_mutants$prop
mating_type_table$prop[zygote_has_Wr] <-
mating_type_table$prop[zygote_has_Wr] - Wr_mutants$prop
rbind(mating_type_table, # bind mutants onto the mating type table, combine and simplify
Z_mutants1, Z_mutants2, Z_mutants3,
Zr_mutants1, Zr_mutants2, Zr_mutants3,
W_mutants, Wr_mutants) %>%
group_by(mating_type, mother, father, zygote) %>%
summarise(prop = sum(prop)) %>%
as.data.frame() %>%
arrange(mating_type, mother, father, -prop) %>%
mutate(mating_type = as.character(mating_type),
mother = as.character(mother),
father = as.character(father))
}
# Helper function to convert the zygote frequencies to a cumulative sum.
# To create each offspring, we later roll random numbers between 0 and 1 with runif(),
# then see which is the largest index of 'prop' that is less than the random number.
# This will efficiently determine which zygote is produced, allowing us to roll all the
# random numbers needed in one step only (making use of vectorisation for speed)
convert_probabilities <- function(mating_type_table){
# Remove zygote classes with zero probability (e.g. because drive is 100% and Z+ or W+ are missing)
mating_type_table <- mating_type_table %>% filter(prop != 0)
# Arrange probs from biggest to smallest within each mating type
mating_type_table <- mating_type_table %>%
split(mating_type_table$mating_type) %>%
map(~ .x %>% arrange(-prop)) %>%
bind_rows()
# convert to cumsum probabilities; for example,
# The classic 1:2:1 Mendelian ratio has genotype frequencies of .25, .5, and .25
# This is represented as c(0, 0.25, 0.75).
# Rolling runif() 0 to 0.25 yields geno 1, >.25 gives genotype 2, and >.75 gives genotype 3
mating_type_table$prop <- mating_type_table$prop %>%
split(mating_type_table$mating_type) %>% # Get the vector of zygote probs for each mating type
map(function(focal_props){
focal_props <- cumsum(focal_props)
c(0, focal_props[-length(focal_props)])
}) %>% combine()
# Remove numbers so close 1 they are converted to 1 by floating point arithmetic
# Effectively, we assume that sufficiently rare progeny classes never appear (<10^-16 I think)
mating_type_table %>% filter(prop != 1)
}
We assume that individuals with wild type sex chromosomes (Z+ and W+), as well as non-resistant autosomal alleles (genotype aabb), have a fitness of 1. The resistant alleles (Zr, Wr, A, and B), as well as the driving Z* allele, all potentially incur costs. These costs are multiplicative, such that the fitness cost \(c\) of e.g. having both Zr and A is \(c = 1 {\times} (1 - c_{Zr}) {\times} (1 - c_{A})\). The costs are also all dominant: having one copy of Z*, Zr, Wr, A, and B is equally costly as having two.
make_fitness_table <- function(cost_Zdrive_female,
cost_Zdrive_male,
cost_Wr,
cost_Zr,
cost_A,
cost_B,
mating_type_table){
female_fitnesses <- mating_type_table %>%
select(mother) %>% distinct() %>%
rename(genotype = mother) %>%
mutate(w = 1,
w = replace(w, grepl("Wr", genotype), (1 - cost_Wr)))
female_fitnesses$w[grep("Z[*]", female_fitnesses$genotype)] <-
female_fitnesses$w[grep("Z[*]", female_fitnesses$genotype)] * (1 - cost_Zdrive_female)
male_fitnesses <- mating_type_table %>%
select(father) %>% distinct() %>%
rename(genotype = father) %>%
mutate(w = 1,
w = replace(w, grepl("Z[*]", genotype), (1 - cost_Zdrive_male)))
fitness <- rbind(female_fitnesses, male_fitnesses)
fitness$w[grep("Zr", fitness$genotype)] <-
fitness$w[grep("Zr", fitness$genotype)] * (1 - cost_Zr)
fitness$w[grep("A", fitness$genotype)] <-
fitness$w[grep("A", fitness$genotype)] * (1 - cost_A)
fitness$w[grep("B", fitness$genotype)] <-
fitness$w[grep("B", fitness$genotype)] * (1 - cost_B)
fitness %>% rename(fitness = w)
}
This function creates a population with a specified size, spread evenly across a specified number of patches, with specified allele frequencies in Hardy-Weinberg genotype frequencies.
make_initial_population <- function(initial_Zdrive,
initial_Zr,
initial_Wr,
initial_A,
initial_B,
initial_pop_size,
n_patches,
fitness_table){
initial_freqs <- fitness_table %>%
rename(freq = fitness) %>%
mutate(sex = substr(genotype, 1, 4),
auto1 = substr(genotype, 5, 6),
auto2 = substr(genotype, 7, 8),
freq = 0)
Z <- (1 - initial_Zdrive - initial_Zr)
Zdrive <- initial_Zdrive
Zr <- initial_Zr
W <- (1 - initial_Wr)
Wr <- initial_Wr
initial_freqs$sex[initial_freqs$sex == "Z+Z+"] <- Z ^ 2
initial_freqs$sex[initial_freqs$sex == "Z*Z*"] <- Zdrive ^ 2
initial_freqs$sex[initial_freqs$sex == "ZrZr"] <- Zr ^ 2
initial_freqs$sex[initial_freqs$sex == "Z*Z+"] <- 2 * Zdrive * Z
initial_freqs$sex[initial_freqs$sex == "Z+Zr"] <- 2 * Z * Zr
initial_freqs$sex[initial_freqs$sex == "Z*Zr"] <- 2 * Zdrive * Zr
initial_freqs$sex[initial_freqs$sex == "Z+W+"] <- Z * W
initial_freqs$sex[initial_freqs$sex == "Z*W+"] <- Zdrive * W
initial_freqs$sex[initial_freqs$sex == "ZrW+"] <- Zr * W
initial_freqs$sex[initial_freqs$sex == "Z+Wr"] <- Z * Wr
initial_freqs$sex[initial_freqs$sex == "Z*Wr"] <- Zdrive * Wr
initial_freqs$sex[initial_freqs$sex == "ZrWr"] <- Zr * Wr
initial_freqs[initial_freqs == "aa"] <- (1 - initial_A) ^ 2
initial_freqs[initial_freqs == "Aa"] <- 2 * initial_A * (1 - initial_A)
initial_freqs[initial_freqs == "AA"] <- initial_A ^ 2
initial_freqs[initial_freqs == "bb"] <- (1 - initial_B) ^ 2
initial_freqs[initial_freqs == "Bb"] <- 2 * initial_B * (1 - initial_B)
initial_freqs[initial_freqs == "BB"] <- initial_B ^ 2
for(i in 2:ncol(initial_freqs)) initial_freqs[, i] <- as.numeric(initial_freqs[, i])
initial_freqs$freq <- with(initial_freqs, sex * auto1 * auto2)
data.frame(genotype = sample(initial_freqs$genotype,
initial_pop_size,
prob = initial_freqs$freq,
replace = TRUE),
patch = sample(n_patches, initial_pop_size, replace = TRUE),
stringsAsFactors = FALSE) %>%
group_by(patch, genotype) %>%
summarise(n = n()) %>% arrange(patch, -n) %>%
ungroup()
}
# test_pop <- make_initial_population(0.1, 0.1, 0.1, 0.1, 0.1, initial_pop_size = 1000, n_patches = 10, fitness_table = make_fitness_table())
This functions adds release_size
Z*Z* males to the population, simulating a release of the engineered Z-linked allele. Either the release is localised to one random patch, or the release is randomly scattered across all patches with equal probability using rmultinom
.
release_Zd_individuals <- function(parent_list, n_patches, fitness_table, release_size, release_strategy){
if(release_strategy == "one_patch"){
# Release drive males in most productive patch
patch_productivities <- parent_list[[1]] %>%
group_by(patch) %>%
summarise(productivity = sum(fecundity))
released_males <- data.frame(
patch = with(patch_productivities, patch[which.max(productivity)]),
genotype = "Z*Z*aabb",
n = release_size,
fitness = fitness_table$fitness[fitness_table$genotype == "Z*Z*aabb"],
stringsAsFactors = FALSE)
}
# Scatter the release randomly and evenly across all patches
if(release_strategy == "all_patches"){
released_males <- data.frame(
patch = 1:n_patches,
genotype = "Z*Z*aabb",
n = c(rmultinom(1, release_size, rep(1 / n_patches, n_patches))),
fitness = fitness_table$fitness[fitness_table$genotype == "Z*Z*aabb"],
stringsAsFactors = FALSE)
}
list(
parent_list[[1]], # females
rbind(parent_list[[2]] %>% select(-is_female) %>% as.data.frame(),
released_males) %>% # original+released males
group_by(patch, genotype, fitness) %>%
summarise(n = sum(n)) %>%
ungroup() %>% as.data.frame()
)
}
# females are weighted by their fitness,
# males are considered all the same, but are weighted by male_weighting
calc_global_density <- function(pop, male_weighting){
sum(pop$n[pop$is_female] * pop$fitness[pop$is_female]) +
sum(pop$n[!pop$is_female]) * male_weighting
}
calc_patch_densities <- function(patch_densities,
n_patches, male_weighting){
data.frame(
patch = patch_densities$patch,
density = n_patches *
(patch_densities$weighted_number_of_females +
male_weighting * patch_densities$number_of_males)
)
}
This function is run once per generation in the simulation. It randomly picks the male and female parents of each new offspring, where parents with high fitness genotypes (e.g. Z+Z+aabb) are more likely to be picked than parents with low fitness genotypes (e.g. Z*Z*AABB). We assume a promiscuous mating system, such that individuals of both sexes potentially produce offspring with multiple partners. The fitness of each individual is stochastic, so each generation there will be some males and females that do not breed, and others that reproduce a lot.
We assume that all mating occurs within patches. Males thus always compete locally, meaning that alleles in males always experience “soft” selection (resulting from differences in lifetime mating success). For females, we model global and local competition separately (corresponding to hard and soft selection respectively). Selection on females results from differences in the lifetime number of offspring produced (this could be fecundity and/or viability selection).
We assume that under ideal conditions (e.g. in a near-empty patch or meta-population), a female with genotypic fitness \(w_j\) has an expected fecundity of \(w_j * max_fecundity\), while under crowded conditions, each females’ expected fecundity tends towards \(0\).
Under soft selection, a female in a PATCH containing \(n_f\) females has an expected fecundity of \(w_j * maxFecundity / (nPatches * ∑_i n_f w_i)\) offspring.
Under hard selection, a female in a METAPOPULATION containing \(n_f\) females has an expected fecundity of \(w_j * maxFecundity / (∑_i n_f w_i)\) offspring.
The actual number of progeny per female is generated stochastically by drawing from a Poisson distribution.
# Helper function
# given a vector of pre-rolled uniform random numbers (rand), a vector of cumulative sum probabilities,
# and a vector of the genotypes to which probability corresponds, pick the genotypes
random_picker <- function(rand, probabilities, genotypes){
sapply(1:length(rand), function(i) genotypes[sum(rand[i] > probabilities)])
}
# Calculate (global) density-dependent fecundity accrording to Richards model (Fowler 1981):
# Females of genotype i have expected fecundity of w_i * max_fecundity * (Richards density regulation)
calc_fecundities <- function(females,
max_fecundity,
carrying_capacity,
density_dependence_shape){
# Under softness > 0, it is possible to get patch densities > carrying capacity
# Deal with this by setting density = carrying capacity
females$density[females$density > carrying_capacity] <- carrying_capacity
# Calculate expected fecundity for each female patch/genotype combination
fecundity <- females$n * (1 + females$fitness * max_fecundity *
(1 - (females$density / carrying_capacity) ^ density_dependence_shape))
# Roll Poisson random numbers using expected values
fecundity <- rpois(nrow(females), fecundity)
# Check if the number of progeny exceeds the carrying capacity
if(sum(fecundity) > carrying_capacity){
# If it does, randomly select carrying_capacity - 1 surviving offspring
# This makes a df with col1 = rows in `females`, col2 is their fecundity
to_keep <- melt(table(sample(rep(1:nrow(females),
times = fecundity),
carrying_capacity)),
value.name = "fecundity")
females$fecundity <- 0
females$fecundity[to_keep$Var1] <- to_keep$fecundity
} else {
females$fecundity <- fecundity
}
females
}
pick_mothers <- function(pop, fitness_table, n_patches,
softness,
male_weighting,
max_fecundity,
carrying_capacity,
density_dependence_shape){
pop <- pop %>%
filter(n != 0) %>% # double check there are no empty genotypes....
left_join(fitness_table, by = "genotype") %>% # add fitness column
mutate(is_female = grepl("W", genotype)) # Add column of TRUE/FALSE for sex
# Make df of the patch-specific male and female counts
# (needed later as well as immediately)
patch_densities <- pop %>%
group_by(patch) %>%
summarise(weighted_number_of_females = sum(n[is_female] * fitness[is_female]),
number_of_males = sum(n[!is_female]))
# Calculate global density, unless selection is 100% soft
# Note that all-male and all-female patches still contribute to the global density
if(softness != 1) {
global_density <- calc_global_density(pop, male_weighting)
}
# here are the parents eligible to breed (trim off all single-sex patches)
patch_densities <- patch_densities %>%
filter(weighted_number_of_females != 0 & number_of_males != 0)
# Return NULL if pop has gone extinct
if(nrow(patch_densities) == 0) return(NULL)
pop <- pop %>% filter(patch %in% patch_densities$patch)
females <- pop %>% filter(is_female)
males <- pop %>% filter(!is_female)
# under totally hard selection, we can skip calculation of the patch-specific densities
if(softness == 0){
females$density <- rep(global_density, nrow(females))
} else { # under (partially or fully) soft selection,
# calculate the patch-specific densities
patch_densities <- calc_patch_densities(
patch_densities, n_patches, male_weighting)
if(softness != 1){ # softness == 1, only local density matters
# for 0 < softness < 1, we need both local and global density
patch_densities$density <-
softness * patch_densities$density +
(1 - softness) * global_density
}
females <- left_join(females, patch_densities, by = "patch")
}
# Randomly generate fecundity from the combined expected reproductive
# output of each genotype/patch combination. e.g. 10 ZWaabb females,
# with expected fecundity of 2.5 each, have a total of rpois(1, 25) offspring
females <- calc_fecundities(females,
max_fecundity,
carrying_capacity,
density_dependence_shape)
# Number of offspring born, by mother genotype and patch:
females <- females %>%
select(patch, genotype, fecundity)
# This is `parent_list` for the next function
return(list(females, males))
}
pick_fathers <- function(parent_list){
if(is.null(parent_list)) return(NULL) # Return NULL if pop has gone extinct
offspring_per_patch <- parent_list[[1]] %>%
group_by(patch) %>%
summarise(offspring = sum(fecundity)) %>%
filter(offspring != 0)
# Generate total_offspring random numbers to determine each offspring's father,
# And split these numbers by patch
rand <- runif(sum(offspring_per_patch$offspring)) %>%
split(rep(offspring_per_patch$patch,
times = offspring_per_patch$offspring))
if(length(rand) < 1) print("This one is bad")
# Now loop over all the patches with >0 offspring, and find fathers
# for individual offspring (therefore, we assume promiscuity)
lapply(1:nrow(offspring_per_patch), function(i){
# get the numbers of each male and female genotype in the focal patch
females_in_patch <- parent_list[[1]] %>%
filter(patch == offspring_per_patch$patch[i])
males_in_patch <- parent_list[[2]] %>%
filter(patch == offspring_per_patch$patch[i])
# Find the siring probability of each male genotype, convert to cumsum
father_probabilities <- males_in_patch$n * males_in_patch$fitness
father_probabilities <- cumsum(father_probabilities / sum(father_probabilities))
data.frame(patch = offspring_per_patch$patch[i],
parents = paste(rep(females_in_patch$genotype,
times = females_in_patch$fecundity),
random_picker(rand[[i]],
c(0, father_probabilities[-length(father_probabilities)]),
males_in_patch$genotype)),
stringsAsFactors = FALSE)
}) %>% do.call("rbind", .) %>%
group_by(patch, parents) %>%
summarise(n = n()) %>% as.data.frame()
}
Most of the hard work has already been done, when we created the mating_type_table above. This function takes a data frame of parents (giving the number of offspring produced by each different mating type in each patch), looks up the expected zygote frequencies in mating_type_table
, and then randomly generates the zygotes.
make_offspring <- function(parents, mating_type_table){
if(is.null(parents) || sum(parents$n) == 0) return(NULL) # Return NULL if pop has gone extinct
# Number of offspring from each mating type, summed across patches
offspring_per_mating_type <- parents %>%
group_by(parents) %>%
summarise(n = sum(n))
# Restrict the big mating_type_table, for faster searching
mating_type_table <- mating_type_table %>%
filter(parents %in% offspring_per_mating_type$parents)
# Generate a random number for every offspring, and split between each of the i mating types
rand <- runif(sum(parents$n)) %>%
split(rep(offspring_per_mating_type$parents,
times = offspring_per_mating_type$n))
# Loop over all the mating types
lapply(1:nrow(offspring_per_mating_type), function(i) {
focal.parents <- parents %>% # Get the patch ids for each offspring (same as parents')
filter(parents == offspring_per_mating_type$parents[i])
focal.zygotes <- mating_type_table %>% # Get the zygote proportions for the focal mating type
filter(parents == offspring_per_mating_type$parents[i])
data.frame(genotype = random_picker(rand[[i]],
focal.zygotes$prop,
focal.zygotes$zygote),
patch = rep(focal.parents$patch,
times = focal.parents$n),
stringsAsFactors = FALSE) %>%
group_by(patch, genotype) %>%
summarise(n = n())
}) %>% bind_rows() %>%
group_by(patch, genotype) %>%
summarise(n = sum(n)) %>%
ungroup()
}
This function moves newly-born indiviuals to a different randomly-selected patch. Males and females potentially migrate at different rates.
migrate_population <- function(pop,
n_patches,
patch_landing_probabilities, # passed as arg to save time
male_migration_prob,
female_migration_prob,
migration_type){
if(is.null(pop)) return(NULL) # Return NULL if pop has gone extinct
if(n_patches == 1) return(pop) # don't do anything if there is only one patch
nrow_pop <- nrow(pop)
migration_probs <- rep(male_migration_prob, nrow_pop)
migration_probs[grep("W", pop$genotype)] <- female_migration_prob
# For efficiency, the call to rmultinom() below allows migrants
# to return to their home patch, which would mean they are not really migrants!
# To make sure that male_migration_prob and female_migration_prob correctly
# give the % individuals that move to another patch, the function
# internally boosts the migration rates by a constant, c, which varies
# based on how many patches there are.
# To understand how I derived c, here's the algebra.
# The problem is that the following inequality is always true if there is a finite number of patches
# real_migration_rate < stated_migration_rate * (1 - proportion.returning.to.same.patch)
# To make real_migration_rate = stated_migration_rate, we can add a constant c,
# And solve for c when real_migration_rate = stated_migration_rate:
# real_migration_rate = (stated_migration_rate + c) *
# (1 - proportion.returning.to.same.patch)
# Rearranging, we find that c is:
# c = (stated_migration_rate / (1 - fraction.returning)) - stated_migration_rate
if(migration_type == "global") {
migration_probs <- migration_probs + # Add on c. Not needed for local dispersal.
(migration_probs / (1 - patch_landing_probabilities[1])) - migration_probs
}
n_migrants <- rbinom(nrow_pop, pop$n, prob = migration_probs)
if(sum(n_migrants) == 0) return(pop) # return pop if there are no migrants
pop$n <- pop$n - n_migrants # remove migrants from their original patches
migrants <- pop %>% # Find the number of migrants for each genotype
mutate(n = n_migrants) %>%
filter(n != 0)
if(migration_type == "global"){
migrants <- migrants %>% # tally the migrants' genotypes
group_by(genotype) %>%
summarise(n = sum(n))
pop <- rbind(pop, # Find new patches for the migrants, and return them to the pop
lapply(1:nrow(migrants), function(i){ # for each genotype in the migrant pool...
data.frame(patch = 1:n_patches,
genotype = migrants$genotype[i],
n = rmultinom(1,
size = migrants$n[i],
prob = patch_landing_probabilities)[,1],
stringsAsFactors = FALSE)
}) %>% bind_rows() %>% filter(n != 0))
} else { # else for LOCAL migration...
pop <- rbind(
pop,
data.frame(patch = rep(migrants$patch, migrants$n),
genotype = rep(migrants$genotype, migrants$n),
n = 1,
stringsAsFactors = FALSE) %>%
mutate(patch = patch + sample(c(-1, 1), n(), replace = TRUE), # add -1 or +1 to patch address
patch = replace(patch, patch == 0, n_patches), # going to patch 0 brings you to patch k
patch = replace(patch, patch > n_patches, 1))) # going to patch k+1 brings you to patch 1
}
pop %>%
group_by(patch, genotype) %>%
summarise(n = sum(n)) %>%
ungroup()
}
get_allele_freqs <- function(pop, generation){
pop_size <- sum(pop$n)
n_alleles <- 2 * pop_size
freqs <- data.frame(
Z = pop$n * str_count(pop$genotype, "Z[+]") / n_alleles,
Zd = pop$n * str_count(pop$genotype, "Z[*]") / n_alleles,
Zr = pop$n * str_count(pop$genotype, "Zr") / n_alleles,
W = pop$n * str_count(pop$genotype, "W[+]") / n_alleles,
Wr = pop$n * str_count(pop$genotype, "Wr") / n_alleles,
A = pop$n * str_count(pop$genotype, "A") / n_alleles,
B = pop$n * str_count(pop$genotype, "B") / n_alleles,
females = 0, # placeholder
N = 0
) %>% summarise_all(sum) %>% gather(allele, frequency)
freqs$frequency[8] <- (freqs$frequency[4] + freqs$frequency[5]) * 2 # females
freqs$frequency[9] <- pop_size # pop size
freqs$frequency[1:3] <- freqs$frequency[1:3] / sum(freqs$frequency[1:3]) # Z alleles
freqs$frequency[4:5] <- freqs$frequency[4:5] / sum(freqs$frequency[4:5]) # W alleles
freqs %>% mutate(frequency = round(frequency, 3), # round to save disk space
generation = generation)
}
If running the simulation on many parameter spaces, we will first need to set up several mating_type_tables, each of which takes several seconds of compute time. To speed this up, this function identifies all the unique mating_type_tables that are implied by the table parameters
, and generates them all in parallel using mclapply().
set_up_mating_type_tables <- function(parameters,
cores,
wd,
overwrite = FALSE){
path_to_tables <- file.path(wd, "data/mating_type_tables/")
if(overwrite) unlink(list.files(path_to_tables, full.names = TRUE))
parameters <- parameters %>%
mutate(mating_table = paste(W_shredding_rate,
Z_conversion_rate,
Zr_creation_rate,
Zr_mutation_rate,
Wr_mutation_rate, sep = "_"))
uniques <- unique(parameters$mating_table)
file.names <- paste(uniques, ".rds", sep = "")
uniques <- uniques[!(gsub(path_to_tables, "", file.names) %in% list.files(path_to_tables))]
if(length(uniques) > 0){
print("Setting up the mating type tables...")
file.names <- paste(
path_to_tables,
file.names[!(file.names %in% list.files(path_to_tables))], sep = "")
uniques <- lapply(strsplit(uniques, split = "_"), as.numeric)
mclapply(1:length(uniques), function(i){
make_mating_type_table(W_shredding_rate = uniques[[i]][1],
Z_conversion_rate = uniques[[i]][2],
Zr_creation_rate = uniques[[i]][3]) %>%
add_mutants(Zr_mutation_rate = uniques[[i]][4],
Wr_mutation_rate = uniques[[i]][5]) %>%
convert_probabilities() %>%
mutate(parents = paste(mother, father)) %>%
select(mother, father, parents, zygote, prop) %>%
saveRDS(file = file.names[i])
return(NULL)
}, mc.cores = cores)
}
uniques <- unique(parameters$mating_table)
# I added this section to fix a "bug", but I think it was just an issue with the Spartan server because the bug mysteriously fixed itself!!
# I think this code is never actually triggered now
files <- paste(path_to_tables, uniques, ".rds", sep = "")
mating_tables <- vector(length(files), mode = "list")
for(i in 1:length(mating_tables)){
mating_tables[[i]] <- NA
while(is.na(mating_tables[[i]])){
try(mating_tables[[i]] <- readRDS(files[[i]]))
# if a mating table was not loadable, delete it and try again...
if(is.na(mating_tables[[i]])){
unlink(files[[i]])
corrupted <- as.numeric(strsplit(gsub("[.]rds", "", tail(strsplit(files[[i]], split = "/")[[1]], 1)), split = "_")[[1]])
print("A file was corrupted, deleted it and trying again...")
print(corrupted)
make_mating_type_table(W_shredding_rate = corrupted[1],
Z_conversion_rate = corrupted[2],
Zr_creation_rate = corrupted[3]) %>%
add_mutants(Zr_mutation_rate = corrupted[4],
Wr_mutation_rate = corrupted[5]) %>%
convert_probabilities() %>%
mutate(parents = paste(mother, father)) %>%
select(mother, father, parents, zygote, prop) %>%
saveRDS(file = files[[i]])
print("The corrupted file has been re-made")
}
}
}
print("done them all")
parameters$mating_table <- (1:length(uniques))[match(parameters$mating_table, uniques)]
print("Mating tables are all complete; ready to start")
return(list(parameters, mating_tables))
}
This function runs the simulation, for a single parameter space specified by parameters[row, ]
, using a pre-made mating_type_table.
run_simulation <- function(row,
parameters,
mating_type_table,
wd){
output.file <- sample(99999999999999, 1) # each parameter space gets a unique ID number
set.seed(as.integer(substr(output.file, 1, 5))) # Note that the file name is also the seed
output.file <- paste(file.path(wd, "data/sim_results/"),
output.file, ".rds", sep = "")
# Keep only the correct mating table from the list of tables made by set_up_mating_type_tables()
mating_type_table <- mating_type_table[[parameters$mating_table[row]]]
# Make a table holding the quality/fitness of each genotype
fitness_table <- make_fitness_table(
cost_Zdrive_female = parameters$cost_Zdrive_female[row],
cost_Zdrive_male = parameters$cost_Zdrive_male[row],
cost_Wr = parameters$cost_Wr[row],
cost_Zr = parameters$cost_Zr[row],
cost_A = parameters$cost_A[row],
cost_B = parameters$cost_B[row],
mating_type_table = mating_type_table)
# Make the initial population
pop <- make_initial_population(
initial_Zdrive = parameters$initial_Zdrive[row],
initial_Zr = parameters$initial_Zr[row],
initial_Wr = parameters$initial_Wr[row],
initial_A = parameters$initial_A[row],
initial_B = parameters$initial_B[row],
initial_pop_size = parameters$initial_pop_size[row],
n_patches = parameters$n_patches[row],
fitness_table = fitness_table)
# Assign remaining parameters to variables for faster access in the while() loops
release_size <- parameters$release_size[row]
burn_in <- parameters$burn_in[row]
softness <- parameters$softness[row]
male_weighting <- parameters$male_weighting[row]
carrying_capacity <- parameters$carrying_capacity[row]
density_dependence_shape <- parameters$density_dependence_shape[row]
male_migration_prob <- parameters$male_migration_prob[row]
female_migration_prob <- parameters$female_migration_prob[row]
migration_type <- parameters$migration_type[row]
n_patches <- parameters$n_patches[row]
max_fecundity <- parameters$max_fecundity[row]
patch_landing_probabilities <- rep(1/parameters$n_patches[row],
parameters$n_patches[row])
allele_freqs <- vector(burn_in + parameters$generations[row], mode = "list")
i <- 0L
generation_extinct <- NA # Declare outputs
generation_Zd_extinct <- NA
generation_W_extinct <- NA # wild-type W, aka W+
generation_Zd_fixed <- NA #If shredding rate is less than 100%, pop can sometimes persist with the Z*
outcome <- "Timer expired"
final_pop <- "placeholder"
# Do a few generations of burn-in, to allow population size and distribution to stabilise
while(i < burn_in){
i <- i + 1
# Pick the parents, make the offspring, migrate them, then repeat
pop <- pick_mothers(pop = pop,
fitness_table = fitness_table,
n_patches = n_patches,
softness = softness,
male_weighting = male_weighting,
max_fecundity = max_fecundity,
carrying_capacity = carrying_capacity,
density_dependence_shape = density_dependence_shape) %>%
pick_fathers() %>%
make_offspring(mating_type_table = mating_type_table) %>%
migrate_population(n_patches = n_patches,
patch_landing_probabilities = patch_landing_probabilities,
male_migration_prob = male_migration_prob,
female_migration_prob = female_migration_prob,
migration_type = migration_type)
# 1. Check if the pop has gone extinct,
if(is.null(pop)){
generation_extinct <- NA
outcome <- "Didn't survive burn-in"
final_pop <- NA
i <- Inf
} else allele_freqs[[i]] <- get_allele_freqs(pop, i) # record allele freqs
}
# If pop survived burn-in, add Zd individuals and begin iterating over generations
if(!is.null(pop)){
i <- 0L
# Add the Zd individuals, AFTER calculating density-dependent fecundity (or pop may crash due to the released individuals breaking the carrying capacity)
pop <- pick_mothers(pop = pop,
fitness_table = fitness_table,
n_patches = n_patches,
softness = softness,
male_weighting = male_weighting,
max_fecundity = max_fecundity,
carrying_capacity = carrying_capacity,
density_dependence_shape = density_dependence_shape) %>%
release_Zd_individuals(n_patches = n_patches,
fitness_table = fitness_table,
release_size = release_size,
release_strategy = parameters$release_strategy[row]) %>%
pick_fathers() %>%
make_offspring(mating_type_table = mating_type_table) %>%
migrate_population(n_patches = n_patches,
patch_landing_probabilities = patch_landing_probabilities,
male_migration_prob = male_migration_prob,
female_migration_prob = female_migration_prob,
migration_type = migration_type)
} else i <- Inf # otherwise, skip the iterations and go to the end
zero_one <- c(0,1) # Declare outside the loop
Zd_fixed_counter <- 0
while(i < parameters$generations[row]){
i <- i + 1
# Pick the parents, make the offspring, migrate them, then repeat
pop <- pick_mothers(pop = pop,
fitness_table = fitness_table,
n_patches = n_patches,
softness = softness,
male_weighting = male_weighting,
max_fecundity = max_fecundity,
carrying_capacity = carrying_capacity,
density_dependence_shape = density_dependence_shape) %>%
pick_fathers() %>%
make_offspring(mating_type_table = mating_type_table) %>%
migrate_population(n_patches = n_patches,
patch_landing_probabilities = patch_landing_probabilities,
male_migration_prob = male_migration_prob,
female_migration_prob = female_migration_prob,
migration_type = migration_type)
# 1. Check if the pop has gone extinct,
if(is.null(pop)){
generation_extinct <- i
outcome <- "Population extinct"
final_pop <- NA
i <- Inf
} else {
# 2. Check if females have gone extinct (also mark as extinct)
if (!any(str_detect(pop$genotype, "W"))) {
generation_extinct <- i
outcome <- "Population extinct"
final_pop <- NA
i <- Inf
} else {
# 3. record the allele frequencies
i_burnin <- i + burn_in
allele_freqs[[i_burnin]] <- get_allele_freqs(pop, i_burnin)
# 4. check if driving Z has gone extinct or reached fixation,
# or if wild-type W has been completely replaced by Wr
if (allele_freqs[[i_burnin]]$frequency[2] %in% zero_one |
allele_freqs[[i_burnin]]$frequency[4] == 0) {
if (allele_freqs[[i_burnin]]$frequency[2] == 0){
generation_Zd_extinct <- i_burnin
outcome <- "Zd extinct"
final_pop <- NA
i <- Inf
} else if (allele_freqs[[i_burnin]]$frequency[2] == 1) {
if(Zd_fixed_counter == 0) generation_Zd_fixed <- i
Zd_fixed_counter <- Zd_fixed_counter + 1
if(Zd_fixed_counter == 20) { # If Zd has been fixed for 20 generations without causing a crash...
outcome <- "Zd fixed without extinction"
final_pop <- NA
i <- Inf
}
} else if (allele_freqs[[i_burnin]]$frequency[4] == 0) {
generation_W_extinct <- i_burnin
outcome <- "Wr fixed"
final_pop <- NA
i <- Inf
}
}
}
} # End of "If not extinct..."
} # End of while()
if(!is.na(final_pop)) final_pop <- pop
print(outcome)
list( # return a list:
parameters[row, ] %>% # [[1]]: A 1-row dataframe holding the parameter space and outcome
cbind(data.frame(generation_extinct,
generation_Zd_extinct,
generation_W_extinct,
generation_Zd_fixed,
outcome,
stringsAsFactors = FALSE)),
allele_freqs %>% # [[2]]: The allele frequencies, for each generation
bind_rows() %>%
select(generation, allele, frequency),
final_pop) -> output # [[3]] final population (if the generation timer ran out; otherwise NA)
saveRDS(output, file = output.file)
output
}
This is a wrapper function that calls run_simulation on all rows in parameters, using a specified number of CPU cores to run them in parallel using mclapply().
do_all_parameters <- function(parameters, over_write, cores, wd = NULL){
if(!is.null(wd)) setwd(wd)
else wd <- getwd()
mating_type_tables <- set_up_mating_type_tables(
parameters, cores = cores,
overwrite = FALSE, # Change this manually if needed
wd = wd)
print("check this too")
parameters <- mating_type_tables[[1]] # annotate the parameters with the mating tables numbers
mating_type_tables <- mating_type_tables[[2]] # Get the mating tables themselves
print("Launching multicore job...")
mclapply(1:nrow(parameters),
function(i){
run_simulation(
row = i,
parameters = parameters,
mating_type_table = mating_type_tables,
wd = wd)
}, mc.cores = cores)
}
combine_results_files <- function(chunk, all_files,
wd = getwd()){
setwd(wd)
print(paste("starting on", chunk, "of", length(all_files)))
vector_of_file_names <- all_files[[chunk]]
seeds <- lapply(strsplit(vector_of_file_names, split = "/"), function(x) x[length(x)])
# Get the filesnames/seeds for each of the 10,000 files in the chunk
filenames <- gsub("[.]rds", "", seeds)
# Open a file, or delete it if the server saved a corrupted file
attempt_to_open <- function(file){
tryCatch(
# 1. Try to open the RDS file
expr = readRDS(file),
# 2. If it doesn't open, delete the file and print its name, and return NA
error = function(cond) {
print(file)
unlink(file)
return(NA)})
}
# Open all 10,000 files in the chunk, and store as a list. Each element contains either a 3-element list, or NA
list_of_lists <- lapply(vector_of_file_names, attempt_to_open)
# Only keep the elements and file names for files that opened properly
to_keep <- sapply(list_of_lists, function(x) length(x) == 3)
filenames <- filenames[to_keep]
list_of_lists <- list_of_lists[to_keep]
rm(to_keep)
data.frame(id = filenames,
lapply(list_of_lists, function(x) x[[1]]) %>%
do.call("rbind", .)) %>%
saveRDS(paste("data/results_", chunk, ".rds", sep = ""))
allele_freqs <- lapply(list_of_lists, function(x) x[[2]])
names(allele_freqs) <- filenames
saveRDS(allele_freqs, paste("data/allele_freqs_", chunk, ".rds", sep = ""))
final_pop <- lapply(list_of_lists, function(x) x[[3]])
names(final_pop) <- filenames
saveRDS(final_pop, paste("data/final_pop_", chunk, ".rds", sep = ""))
}
add_parameters()
This function takes a dataframe extracted from the big results file (df
), and uses left_join()
to add the parameter spaces used to generate those data. For example, one can grab a subset of the time-to-extinction results using pluck(results, "generation_extinct") %>% filter()
, and then add the parameter values corresponding to each result using this function.
add_parameters <- function(df){
df %>% # Join a results table with all the variable para values
left_join(results$parameters[, names(results$parameter) %in%
names(results$parameters %>%
map(function(x) length(unique(x))))],
by = "id")
}
remove_nonvariable_parameters()
This function removes all columns that do not vary at all (e.g. parameters like the maximum number of generations, which was set to a single value in all simulations).
remove_nonvariable_parameters <- function(df){
df[, apply(df, 2, function(x) length(unique(x))) > 1]
}
pluck_allele_freqs()
Function for grabbing the allele frequencies over time for a specific simulation run, named in the argument model_id
.
pluck_allele_freqs <- function(model_id, allele_freqs_list){
allele_freqs_list[as.character(model_id)][[1]]
}
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] tibble_2.0.99.9000 readr_1.1.1 rslurm_0.4.0
[4] Rcpp_1.0.0 reshape2_1.4.3 stringr_1.3.1
[7] tidyr_0.8.2 purrr_0.3.1 dplyr_0.8.0.1
loaded via a namespace (and not attached):
[1] knitr_1.20 whisker_0.3-2 magrittr_1.5
[4] workflowr_1.3.0 hms_0.4.2 tidyselect_0.2.5
[7] R6_2.4.0 rlang_0.3.1 plyr_1.8.4
[10] tools_3.5.1 git2r_0.23.0 htmltools_0.3.6
[13] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.18
[16] assertthat_0.2.0 crayon_1.3.4 fs_1.2.6
[19] glue_1.3.0.9000 evaluate_0.11 rmarkdown_1.10
[22] stringi_1.3.1 compiler_3.5.1 pillar_1.3.1.9000
[25] backports_1.1.2 pkgconfig_2.0.2