Last updated: 2019-07-02

Checks: 6 0

Knit directory: cost_of_SR_Dpseudo/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190319) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 2ef4d13 lukeholman 2019-07-02 re-run model
html 52ea758 lukeholman 2019-06-28 Build site.
Rmd 44d4565 lukeholman 2019-06-28 First complete commit
html e2cfeac lukeholman 2019-06-28 Build site.
Rmd fc7812e lukeholman 2019-06-28 First complete commit
html 93aec6e lukeholman 2019-06-28 Build site.
Rmd 01d7dbb lukeholman 2019-06-28 First complete commit
html 8c6e0c3 lukeholman 2019-06-28 Build site.
Rmd ffdc5d4 lukeholman 2019-06-28 First complete commit
html ffdc5d4 lukeholman 2019-06-28 First complete commit

Load R libraries

library(tidyverse)
library(brms)
library(bayestestR)
library(kableExtra)
library(ggbeeswarm)
library(RColorBrewer)
library(showtext)
font_add_google(name = "Lato", family = "Lato", regular.wt = 400, bold.wt = 700)
showtext_auto()
options(stringsAsFactors = FALSE)

SE <- function(x) sd(x) / sqrt(length(x))

Load the data

fitness_data <- read_csv("data/SR_fitness_data.csv") %>% 
  filter(!is.na(genotype)) %>%
  rename(body_size = `Body size`,
         female_age = `F age`) %>%
  mutate(genotype = factor(genotype, levels = c("STST", "SRST", "SRSR")))

Make a table of summary statistics and sample sizes

Here, we calculate the mean offspring produced by females from each of the three genotypes (STST, SRST, and SRSR), either within each isoline or across all the isolines. We also calculate the % females that failed to produce any offspring, and provide sample size information.

means_by_isoline <- fitness_data %>%
  group_by(genotype, Isoline) %>%
  summarise(
    Number_of_females_measured = n(),
    Mean_offspring_per_female = mean(offspring),
    SE = SE(offspring),
    n_females_producing_offspring = sum(offspring != 0),
    Percent_females_producing_offspring = 100 * n_females_producing_offspring / n()) 

means <- fitness_data %>%
  mutate(Isoline = "Across all isolines") %>%
  group_by(genotype, Isoline) %>%
  summarise(
    Number_of_females_measured = n(),
    Mean_offspring_per_female = mean(offspring),
    SE = SE(offspring),
    n_females_producing_offspring = sum(offspring != 0),
    Percent_females_producing_offspring = 100 * n_females_producing_offspring / n()) 


bind_rows(means_by_isoline, means) %>%
  rename_all(function(x) gsub("_", " ", x)) %>%
  rename_all(function(x) gsub("Percent", "%", x)) %>%
  rename(Genotype = genotype) %>%
  kable(digits = 2) %>% kable_styling()
Genotype Isoline Number of females measured Mean offspring per female SE n females producing offspring % females producing offspring
STST Lew 13 37 57.81 6.46 35 94.59
STST Lew 17 40 56.85 5.04 39 97.50
STST Slo B3 40 76.67 5.59 39 97.50
STST Slo B7 35 71.14 4.71 34 97.14
SRST Lew 13 39 72.82 8.70 32 82.05
SRST Lew 17 37 56.24 8.11 32 86.49
SRST Slo B3 31 49.10 5.20 26 83.87
SRST Slo B7 39 55.26 7.07 36 92.31
SRSR Lew 13 36 28.58 5.92 25 69.44
SRSR Lew 17 37 32.19 3.91 34 91.89
SRSR Slo B3 31 17.19 4.56 22 70.97
SRSR Slo B7 38 25.50 4.76 28 73.68
STST Across all isolines 152 65.59 2.81 147 96.71
SRST Across all isolines 146 58.89 3.83 126 86.30
SRSR Across all isolines 142 26.21 2.45 109 76.76

Fit a model to the data

Run the Bayesian hurdle model

The model assumes that the response variable, offspring number, is the result of a ‘hurdle’ process. Essentially this means that the model consists of two sub-models: one controlling the probability that offspring number is non-zero, and one controlling the number of offspring produced provided that more than zero are produced (we assume that offspring number follows a negative binomial distribution, because this improved model fit relative to the simpler hurdle-Poisson model).

We assume that the parameters controlling both the hurdle and the distribution of non-zero values are affected by four fixed effects (the female’s genotype: STST, SRST, or SRSR), her isoline, the female’s age, and the interaction between genotype and isoline. We also fit two random effects: isoline, and experimental block. All fixed effects were assumed to have a prior distribution following a normal distribution with mean 0 and SD = 5.

if(!file.exists("output/brms_model.rds")){
 
  # The hurdle and the mean have the same set of predictors
  model_formula <- bf(
    offspring ~ genotype * Isoline + female_age + (1 | Block), 
    hu        ~ genotype * Isoline + female_age + (1 | Block)  
  )
  
  # Find R^2 for a brms model, and its 95% CIs, and present neatly
  neat_R2 <- function(model){
    R2 <- bayes_R2(model) %>% round(2)
    paste(R2[1,1], " (95% CIs = ", R2[1,3], "-", R2[1,4], ")", sep = "")
  }
  
  # We set conservative, "regularising" priors - see McElreath's "Statistical Rethinking" textbook
  model_prior <- c(set_prior("normal(0, 3)", class = "b"),
                   set_prior("normal(0, 3)", class = "b", dpar = "hu"))
  
  model <- brm(model_formula,
               family = "hurdle_negbinomial",
               chains = 4, cores = 1, iter = 8000, inits = 0, seed = 12345,
               control = list(adapt_delta = 0.999, max_treedepth = 15),
               prior = model_prior, 
               data = fitness_data)
  
  saveRDS(model, file = "output/brms_model.rds")
  saveRDS(neat_R2(model), file = "output/R2_of_brms_model.rds")
} else model <- readRDS("output/brms_model.rds")

Graphically verify the model using a posterior predictive check

The idea behind posterior predictive checking is that if our model is a good fit, then we should be able to use it to generate a dataset which looks a lot like the dataset we actually observed. Here, we see 11 draws from the ‘posterior predictive distribution’ (pale blue), which indeed look quite similar to the distribution of the real data (dark blue), suggesting that our model is a good enough approximation of the true data-generating process for reliable inference.

pp_check(model, type = "hist", nsamples = 11, binwidth = 5)

Version Author Date
ffdc5d4 lukeholman 2019-06-28

Inspect the model’s parameter estimates

bayesian_p_values <- as.data.frame(p_direction(model)) %>% 
      mutate(pd = (100 - pd) / 100,
             Parameter = gsub("[.]", ":", gsub("b_", "", Parameter)))

random <- as.data.frame(summary(model)$random[[1]]) %>%
  rownames_to_column("Parameter") %>%
  mutate(p = NA,
         Parameter = c("sd(Block - Intercept)", "sd(Block - Hurdle intercept)"))

summary(model)$fixed %>% as.data.frame() %>% 
  rownames_to_column("Parameter") %>%
  left_join(bayesian_p_values, by = "Parameter") %>%
  rename(p = pd) %>% arrange(grepl("hu_", Parameter)) %>%
  rbind(random) %>%
  mutate(Parameter = gsub("hu_", "Hurdle - ", Parameter),
         Estimate =  format(round(Estimate, 3), nsmall = 3),
         Est.Error =  format(round(Est.Error, 3), nsmall = 3),
         ` ` = ifelse(p < 0.05, "*", ""),
         ` ` = replace(` `, is.na(` `), ""),
         p = format(round(p, 4), nsmall = 4),
         Rhat = format(round(Rhat, 3), nsmall = 3),
         `l-95% CI` = format(round(`l-95% CI`, 3), nsmall = 3),
         `u-95% CI` = format(round(`u-95% CI`, 3), nsmall = 3),
         Eff.Sample = round(Eff.Sample, 0)
         ) %>% 
  kable() %>% kable_styling()
Parameter Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat p
Intercept 4.048 0.269 3.520 4.575 12066 1.000 0.0000
genotypeSRST 0.362 0.169 0.034 0.692 6284 1.000 0.0156
genotypeSRSR -0.429 0.184 -0.784 -0.067 6408 1.000 0.0109
IsolineLew17 -0.065 0.164 -0.381 0.258 7275 1.000 0.3425
IsolineSloB3 0.281 0.165 -0.041 0.610 7169 1.000 0.0453
IsolineSloB7 0.156 0.169 -0.175 0.493 7443 1.000 0.1784
female_age 0.024 0.057 -0.091 0.136 25065 1.000 0.3369
genotypeSRST:IsolineLew17 -0.219 0.243 -0.693 0.252 7324 1.000 0.1839
genotypeSRSR:IsolineLew17 -0.013 0.253 -0.510 0.473 7164 1.000 0.4832
genotypeSRST:IsolineSloB3 -0.677 0.256 -1.180 -0.182 8021 1.000 0.0047
genotypeSRSR:IsolineSloB3 -0.842 0.265 -1.359 -0.320 7635 1.000 0.0008
genotypeSRST:IsolineSloB7 -0.539 0.242 -1.012 -0.060 7571 1.000 0.0119
genotypeSRSR:IsolineSloB7 -0.328 0.263 -0.846 0.180 7455 1.000 0.1063
Hurdle - Intercept -1.473 1.163 -3.727 0.817 12506 1.000 0.1013
Hurdle - genotypeSRST 1.415 0.717 0.059 2.887 8704 1.000 0.0200
Hurdle - genotypeSRSR 2.109 0.698 0.771 3.505 9094 1.000 0.0006
Hurdle - IsolineLew17 -0.976 1.010 -3.089 0.888 8175 1.000 0.1629
Hurdle - IsolineSloB3 -0.732 0.991 -2.771 1.110 8117 1.000 0.2321
Hurdle - IsolineSloB7 -0.641 1.034 -2.809 1.266 8579 1.000 0.2712
Hurdle - female_age -0.322 0.238 -0.793 0.139 27154 1.000 0.0880
Hurdle - genotypeSRST:IsolineLew17 0.480 1.149 -1.685 2.831 8646 1.000 0.3469
Hurdle - genotypeSRSR:IsolineLew17 -0.846 1.195 -3.115 1.591 9085 1.000 0.2361
Hurdle - genotypeSRST:IsolineSloB3 0.647 1.148 -1.531 2.964 9053 1.000 0.2890
Hurdle - genotypeSRSR:IsolineSloB3 0.890 1.103 -1.161 3.129 8540 1.000 0.2124
Hurdle - genotypeSRST:IsolineSloB7 -0.593 1.231 -2.953 1.871 9058 1.000 0.3096
Hurdle - genotypeSRSR:IsolineSloB7 0.181 1.131 -1.953 2.485 8636 1.000 0.4470
sd(Block - Intercept) 0.184 0.156 0.011 0.568 4120 1.002 NA
sd(Block - Hurdle intercept) 0.570 0.532 0.025 1.947 4627 1.001 NA

Use the model to generate posterior estimates of group means

Generate posterior predictions of the group means

Here, we estimate the mean for three measures of female fitness using the model, for each genotype (across all isolines) and for each genotype-isoline combination. The model adjusts for variation due to experimental block and female age.

# Define the data for prediction. We use the average values for continuous predictors like female age
new <- fitness_data %>% select(genotype, Isoline, body_size, female_age) %>%
  mutate(body_size  = mean(body_size, na.rm = TRUE),
         female_age = mean(female_age)) %>% 
  distinct()

# Find the posterior medians and 95% CIs for each genotype/isoline combination
predicted_mean <- data.frame(new, fitted(model, newdata = new, re_formula = NA)) %>% 
  mutate(facet = "A. Mean offspring production")
predicted_mean_when_fertile <- data.frame(new, fitted(model, newdata = new, dpar = "mu", re_formula = NA)) %>%
  mutate(facet = "B. Mean offspring production\n(excluding infertile females)")
predicted_prop_fertile <- data.frame(new, fitted(model, newdata = new, dpar = "hu", re_formula = NA)) %>% 
  mutate(facet = "C. % fertile females",
         Estimate = 100 * (1 - Estimate), # Convert to percentage of fertile females, instead of *proportion* that are *in*fertile
         Q2.5 = (1 - Q2.5) * 100, 
         Q97.5 = (1 - Q97.5) * 100)

# Get the posterior averaged across the isolines
posterior_means <- 
  data.frame(new, as.data.frame(t(fitted(model, newdata = new, re_formula = NA, summary = FALSE)))) %>%
  select(-body_size, -female_age, -Isoline) %>%
  group_by(genotype) %>%
  summarise_all(mean) %>% select(-genotype) %>% t() %>% as.data.frame() %>%
  rename(STST = V1, SRST = V2, SRSR = V3)

predicted_mean_all_iso <- data.frame( # Summarise it, for Figure 1  
  genotype = c("STST", "SRST", "SRSR"), Isoline = "All", 
  posterior_means %>% lapply(posterior_summary) %>% do.call("rbind", .),
  facet = "A. Mean offspring production") 

posterior_means_when_fertile <- 
  data.frame(new, as.data.frame(t(fitted(model, newdata = new, dpar = "mu", re_formula = NA, summary = FALSE)))) %>%
  select(-body_size, -female_age, -Isoline) %>%
  group_by(genotype) %>%
  summarise_all(mean) %>% select(-genotype) %>% t() %>% as.data.frame() %>%
  rename(STST = V1, SRST = V2, SRSR = V3)
  
predicted_mean_when_fertile_all_iso <- data.frame(
  genotype = c("STST", "SRST", "SRSR"), Isoline = "All", 
  posterior_means_when_fertile %>% lapply(posterior_summary) %>% do.call("rbind", .),
  facet = "B. Mean offspring production\n(excluding infertile females)") 

posterior_means_prop_fertile <- 
  data.frame(new, as.data.frame(t(fitted(model, newdata = new, dpar = "hu", re_formula = NA, summary = FALSE)))) %>%
  select(-body_size, -female_age, -Isoline) %>%
  group_by(genotype) %>%
  summarise_all(~ 100 * (1 - mean(.x))) %>% select(-genotype) %>% t() %>% as.data.frame() %>%
  rename(STST = V1, SRST = V2, SRSR = V3)
  
predicted_prop_fertile_all_iso <- data.frame(
  genotype = c("STST", "SRST", "SRSR"), Isoline = "All", 
  posterior_means_prop_fertile %>% lapply(posterior_summary) %>% do.call("rbind", .),
  facet = "C. % fertile females") 

# Concatenate the predictions into one data frame for plotting
preds_figure1 <- bind_rows(predicted_mean_all_iso,
                           predicted_mean_when_fertile_all_iso,
                           predicted_prop_fertile_all_iso) %>%
  mutate(genotype = factor(genotype, levels = c("STST", "SRST", "SRSR")))

preds_figure2 <- bind_rows(predicted_mean,
                           predicted_mean_when_fertile,
                           predicted_prop_fertile) %>%
  mutate(facet = factor(facet, levels = unique(facet)),
         genotype = factor(genotype, levels = c("STST", "SRST", "SRSR"))) %>%
  select(-body_size, -female_age)

Plot the posterior predictions of the group means

beeswarm_points <- bind_rows(
  fitness_data %>% mutate(facet = "A. Mean offspring production"),
  fitness_data %>% filter(offspring != 0) %>% mutate(facet = "B. Mean offspring production\n(excluding infertile females)")) %>% 
  mutate(Fertility = ifelse(offspring == 0, "Sterile", "Fertile"),
         genotype  = factor(genotype, levels = c("STST", "SRST", "SRSR"))) %>%
    rename(Estimate = offspring) 
  

pos1 <- position_nudge(x = -0.17)
pal <- c(brewer.pal(4, "RdPu")[2], brewer.pal(7, "Purples")[5])

figure_1 <- preds_figure1 %>%
  ggplot(aes(genotype, Estimate)) + 
  geom_errorbar(aes(ymin = Q2.5, ymax = Q97.5), colour = "grey20", position = pos1, size = .8, width = 0.1) + 
  geom_beeswarm(data = beeswarm_points, aes(colour = Fertility),
                size = .7, alpha = 0.6) + 
  geom_point(size = 3.1, pch = 21, colour = "black", position = pos1, fill = "grey20") + 
  scale_colour_manual(values = pal) + 
  facet_wrap(~facet, scale = "free_y") + 
  labs(y = "Posterior estimate \u00B1 95% CIs", x = "Genotype") + 
  theme_bw() + 
  theme(strip.background = element_blank(),
        text = element_text(family = "Lato", size = 12),
        panel.grid.major.x = element_blank(), 
        strip.text = element_text(hjust = 0))


dodge <- position_dodge(0.66)
figure_2 <- preds_figure2 %>%
  ggplot(aes(genotype, Estimate, fill = Isoline)) + 
  geom_errorbar(aes(ymin = Q2.5, ymax = Q97.5), size = .7, width = 0.3, colour = "grey40", position = dodge) + 
  geom_point(size = 3.1, pch = 21, colour = "black", position = dodge) + 
  facet_wrap(~facet, scale = "free_y") + 
  scale_fill_brewer(palette = "Pastel1") +
  labs(y = "Posterior estimate \u00B1 95% CIs", x = "Genotype") + 
  theme_bw() + 
  theme(strip.background = element_blank(),
        text = element_text(family = "Lato", size = 12),
        panel.grid.major.x = element_blank(), 
        strip.text = element_text(hjust = 0))

figure_1 %>% ggsave(filename = "figures/figure_1.pdf", width = 9, height = 4)
figure_2 %>% ggsave(filename = "figures/figure_2.pdf", width = 9, height = 4)
figure_1

Version Author Date
ffdc5d4 lukeholman 2019-06-28
figure_2

Calculate pairwise differences between genotypes

Table 1: Pairwise comparisons of genotypes for three measures of female fitness: mean offspring production, mean offspring production (not including females that produced zero offspring), and the % females that produced at least one offspring. The difference in means column shows the posterior estimate of the difference in means in its original units (i.e. offspring, or percentage points), where a negative difference means that genotype with more copies of SR has lower female fitness (parentheses show the 95% quantiles of this posterior, and the Est.Error column gives the average deviation from the mean). The relative difference column expresses the difference in relative terms; e.g. the first row shows that mean number of offspring produced by SRST females was 87.7% as much as that of STST females. Finally, the p column shows the posterior probability that the true difference in means is zero or of the opposite sign to the estiamte shown here (similar to a conventional p-value).

compare_means <- function(mean1, mean2, posterior){
  difference <- posterior[, mean2] - posterior[, mean1]
  relative <- median(posterior[, mean2] / posterior[, mean1])
  p_value <- as.numeric(100 - p_direction(difference)) / 100
  as_tibble(posterior_summary(as.mcmc(difference))) %>%
    mutate(Comparison = paste(mean1, mean2, sep = " \u2192 "),
           `Relative difference` = paste(format(round(100 * relative, 1), nsmall = 1), "%", sep = ""),
           `95% CIs` = paste(" (", format(round(Q2.5, 1), nsmall = 1), " to ", format(round(Q97.5, 1), nsmall = 1), "%)", sep = ""),
           `Difference in means` = paste(format(round(Estimate, 2), nsmall = 2), `95% CIs`, sep = ""),
           `Fitness trait` = NA,
           p = p_value) %>%
    select( -Q2.5, -Q97.5) %>%
    select(Comparison, `Fitness trait`, `Difference in means`, Est.Error, `Relative difference`, p)
}

table_of_contrasts <- bind_rows(
  compare_means("STST", "SRST", posterior_means),
  compare_means("STST", "SRSR", posterior_means),
  compare_means("SRST", "SRSR", posterior_means),
  compare_means("STST", "SRST", posterior_means_when_fertile),
  compare_means("STST", "SRSR", posterior_means_when_fertile),
  compare_means("SRST", "SRSR", posterior_means_when_fertile),
  compare_means("STST", "SRST", posterior_means_prop_fertile),
  compare_means("STST", "SRSR", posterior_means_prop_fertile),
  compare_means("SRST", "SRSR", posterior_means_prop_fertile)
) %>% mutate(`Fitness trait` = rep(c("Mean offspring production",
                                     "Mean offspring production (excluding infertile females)",
                                     "% fertile females"), each = 3)) %>%
  mutate(Est.Error = format(round(Est.Error, 2), nsmall = 2),
         ` ` = ifelse(p < 0.05, "*", " "),
         p = format(round(p, 4), nsmall = 4))

table_of_contrasts %>%
  kable() %>% kable_styling()
Comparison Fitness trait Difference in means Est.Error Relative difference p
STST → SRST Mean offspring production -8.14 (-22.6 to 5.2%) 7.00 88.1% 0.1147
STST → SRSR Mean offspring production -41.50 (-57.1 to -29.3%) 7.37 38.4% 0.0000
SRST → SRSR Mean offspring production -33.36 (-46.9 to -21.8%) 6.69 43.5% 0.0000
STST → SRST Mean offspring production (excluding infertile females) 0.57 (-12.1 to 13.4%) 6.54 100.8% 0.4653
STST → SRSR Mean offspring production (excluding infertile females) -35.96 (-50.5 to -24.3%) 6.94 49.1% 0.0000
SRST → SRSR Mean offspring production (excluding infertile females) -36.52 (-50.8 to -25.2%) 6.90 48.7% 0.0000
STST → SRST % fertile females -11.62 (-23.3 to -3.8%) 4.93 88.4% 0.0012
STST → SRSR % fertile females -22.08 (-37.2 to -12.1%) 6.25 77.7% 0.0000
SRST → SRSR % fertile females -10.46 (-21.5 to -0.4%) 5.36 87.7% 0.0213

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] showtext_0.5-1     showtextdb_2.0     sysfonts_0.7.2    
 [4] RColorBrewer_1.1-2 ggbeeswarm_0.6.0   kableExtra_0.9.0  
 [7] bayestestR_0.2.2   brms_2.8.0         Rcpp_1.0.1        
[10] forcats_0.4.0      stringr_1.4.0      dplyr_0.8.0.1     
[13] purrr_0.3.2        readr_1.1.1        tidyr_0.8.2       
[16] tibble_2.0.99.9000 ggplot2_3.1.0      tidyverse_1.2.1   

loaded via a namespace (and not attached):
  [1] colorspace_1.3-2     ggridges_0.5.0       rsconnect_0.8.8     
  [4] rprojroot_1.3-2      markdown_0.9         base64enc_0.1-3     
  [7] fs_1.3.1             rstudioapi_0.10      rstan_2.18.2        
 [10] DT_0.4               mvtnorm_1.0-8        lubridate_1.7.4     
 [13] xml2_1.2.0           bridgesampling_0.4-0 knitr_1.22          
 [16] shinythemes_1.1.1    bayesplot_1.6.0      jsonlite_1.6        
 [19] workflowr_1.3.0      broom_0.5.0          shiny_1.3.2         
 [22] compiler_3.5.1       httr_1.4.0           backports_1.1.2     
 [25] assertthat_0.2.1     Matrix_1.2-14        lazyeval_0.2.2      
 [28] cli_1.1.0            later_0.8.0          htmltools_0.3.6     
 [31] prettyunits_1.0.2    tools_3.5.1          igraph_1.2.1        
 [34] coda_0.19-2          gtable_0.2.0         glue_1.3.1.9000     
 [37] reshape2_1.4.3       cellranger_1.1.0     nlme_3.1-137        
 [40] crosstalk_1.0.0      insight_0.3.0        xfun_0.6            
 [43] ps_1.3.0             rvest_0.3.2          mime_0.6            
 [46] miniUI_0.1.1.1       gtools_3.8.1         zoo_1.8-3           
 [49] scales_1.0.0         colourpicker_1.0     hms_0.4.2           
 [52] promises_1.0.1       Brobdingnag_1.2-5    parallel_3.5.1      
 [55] inline_0.3.15        shinystan_2.5.0      curl_3.3            
 [58] yaml_2.2.0           gridExtra_2.3        loo_2.1.0           
 [61] StanHeaders_2.18.0   stringi_1.4.3        highr_0.8           
 [64] dygraphs_1.1.1.6     pkgbuild_1.0.2       rlang_0.3.4         
 [67] pkgconfig_2.0.2      matrixStats_0.54.0   evaluate_0.13       
 [70] lattice_0.20-35      labeling_0.3         rstantools_1.5.0    
 [73] htmlwidgets_1.2      tidyselect_0.2.5     processx_3.2.1      
 [76] plyr_1.8.4           magrittr_1.5         R6_2.4.0            
 [79] pillar_1.3.1.9000    haven_1.1.2          whisker_0.3-2       
 [82] withr_2.1.2          xts_0.11-0           abind_1.4-5         
 [85] modelr_0.1.2         crayon_1.3.4         rmarkdown_1.10      
 [88] grid_3.5.1           readxl_1.1.0         callr_2.0.4         
 [91] git2r_0.23.0         threejs_0.3.1        digest_0.6.18       
 [94] xtable_1.8-4         httpuv_1.5.1         stats4_3.5.1        
 [97] munsell_0.5.0        beeswarm_0.2.3       viridisLite_0.3.0   
[100] vipor_0.4.5          shinyjs_1.0