mashr
to adjust the TWAS results
Last updated: 2021-02-28
Checks: 6 1
Knit directory: fitnessGWAS/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20180914)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c386787. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rapp.history
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: .httr-oauth
Ignored: .pversion
Ignored: analysis/.DS_Store
Ignored: analysis/correlations_SNP_effects_cache/
Ignored: analysis/plot_models_variant_effects_cache/
Ignored: code/.DS_Store
Ignored: code/Drosophila_GWAS.Rmd
Ignored: data/.DS_Store
Ignored: data/derived/
Ignored: data/input/.DS_Store
Ignored: data/input/.pversion
Ignored: data/input/dgrp.fb557.annot.txt
Ignored: data/input/dgrp2.bed
Ignored: data/input/dgrp2.bim
Ignored: data/input/dgrp2.fam
Ignored: data/input/huang_transcriptome/
Ignored: figures/.DS_Store
Untracked files:
Untracked: Rplots.pdf
Untracked: analysis/GO_KEGG_enrichment.Rmd
Untracked: analysis/TWAS_tables.Rmd
Untracked: analysis/plot_models_variant_effects.Rmd
Untracked: code/GO_and_KEGG_gsea.R
Untracked: code/make_sites_files_for_ARGweaver.R
Untracked: code/run_argweaver.R
Untracked: code/run_mashr.R
Untracked: data/argweaver/
Untracked: data/input/TF_binding_sites.csv
Untracked: figures/GWAS_mixture_proportions.rds
Untracked: figures/GWAS_stats_figure.pdf
Untracked: figures/TWAS_mixture_proportions.rds
Untracked: figures/TWAS_stats_figure.pdf
Untracked: figures/antagonism_ratios.pdf
Untracked: figures/composite_mixture_figure.pdf
Untracked: figures/eff_size_histos.pdf
Untracked: figures/stats_figure.pdf
Untracked: manuscript/
Unstaged changes:
Modified: .gitignore
Modified: analysis/GWAS_tables.Rmd
Modified: analysis/TWAS.Rmd
Modified: analysis/checking_mashr_results.Rmd
Modified: analysis/eQTL_analysis.Rmd
Modified: analysis/get_predicted_line_means.Rmd
Modified: analysis/gwas_adaptive_shrinkage.Rmd
Modified: analysis/index.Rmd
Modified: analysis/make_annotation_database.Rmd
Modified: analysis/perform_gwas.Rmd
Modified: analysis/plot_line_means.Rmd
Modified: analysis/plotting_results.Rmd
Deleted: code/gwas_adaptive_shrinkage.R
Modified: data/input/female_fitness.csv
Modified: data/input/female_fitness_CLEANED.csv
Modified: data/input/male_fitness.csv
Modified: data/input/male_fitness_CLEANED.csv
Deleted: figures/figure1.eps
Deleted: figures/figure1.png
Deleted: figures/figure2.eps
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/TWAS.Rmd
) and HTML (docs/TWAS.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 8d54ea5 | Luke Holman | 2018-12-23 | Initial commit |
library(edgeR)
library(tidyverse)
library(glue)
library(future)
library(future.apply)
library(parallel)
library(kableExtra)
library(DT)
library(ashr)
library(mashr)
options(stringsAsFactors = FALSE)
# Connect to the database of annotations
db <- DBI::dbConnect(RSQLite::SQLite(), "data/derived/annotations.sqlite3")
# Helper to run shell commands
run_command <- function(shell_command, wd = getwd(), path = ""){
cat(system(glue("cd ", wd, path, "\n",shell_command), intern = TRUE), sep = '\n')
}
kable_table <- function(df) { # cool tables
kable(df, "html") %>%
kable_styling() %>%
scroll_box(height = "300px")
}
my_data_table <- function(df){ # Make html tables:
datatable(
df, rownames=FALSE,
autoHideNavigation = TRUE,
extensions = c("Scroller", "Buttons"),
options = list(
dom = 'Bfrtip',
deferRender=TRUE,
scrollX=TRUE, scrollY=400,
scrollCollapse=TRUE,
buttons =
list('pageLength', 'colvis', 'csv', list(
extend = 'pdf',
pageSize = 'A4',
orientation = 'landscape',
filename = 'TWAS_enrichment')),
columnDefs = list(list(targets = c(8,10), visible = FALSE)),
pageLength = 50
)
)
}
# Helper to load Huang et al.'s data
load_expression_data <- function(sex){
if(sex != "both"){
expression <- glue("data/input/huang_transcriptome/dgrp.array.exp.{sex}.txt") %>% read_delim(delim = " ")
sample_names <- names(expression)[names(expression) != "gene"] %>% str_remove(":[12]")
gene_names <- expression$gene
expression <- expression %>% select(-gene) %>% as.matrix() %>% t()
rownames(expression) <- sample_names # rows are samples, columns are genes
colnames(expression) <- gene_names
return(expression %>% as.data.frame() %>%
tibble::rownames_to_column("line") %>%
as_tibble() %>%
mutate(line = str_remove_all(line, "[.]1")))
}
females <- read_delim("data/input/huang_transcriptome/dgrp.array.exp.female.txt", delim = " ")
names(females)[-1] <- paste("F_", names(females)[-1],sep="") #%>% str_remove(":[12]")
females <- females %>% left_join(read_delim("data/input/huang_transcriptome/dgrp.array.exp.male.txt", delim = " "), by = "gene")
sample_names <- names(females)[names(females) != "gene"] %>% str_remove(":[12]")
gene_names <- females$gene
sex <- ifelse(str_detect(sample_names, "F_"), "female", "male")
line <- str_remove_all(sample_names, "F_")
females <- females %>% select(-gene) %>% t()
colnames(females) <- gene_names
list(
sampleIDs = tibble(sex, line),
expression = females
)
}
# Load the predicted line means, as calculated in get_predicted_line_means.Rmd
predicted_line_means <- read_csv("data/derived/predicted_line_means.csv")
# Load the results of four univariate linear mixed models run in GEMMA and corrected by mashr
univariate_lmm_results <- tbl(db, "univariate_lmm_results") %>%
left_join(tbl(db, "variants") %>% select(SNP, FBID, site.class, MAF), by = "SNP") %>%
left_join(tbl(db, "genes") %>% select(FBID, gene_name), by = "FBID")
# Results of one multivariate linear mixed model run in GEMMA:
# multivariate_lmm_results <- read_tsv("data/derived/output/all_four_traits.assoc.txt") %>%
# select(-contains("Vbeta")) %>%
# left_join(tbl(db, "variants") %>% select(SNP, FBID, site.class, MAF) %>% collect(), by = "SNP") %>%
# left_join(tbl(db, "genes") %>%
# select(FBID, gene_name) %>%
# collect(), by = "FBID") %>%
# left_join(univariate_lmm_results %>% select(SNP, SNP_clump) %>% collect(n=Inf), by = "SNP") %>%
# select(SNP, SNP_clump, gene_name, FBID, contains("male"), p_wald, fdr)
# Load the supplementary data files from Huang et al. 2015 PNAS
# Table S2: results of statistical tests for sex, line and sex-by-line effects on expression of each transcript
# huang_expression <- read_csv("data/input/huang_2015_tableS2_gene_expression.csv")
# Table S5: heritability of the expression level of each transcript (as measured in males, or females)
huang_heritability <- read_csv("data/input/huang_2015_tableS5_transcript_heritability.csv")
# Table S11+S12: statistically significant eQTLs, and the transcripts they affect (for each sex)
huang_eQTL_females <- read_csv("data/input/huang_2015_tableS11_eQTL_females.csv") %>%
left_join(tbl(db, "genes") %>% select(FBID, gene_name) %>% collect(), by = "FBID") %>%
rename(Affected_FBID = FBID, Affected_gene = gene_name)
huang_eQTL_males <- read_csv("data/input/huang_2015_tableS12_eQTL_males.csv") %>%
left_join(tbl(db, "genes") %>% select(FBID, gene_name) %>% collect(), by = "FBID") %>%
rename(Affected_FBID = FBID, Affected_gene = gene_name)
The following takes the 368 female samples and the 369 male samples, and finds the log fold difference in expression between sexes, and the average expression across both sexes, using the edgeR package.
expression_data_both_sexes <- load_expression_data("both") %>% unname()
voom_gene_data <- calcNormFactors(DGEList(t(expression_data_both_sexes[[2]])))
mm <- model.matrix(~ sex, data = expression_data_both_sexes[[1]])
colnames(mm) <- gsub("sex", "", colnames(mm))
sex_bias_in_expression <- voom_gene_data %>%
voom(mm, plot = FALSE) %>%
lmFit(mm) %>%
eBayes() %>%
topTable(n = Inf) %>%
rownames_to_column("FBID") %>%
select(FBID, logFC, AveExpr) %>%
rename(male_bias_in_expression = logFC) %>%
as_tibble() %>% arrange(male_bias_in_expression)
write_csv(sex_bias_in_expression, "data/derived/gene_expression_by_sex.csv")
rm(expression_data_both_sexes)
make_eQTL_overlap_table <- function(huang_data){
huang_data %>%
select(Affected_FBID, Affected_gene, eQTL) %>%
inner_join(univariate_lmm_results %>%
select(SNP, FBID, gene_name, contains("mashr_ED")) %>%
filter(SNP %in% !!huang_data$eQTL) %>%
collect(n = Inf) %>%
filter_at(vars(contains("LFSR")), any_vars(. < 0.001)) %>%
rename(eQTL_location_FBID = FBID,
eQTL_location_gene = gene_name),
by = c("eQTL" = "SNP")) %>%
mutate(`Cis- or trans- eQTL` = ifelse(eQTL_location_FBID == Affected_FBID, "cis", "trans")) %>%
arrange(`Cis- or trans- eQTL`, Affected_FBID, eQTL) %>% as_tibble() %>%
select(eQTL, `Cis- or trans- eQTL`, everything()) %>%
rename_all(~ str_remove_all(.x, "_mashr_ED"))
}
eQTL_uv_females <- huang_eQTL_females %>% make_eQTL_overlap_table()
eQTL_uv_females %>% kable_table()
eQTL | Cis- or trans- eQTL | Affected_FBID | Affected_gene | eQTL_location_FBID | eQTL_location_gene | beta_female_early | beta_female_late | beta_male_early | beta_male_late | LFSR_female_early | LFSR_female_late | LFSR_male_early | LFSR_male_late |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X_21274093_SNP | cis | FBgn0031176 | what else | FBgn0031176 | what else | -0.1333078 | -0.1824160 | -0.0611220 | -0.0427285 | 0.0004122 | 0.0004200 | 0.0681336 | 0.0557023 |
2R_13997270_SNP | trans | FBgn0033458 | uncharacterized protein | FBgn0085225 | uncharacterized protein | -0.1299065 | -0.1793745 | -0.0840465 | -0.0566265 | 0.0004116 | 0.0004148 | 0.0235637 | 0.0186034 |
3L_21605763_SNP | trans | FBgn0037105 | S1P | FBgn0261953 | Transcription factor AP-2 | 0.1399953 | 0.1942367 | 0.0608650 | 0.0462437 | 0.0005357 | 0.0005106 | 0.0820276 | 0.0518360 |
eQTL_uv_males <- huang_eQTL_males %>% make_eQTL_overlap_table()
eQTL_uv_males %>% kable_table()
eQTL | Cis- or trans- eQTL | Affected_FBID | Affected_gene | eQTL_location_FBID | eQTL_location_gene | beta_female_early | beta_female_late | beta_male_early | beta_male_late | LFSR_female_early | LFSR_female_late | LFSR_male_early | LFSR_male_late |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2R_9134192_SNP | cis | FBgn0002789 | Muscle protein 20 | FBgn0002789 | Muscle protein 20 | 0.1439750 | 0.2008961 | 0.1141324 | 0.0756790 | 0.0003439 | 0.0003443 | 0.0087368 | 0.0066229 |
X_21274093_SNP | cis | FBgn0031176 | what else | FBgn0031176 | what else | -0.1333078 | -0.1824160 | -0.0611220 | -0.0427285 | 0.0004122 | 0.0004200 | 0.0681336 | 0.0557023 |
X_19894144_SNP | trans | FBgn0033697 | Cyp6t3 | FBgn0031082 | uncharacterized protein | -0.3578681 | -0.4860429 | -0.1268685 | -0.0978162 | 0.0001314 | 0.0001304 | 0.0701469 | 0.0424578 |
3L_21605763_SNP | trans | FBgn0037105 | S1P | FBgn0261953 | Transcription factor AP-2 | 0.1399953 | 0.1942367 | 0.0608650 | 0.0462437 | 0.0005357 | 0.0005106 | 0.0820276 | 0.0518360 |
3R_6527736_SNP | trans | FBgn0037822 | uncharacterized protein | FBgn0020385 | pugilist | -0.1281636 | -0.1762774 | -0.0759458 | -0.0518217 | 0.0009473 | 0.0009594 | 0.0350998 | 0.0277776 |
3R_6528878_SNP | trans | FBgn0037822 | uncharacterized protein | FBgn0020385 | pugilist | 0.1437165 | 0.1984026 | 0.0932149 | 0.0619507 | 0.0001868 | 0.0001923 | 0.0164408 | 0.0137944 |
3R_6528878_SNP | trans | FBgn0037822 | uncharacterized protein | FBgn0051391 | uncharacterized protein | 0.1437165 | 0.1984026 | 0.0932149 | 0.0619507 | 0.0001868 | 0.0001923 | 0.0164408 | 0.0137944 |
3R_6532086_SNP | trans | FBgn0037822 | uncharacterized protein | FBgn0051467 | uncharacterized protein | -0.1297557 | -0.1786540 | -0.0561335 | -0.0426859 | 0.0007140 | 0.0006844 | 0.0806250 | 0.0519942 |
3R_6532086_SNP | trans | FBgn0037822 | uncharacterized protein | FBgn0037824 | uncharacterized protein | -0.1297557 | -0.1786540 | -0.0561335 | -0.0426859 | 0.0007140 | 0.0006844 | 0.0806250 | 0.0519942 |
3R_6540298_SNP | trans | FBgn0037822 | uncharacterized protein | FBgn0037827 | uncharacterized protein | -0.1397973 | -0.1910744 | -0.0533950 | -0.0397492 | 0.0003836 | 0.0003840 | 0.0962945 | 0.0717692 |
3R_6528878_SNP | trans | FBgn0051344 | uncharacterized protein | FBgn0020385 | pugilist | 0.1437165 | 0.1984026 | 0.0932149 | 0.0619507 | 0.0001868 | 0.0001923 | 0.0164408 | 0.0137944 |
3R_6528878_SNP | trans | FBgn0051344 | uncharacterized protein | FBgn0051391 | uncharacterized protein | 0.1437165 | 0.1984026 | 0.0932149 | 0.0619507 | 0.0001868 | 0.0001923 | 0.0164408 | 0.0137944 |
2L_1218925_SNP | trans | FBgn0262944 | long non-coding RNA:CR43263 | FBgn0259229 | uncharacterized protein | -0.1232712 | -0.1719202 | -0.0879173 | -0.0606464 | 0.0008857 | 0.0008480 | 0.0205153 | 0.0137868 |
2L_1218927_SNP | trans | FBgn0262944 | long non-coding RNA:CR43263 | FBgn0259229 | uncharacterized protein | -0.1232712 | -0.1719202 | -0.0879173 | -0.0606464 | 0.0008857 | 0.0008480 | 0.0205153 | 0.0137868 |
3R_6858736_SNP | trans | XLOC_004644 | NA | FBgn0083950 | sidestep VI | -0.1423042 | -0.1979479 | -0.0391265 | -0.0339783 | 0.0002255 | 0.0002115 | 0.1824399 | 0.1169837 |
3R_6859823_SNP | trans | XLOC_004644 | NA | FBgn0083950 | sidestep VI | -0.1309664 | -0.1819359 | -0.0173173 | -0.0188698 | 0.0007034 | 0.0006829 | 0.3301192 | 0.2523757 |
X_4131416_SNP | NA | FBgn0032521 | uncharacterized protein | NA | NA | 0.1948985 | 0.2700297 | 0.1460801 | 0.0927518 | 0.0003243 | 0.0003421 | 0.0106182 | 0.0098071 |
Huang et al.’s microarray data was downloaded from the DGRP website.
Here, we perform a large number of simple linear regressions, and obtain the slope (beta or β) and its standard error from a regression of transcript i on fitness trait j. The number of regression run was 72,560, i.e. 4 fitness traits × 18,140 transcripts. We nickname this approach ‘TWAS’.
transcript_selection_analysis <- function(expression_data, phenotypes){
if("block" %in% names(phenotypes)) phenotypes <- phenotypes %>% select(-block)
expression_data <- expression_data %>%
filter(line %in% phenotypes$line)
# Find line mean expression for each gene (average across the c. 2 replicate samples per line)
chunk_cols <- split(2:ncol(expression_data), ceiling(seq_along(2:ncol(expression_data)) / 500))
mean_expression_data <- mclapply(1:2, function(i){
expression_data[, c(1, chunk_cols[[i]])] %>%
group_by(line) %>%
summarise_all(mean) %>%
ungroup()
}) %>% bind_rows()
# Scale each transcript's expression level so that mean is 0, and the variance is 1, across all the lines measured by Huang et al.
for(i in 2:ncol(mean_expression_data)) mean_expression_data[,i] <- as.numeric(scale(mean_expression_data[,i]))
# Join the microarray data with the phenotypes (i.e. our fitness data), and keep only the lines where we have both sets of measurements
expression_data <- phenotypes %>% left_join(expression_data, by = "line")
expression_data <- expression_data[complete.cases(expression_data), ] %>% select(-line)
print("Data ready for analysis. Starting TWAS...")
# Create chunks of transcript names, which will be used to facilitate parallel processing
transcripts <- names(expression_data)[-c(1:4)]
transcripts <- split(transcripts, ceiling(seq_along(transcripts) / 100))
# Define a function to run 4 linear models, and get the beta and SE for regressions of expression level on the 4 fitness traits
do_one_transcript <- function(transcript){
expression_level <- expression_data %>% pull(!!transcript)
FE <- summary(lm(female.fitness.early ~ expression_level, data = expression_data))$coefficients
FL <- summary(lm(female.fitness.late ~ expression_level, data = expression_data))$coefficients
ME <- summary(lm(male.fitness.early ~ expression_level, data = expression_data))$coefficients
ML <- summary(lm(male.fitness.late ~ expression_level, data = expression_data))$coefficients
c(FE[2,1], FL[2,1], ME[2,1], ML[2,1], FE[2,2], FL[2,2], ME[2,2], ML[2,2])
}
# Runs do_one_transcript() on all the transcripts listed in the vector 'transcripts'
do_chunk_of_transcripts <- function(transcripts){
output <- data.frame(transcripts, lapply(transcripts, do_one_transcript) %>% do.call("rbind", .))
names(output) <- c("gene", "beta_FE", "beta_FL", "beta_ME", "beta_ML", "SE_FE", "SE_FL", "SE_ME", "SE_ML")
output
}
# Run it all, in parallel
transcripts %>%
mclapply(do_chunk_of_transcripts) %>%
do.call("rbind", .) %>% as_tibble() %>% mutate(gene = as.character(gene))
}
if(!file.exists("data/derived/TWAS/TWAS_result_males.csv")){
TWAS_result_females <- load_expression_data("female") %>% transcript_selection_analysis(predicted_line_means)
TWAS_result_females %>% write_csv("data/derived/TWAS/TWAS_result_females.csv")
TWAS_result_males <- load_expression_data("male") %>% transcript_selection_analysis(predicted_line_means)
TWAS_result_males %>% write_csv("data/derived/TWAS/TWAS_result_males.csv")
} else {
TWAS_result_females <- read_csv("data/derived/TWAS/TWAS_result_females.csv")
TWAS_result_males <- read_csv("data/derived/TWAS/TWAS_result_males.csv")
}
mashr
to adjust the TWAS resultsThis section re-uses the custom function run_mashr()
. See the earlier script (where mashr
was applied to the GWAS data) for the function definition. Essentially, run_mashr()
helps us to run mashr
twice, once using canonical and once using data-driven covariance matrices.
Similar to for the GWAS data, we use the canonical analysis to estimate the frequency of different types of transcripts (rather than loci), which we do for the entire transcriptome, as well as separately for each of the individual chromosome arms. We use the data-driven (“ED”) approach to derive the most accurate adjusted beta terms (i.e. the slope of the regression of transcript abundance on the phenotype of interest).
if(!file.exists("data/derived/TWAS/TWAS_ED.rds")){
input_data <- data.frame(TWAS_result_females[,1:3],
TWAS_result_males[,4:5],
TWAS_result_females[,6:7],
TWAS_result_males[,8:9])
with_chrs <- input_data %>%
left_join(tbl(db, "genes") %>%
select(FBID, chromosome) %>%
collect(), by = c("gene" = "FBID"))
TWAS_canonical <- input_data %>%
run_mashr(mashr_mode = "canonical")
TWAS_canonical_2L <- with_chrs %>%
filter(chromosome == "2L") %>% select(-chromosome) %>%
run_mashr(mashr_mode = "canonical")
TWAS_canonical_2R <- with_chrs %>%
filter(chromosome == "2R") %>% select(-chromosome) %>%
run_mashr(mashr_mode = "canonical")
TWAS_canonical_3L <- with_chrs %>%
filter(chromosome == "3L") %>% select(-chromosome) %>%
run_mashr(mashr_mode = "canonical")
TWAS_canonical_3R <- with_chrs %>%
filter(chromosome == "3R") %>% select(-chromosome) %>%
run_mashr(mashr_mode = "canonical")
TWAS_canonical_X <- with_chrs %>%
filter(chromosome == "X") %>% select(-chromosome) %>%
run_mashr(mashr_mode = "canonical")
saveRDS(TWAS_canonical, "data/derived/TWAS/TWAS_canonical.rds")
saveRDS(TWAS_canonical_2L, "data/derived/TWAS/TWAS_canonical_2L.rds")
saveRDS(TWAS_canonical_2R, "data/derived/TWAS/TWAS_canonical_2R.rds")
saveRDS(TWAS_canonical_3L, "data/derived/TWAS/TWAS_canonical_3L.rds")
saveRDS(TWAS_canonical_3R, "data/derived/TWAS/TWAS_canonical_3R.rds")
saveRDS(TWAS_canonical_X, "data/derived/TWAS/TWAS_canonical_X.rds")
TWAS_ED <- input_data %>%
run_mashr(mashr_mode = "ED",
ED_p_cutoff = 0.4)
saveRDS(TWAS_ED, "data/derived/TWAS/TWAS_ED.rds")
} else {
TWAS_canonical <- readRDS("data/derived/TWAS/TWAS_canonical.rds")
TWAS_ED <- readRDS("data/derived/TWAS/TWAS_ED.rds")
}
TWAS_mashr_results <-
data.frame(
FBID = read_delim("data/input/huang_transcriptome/dgrp.array.exp.female.txt", delim = " ") %>% pull(gene),
as.data.frame(get_pm(TWAS_canonical)) %>% rename_all(~str_c("canonical_", .)),
as.data.frame(get_lfsr(TWAS_canonical)) %>%
rename_all(~str_replace_all(., "beta", "LFSR")) %>% rename_all(~str_c("canonical_", .))) %>%
as_tibble() %>%
bind_cols(
data.frame(
as.data.frame(get_pm(TWAS_ED)) %>% rename_all(~str_c("ED_", .)),
as.data.frame(get_lfsr(TWAS_ED)) %>%
rename_all(~str_replace_all(., "beta", "LFSR")) %>% rename_all(~str_c("ED_", .))) %>%
as_tibble())
# get_innocenti_morrow_index <- function(s1, s2) (s1 * s2) / sqrt((s1^2 + s2^2) / 2)
# TWAS_ED_antagonism_effects <- data.frame(
# FBID = read_delim("data/input/huang_transcriptome/dgrp.array.exp.female.txt", delim = " ") %>% pull(gene),
# as.data.frame(get_pm(TWAS_ED)) %>%
# mutate(SA_young = get_innocenti_morrow_index(beta_FE, beta_ME),
# SA_old = get_innocenti_morrow_index(beta_FL, beta_ML),
# AA_female = get_innocenti_morrow_index(beta_FE, beta_FL),
# AA_male = get_innocenti_morrow_index(beta_ME, beta_ML))) %>% as_tibble()
This uses the canonical analysis’ classifications. Each transcript gets a posterior probability that it belongs to the i’th mixture component – only the mixture components that are not very rare are included. These are: equal_effects
(i.e. the transcript is predicted to affect all 4 phenotypes equally), female-specific and male-specific (i.e. an effect on females/males only, which is concordant across age categories), sexually antagonistic (again, regardless of age), and null (note: the prior for mashr
was that null transcripts are 10× more common than any other type).
# Get the mixture weights, as advised by mashr authors here: https://github.com/stephenslab/mashr/issues/68
posterior_weights_cov <- TWAS_canonical$posterior_weights
colnames(posterior_weights_cov) <- sapply(
str_split(colnames(posterior_weights_cov), '\\.'),
function(x) {
if(length(x) == 1) return(x)
else if(length(x) == 2) return(x[1])
else if(length(x) == 3) return(paste(x[1], x[2], sep = "."))
})
posterior_weights_cov <- t(rowsum(t(posterior_weights_cov),
colnames(posterior_weights_cov)))
# Make a neat dataframe
TWAS_mixture_assignment_probabilities <- data.frame(
FBID = TWAS_mashr_results$FBID,
posterior_weights_cov,
stringsAsFactors = FALSE
) %>% as_tibble() %>%
rename(P_equal_effects = equal_effects,
P_female_specific = Female_specific_1,
P_male_specific = Male_specific_1,
P_null = null,
P_sex_antag = Sex_antag_0.25)
TWAS_mixture_assignment_probabilities <- TWAS_mixture_assignment_probabilities %>%
left_join(huang_heritability, by = "FBID")
saveRDS(TWAS_mixture_assignment_probabilities,
"data/derived/TWAS/TWAS_mixture_assignment_probabilities.rds")
Here, we define significantly antagonistic transcripts as those where the relationship with fitness is significantly positive for one sex or age class and significantly negative for the other. Similarly, we define significantly concordant transcripts as those where the relationship with fitness is significantly positive for one sex or age class and also significantly positive for the other. This is quite conservative, because a transcript has to have a LFSR < 0.05 for two tests, giving two chances for a ‘false negative’ error.
get_sig <- function(TWAS_mashr){
FBIDs <- TWAS_result_females$gene
significant <- ifelse(get_lfsr(TWAS_mashr) < 0.05, 1, 0) %>% as.data.frame()
positive <- ifelse(get_pm(TWAS_mashr) > 0, 1, 0) %>% as.data.frame()
sig_SA_early <- which((positive$beta_FE != positive$beta_ME) & (significant$beta_FE==1 & significant$beta_ME==1))
sig_SA_late <- which((positive$beta_FL != positive$beta_ML) & (significant$beta_FL==1 & significant$beta_ML==1))
sig_AA_females <- which((positive$beta_FE != positive$beta_FL) & (significant$beta_FE==1 & significant$beta_FL==1))
sig_AA_males <- which((positive$beta_ME != positive$beta_ML) & (significant$beta_ME==1 & significant$beta_ML==1))
sig_SC_early <- which((positive$beta_FE == positive$beta_ME) & (significant$beta_FE==1 & significant$beta_ME==1))
sig_SC_late <- which((positive$beta_FL == positive$beta_ML) & (significant$beta_FL==1 & significant$beta_ML==1))
sig_AC_females <- which((positive$beta_FE == positive$beta_FL) & (significant$beta_FE==1 & significant$beta_FL==1))
sig_AC_males <- which((positive$beta_ME == positive$beta_ML) & (significant$beta_ME==1 & significant$beta_ML==1))
helper <- function(sigs){
x <- get(sigs)
if(length(x) > 0) x <- data.frame(type = sigs,
FBID = FBIDs[x],
get_pm(TWAS_mashr)[x, ])
else x <- NULL
x
}
bind_rows(
helper("sig_SA_early"), helper("sig_SA_late"), helper("sig_AA_females"), helper("sig_AA_males"),
helper("sig_SC_early"), helper("sig_SC_late"), helper("sig_AC_females"), helper("sig_AC_males")) %>%
mutate(type = as.character(type))
}
sig_transcripts_table <- get_sig(TWAS_ED) %>%
left_join(tbl(db, "genes") %>% collect(), by = "FBID") %>%
left_join(sex_bias_in_expression, by = "FBID") %>%
left_join(TWAS_mixture_assignment_probabilities, by = "FBID") %>%
mutate(across(where(is.numeric), ~ round(.x, 2))) %>%
as_tibble() %>%
distinct()
sig_transcripts_table %>%
write_csv("data/derived/TWAS/sig_transcripts_table.csv")
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] mashr_0.2.38 ashr_2.2-47 DT_0.13 kableExtra_1.1.0
[5] future.apply_1.5.0 future_1.17.0 glue_1.4.2 forcats_0.5.0
[9] stringr_1.4.0 dplyr_1.0.0 purrr_0.3.4 readr_1.3.1
[13] tidyr_1.1.0 tibble_3.0.1 ggplot2_3.3.2 tidyverse_1.3.0
[17] edgeR_3.30.1 limma_3.44.1
loaded via a namespace (and not attached):
[1] nlme_3.1-149 fs_1.4.1 bit64_0.9-7 lubridate_1.7.8
[5] webshot_0.5.2 httr_1.4.1 rprojroot_1.3-2 tools_4.0.3
[9] backports_1.1.7 R6_2.4.1 irlba_2.3.3 rmeta_3.0
[13] DBI_1.1.0 colorspace_1.4-1 withr_2.2.0 tidyselect_1.1.0
[17] bit_1.1-15.2 compiler_4.0.3 git2r_0.27.1 cli_2.0.2
[21] rvest_0.3.5 xml2_1.3.2 scales_1.1.1 SQUAREM_2020.2
[25] mvtnorm_1.1-0 mixsqp_0.3-43 digest_0.6.25 rmarkdown_2.5
[29] pkgconfig_2.0.3 htmltools_0.5.0 highr_0.8 dbplyr_1.4.4
[33] invgamma_1.1 htmlwidgets_1.5.1 rlang_0.4.6 readxl_1.3.1
[37] RSQLite_2.2.0 rstudioapi_0.11 generics_0.0.2 jsonlite_1.7.0
[41] magrittr_2.0.1 Matrix_1.2-18 Rcpp_1.0.4.6 munsell_0.5.0
[45] fansi_0.4.1 abind_1.4-5 lifecycle_0.2.0 stringi_1.5.3
[49] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.0.3
[53] blob_1.2.1 listenv_0.8.0 promises_1.1.0 crayon_1.3.4
[57] lattice_0.20-41 haven_2.3.1 hms_0.5.3 locfit_1.5-9.4
[61] knitr_1.30 pillar_1.4.4 codetools_0.2-16 reprex_0.3.0
[65] evaluate_0.14 modelr_0.1.8 vctrs_0.3.0 httpuv_1.5.3.1
[69] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1 xfun_0.19
[73] broom_0.5.6 later_1.0.0 viridisLite_0.3.0 truncnorm_1.0-8
[77] memoise_1.1.0 workflowr_1.6.2 globals_0.12.5 ellipsis_0.3.1