• Get the annotations for each DGRP variant
  • Get the annotations for each Drosophila gene
  • Create the SQLite database and add the two tables of annotations
  • Session information

Last updated: 2018-09-17

workflowr checks: (Click a bullet for more information)
  • R Markdown file: uncommitted changes The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180914)

    The command set.seed(20180914) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 449a929

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    data/derived/.DS_Store
        Ignored:    data/derived/output/.DS_Store
        Ignored:    data/input/.DS_Store
        Ignored:    figures/.DS_Store
    
    Untracked files:
        Untracked:  analysis/make_annotation_database.Rmd
        Untracked:  analysis/plotting_results.Rmd
        Untracked:  code/Drosophila_GWAS.Rmd
        Untracked:  data/derived/annotations.sqlite3
        Untracked:  data/derived/output/male_late_lm,.assoc.txt
        Untracked:  data/derived/output/male_late_lm,.log.txt
        Untracked:  data/derived/trimmed_DGRP.bk
    
    Unstaged changes:
        Modified:   analysis/get_predicted_line_means.Rmd
        Modified:   analysis/index.Rmd
        Modified:   analysis/perform_gwas.Rmd
        Modified:   analysis/plot_line_means.Rmd
        Modified:   data/derived/output/DGRP_GRM.log.txt
        Modified:   data/derived/output/female_early_bslmm.bv.txt
        Modified:   data/derived/output/female_early_bslmm.gamma.txt
        Modified:   data/derived/output/female_early_bslmm.hyp.txt
        Modified:   data/derived/output/female_early_bslmm.log.txt
        Modified:   data/derived/output/female_early_bslmm.param.txt
        Modified:   data/derived/output/female_early_female_late.log.txt
        Modified:   data/derived/output/female_early_lm.log.txt
        Modified:   data/derived/output/female_early_lmm.log.txt
        Modified:   data/derived/output/female_early_male_early.log.txt
        Modified:   data/derived/output/female_late_lm.log.txt
        Modified:   data/derived/output/female_late_lmm.log.txt
        Modified:   data/derived/output/female_late_male_late.log.txt
        Modified:   data/derived/output/male_early_lm.log.txt
        Modified:   data/derived/output/male_early_lmm.log.txt
        Modified:   data/derived/output/male_early_male_late.log.txt
        Modified:   data/derived/output/male_late_lm.log.txt
        Modified:   data/derived/output/male_late_lmm.log.txt
        Modified:   figures/figure1.eps
        Modified:   figures/figure2.eps
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.

library(dplyr)
library(stringr)
library(future.apply)
library(org.Dm.eg.db) # install via source("https://bioconductor.org/biocLite.R"); biocLite("org.Dm.eg.db")
options(future.globals.maxSize = 2000 * 1024 ^ 2, 
        stringsAsFactors = FALSE)
plan("multicore")

# Helper function to split a vector into chunks 
chunker <- function(x, max_chunk_size) split(x, ceiling(seq_along(x) / max_chunk_size))

Get the annotations for each DGRP variant

The following function temporarily loads the >1GB annotation file provided on the DGRP website at http://dgrp2.gnets.ncsu.edu/data/website/dgrp.fb557.annot.txt. We then extract the following variables for each variant, and save them in a SQLite database for memory-efficient searching inside R:

  • The Flybase ID(s), if the variant is within or close to a gene
  • The site class of the variant (e.g. intron, 5’-UTR…)
  • The distance-to-gene in nucleotides (for UPSTREAM and DOWNSTREAM variants only)
get_variant_annotations <- function(){
  
  # Load up the big annotation file, get pertinent info. It's stored in some sort of text string format
  annot <- read.table("data/input/dgrp.fb557.annot.txt", header = FALSE, stringsAsFactors = FALSE)
  
  get.info <- function(rows){
    lapply(rows, function(row){
      site.class.field <- strsplit(annot$V3[row], split = "]")[[1]][1]
      num.genes <- str_count(site.class.field, ";") + 1
      output <- cbind(rep(annot$V1[row], num.genes), 
                      do.call("rbind", lapply(strsplit(site.class.field, split = ";")[[1]], 
                                              function(x) strsplit(x, split = "[|]")[[1]])))
      if(ncol(output) == 5) return(output[,c(1,2,4,5)]) # only return SNPs that have some annotation. Don't get the gene symbol
      else return(NULL)
    }) %>% do.call("rbind", .)
  }
  
  variant.details <- future_lapply(chunker(1:nrow(annot), max_chunk_size = 10000), get.info) %>% 
    do.call("rbind", .) %>% as.data.frame()
  
  names(variant.details) <- c("id", "FBID", "site.class", "distance.to.gene")
  variant.details$FBID <- unlist(str_extract_all(variant.details$FBID, "FBgn[:digit:]+")) # clean up text strings for Flybase ID
  variant.details %>%
    dplyr::filter(site.class != "FBgn0003638") %>% # NB this is a bug in the DGRP's annotation file
    mutate(chr = str_remove_all(substr(id, 1, 2), "_")) # get chromosome now for faster sorting later
}

Get the annotations for each Drosophila gene

The following function gets the annotations for the all the genes covered by DGRP variants, from the org.Dm.eg.db database object from Bioconductor. I don’t like the interface to those objects (it messes up dplyr), so I save the info as a second table in the SQLite database.

get_gene_annotations <- function(FBIDs_to_get){
  con <- dbconn(org.Dm.eg.db)
   tbl(con, "genes") %>%
    left_join(tbl(con, "flybase"), by = "_id") %>%
    left_join(tbl(con, "gene_info"), by = "_id") %>% 
    dplyr::select(flybase_id, gene_name, symbol, gene_id) %>%
    dplyr::rename(FBID = flybase_id, gene_symbol = symbol, entrez_id = gene_id) %>%
    dplyr::filter(FBID %in% FBIDs_to_get) %>%
    collect(n = Inf)
}

Create the SQLite database and add the two tables of annotations

if(file.exists("data/derived/annotations.sqlite3")) unlink("data/derived/annotations.sqlite3")

db <- src_sqlite("data/derived/annotations.sqlite3", create = TRUE)

db %>% copy_to(get_variant_annotations(), 
               "variants", temporary = FALSE, 
               indexes = list("id", "FBID", "chr", "site.class")) 

db %>% copy_to(get_gene_annotations(db %>% tbl("variants") %>% pull(FBID)), 
               "genes", temporary = FALSE)

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] bindrcpp_0.2.2       org.Dm.eg.db_3.6.0   AnnotationDbi_1.42.1
 [4] IRanges_2.14.10      S4Vectors_0.18.3     Biobase_2.40.0      
 [7] BiocGenerics_0.26.0  future.apply_1.0.1   future_1.9.0        
[10] stringr_1.3.1        dplyr_0.7.6         

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      dbplyr_1.2.2      compiler_3.5.1   
 [4] pillar_1.3.0      git2r_0.23.0      workflowr_1.1.1  
 [7] bindr_0.1.1       R.methodsS3_1.7.1 R.utils_2.7.0    
[10] tools_3.5.1       bit_1.1-14        digest_0.6.15    
[13] memoise_1.1.0     RSQLite_2.1.1     evaluate_0.11    
[16] tibble_1.4.2      pkgconfig_2.0.1   rlang_0.2.1      
[19] DBI_1.0.0         yaml_2.2.0        knitr_1.20       
[22] globals_0.12.2    bit64_0.9-7       rprojroot_1.3-2  
[25] tidyselect_0.2.4  glue_1.3.0        listenv_0.7.0    
[28] R6_2.2.2          rmarkdown_1.10    blob_1.1.1       
[31] purrr_0.2.5       magrittr_1.5      whisker_0.3-2    
[34] backports_1.1.2   codetools_0.2-15  htmltools_0.3.6  
[37] assertthat_0.2.0  stringi_1.2.4     crayon_1.3.4     
[40] R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1