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Agenda

A quick refresher on the distinction between causation and association and why it matters.
Revisiting why randomization leads to robust causal inferences.

Moving from marginal to conditionally randomized experiments.

Observational studies as an alternative to randomized trials.

Estimating causal effects with observational data through the emulation of target trials.

An introduction to the test-negative study design.

Potential sources of bias in test-negative design studies.



Disclaimer

Slides are based on two primary sources:

1. Hernan MA, Robins JM. Causal
Inference: What If. Boca Raton:
Chapman & Hall/CRC; 2024.

Avalilable at:

https://www.hsph.harvard.edu/miguel-
hernan/causal-inference-book/



https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
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1. A quick refresher on the distinction between causation and association
and why It matters.



Three core tasks 1in health research ...

a) Description:

b) Prediction:

c) Causal inference:

* Miguel A. Hernén, et al. (2019) CHANCE, 32:1, 42-49
* Rothman KJ, Lash TL, Haneuse S, VanderWeele TJ. Chapter 1: The scope of epidemiology. In: Lash TL, VanderWeele TJ,
Haneuse S, Rothman KJ, eds. Modern Epidemiology. 4th ed. Wolters Kluwer; 2021:3-25.
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Three core tasks 1in health research ...

a) Description: Using data to provide a quantitative summary of the characteristics of defined
populations (e.g., GBD). Useful for guiding resource allocation and hypothesis generation.

b) Prediction: Using data to look for associations between different features of the population
(mapping inputs and outputs). Useful for informing some decisions (e.g., patient monitoring).

c) Causal inference:

* Miguel A. Hernan, et al. (2019) CHANCE, 32:1, 42-49
* Rothman KJ, Lash TL, Haneuse S, VanderWeele TJ. Chapter 1: The scope of epidemiology. In: Lash TL, Vander\Weele TJ,
Haneuse S, Rothman KJ, eds. Modern Epidemiology. 4th ed. Wolters Kluwer; 2021:3-25.



Causal inference

« [t involves the qualitative assessment and/or estimation of the effect of exposures, including
potential causes, on the occurrence of outcomes of interest.

« These exposures may be assessed at the individual level (e.g., occupations), at the microscale
(e.g., microbiome), or at the macroscale (e.g., health policy).

* Miguel A. Hernan, et al. (2019) CHANCE, 32:1, 42-49
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Causal inference

« [t involves the qualitative assessment and/or estimation of the effect of exposures, including
potential causes, on the occurrence of outcomes of interest.

« These exposures may be assessed at the individual level (e.g., occupations), at the microscale
(e.g., microbiome), or at the macroscale (e.g., health policy).

« They are useful for guiding interventions, such as deciding what treatment is appropriate for a
patient with diabetes or what policy should be implemented to increase health literacy.

* Miguel A. Hernan, et al. (2019) CHANCE, 32:1, 42-49
* Rothman KJ, Lash TL, Haneuse S, VanderWeele TJ. Chapter 1: The scope of epidemiology. In: Lash TL, Vander\Weele TJ,
Haneuse S, Rothman KJ, eds. Modern Epidemiology. 4th ed. Wolters Kluwer; 2021:3-25.



Example

Title: Risk Factors for Mortality in Covid-19 Patients

: : : Ivariable analysi
Abstract: In this retrospective cohort study, we aimed to WieEol EElsle

evaluate risk factors for mortality in Covid-19 patients. We Variable OR/| 95% CI P
used univariable logistic regression models and selected Hospitalization | 2.5| 1.8-3.4 | 0.001
covariates for the multivariable model based on their Obesity 18! 1.1-29 | 0015

statistical significance. Our results identified hospitalization Diabetes 141 085-19| 011

(OR: 2.10, 95% CI: 1.6-2.8, p <0.001), obesity (OR: 1.50,

95% ClI: 1.0-2.2, p = 0.03), and age (OR: 1.02, 95% Cl: 1.01- Hypertension | 1.6| 0.9-2.2 | 0.095
1.04, p = 0.004) as risk factors for Covid-19 mortality. In Age (years) |1.03/1.01-1.05| 0.002
contrast, vaccinated individuals had lower odds of death Sex (female) [0.85| 0.7-1.03 | 0.08

(OR: 0.6, 95% CI: 0.4-0.9, p = 0.002). Vaccination | 0.5] 0.35-0.7 | 0.0005




Example

 Using predictions (associations) to infer causality URITEIE B EVRLE

can lead to wrong decisions about interventions,

N dvisi % hosoitalization f Variable OR| 95% CI P
such as advising against hospitalization for severe L Yy ”
COVID-19 or recommending ivermectin for its Al || )| Lo des | (0L

treatment. Obesity 1.8 1.1-29 | 0.015

Diabetes 141 085-19| 0.11

 Causal inference is fundamental to making Hypertension |1.6| 0.9-2.2 | 0.095

Informed, accurate decisions about interventions. Age (years) |1.03[1.01-1.05| 0.002

Sex (female) [0.85| 0.7-1.03 | 0.08

Vaccination |0.5| 0.35-0.7 | 0.0005




Assoclation vs. Causation

Table 1.2

A Y
Rheia 0 0
Kronos 0 1
Demeter 0 0
Hades 0 0
Hestia 1 0
Poseidon 1 0
Hera 1 0
Zeus 1 1
Artemis 0 1
Apollo 0 1
Leto 0 0
Ares 1 1
Athena 1 1
Hephaestus 1 1
Aphrodite 1 1
Polyphemus 1 1
Persephone 1 1
Hermes 1 0
Hebe 1 0
Dionysus 1 0

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.
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Assoclation vs. Causation

Table 1.2
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The risk of death among
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3
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Assoclation vs. Causation

Table 1.2

Rheia
Kronos
Demeter
Hades

The risk of death among

non-transplant recipients Is:
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Assoclation vs. Causation

Table 1.2

Rheia
Kronos
Demeter

Hades

The risk of death among

non-transplant recipients is: Since both proportions were different,

we can conclude that:

Hestia
Poseidon
Hera
Zeus

3
PriY = 1| A =0] = = 0.43

* Treatment A and outcome Y are

Artemis
Apollo
Leto

dependent.

Ares

Athena
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Polyphemus
Persephone
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Hebe
Dionysus

The risk of death among * Treatment A and outcome Y are
transplant recipients is: associated.

7 . :
Prly =1|A=1] = 5= 0.54 Treatment A predicts outcome Y.
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Assoclation vs. Causation

The risk of death among
non-transplant recipients is:

3
Pr[Y = 1| A = 0] =-=0.43
The risk of death among
transplant recipients is:

PrlY = 1] A=1] = — = 0.54
rly=1/4=1]=-=0.

» [Again] using predictions
(associations) to infer causality can
lead to wrong decisions about
Interventions.

* ldentifying patients with a poor

prognosis is very different from

identifying the best strategy to
prevent or treat a disease...

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.
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Assoclation vs. Causation

The risk of death among
non-transplant recipients is:

3
Pr[Y = 1| A = 0] =-=0.43
The risk of death among
transplant recipients is:

PrlY = 1] A=1] = — = 0.54
rly=1/4=1]=-=0.

The reason for the mismatch between
association and causation is simple:

- People typically receive interventions
for specific reasons.

« For example, if a doctor initiates
treatment A, it is because she believes
it will improve the patient's
prognosis...

So, what do we want to know?

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.




Assoclation vs. Causation

Table 2.1
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Causation vs. Association (Summary)

Population of interest

Treated <> Untreated

N

Causation Association
VS. VS. D
E[Ye!] E[Y40] E[Y4 = 1] E[Y]4 = 0]

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Causation vs. Assoclation (Summary)

“Inferences about = Population of interest
causation are

concerned with what

if questions in Treated Untreated
counterfactual

worlds, such as:

+ ... what would be / \

the risk if Causation Association

everybody had
been treated?

e ...“what would be
the risk if
everybody had
been untreated?”

VS. VS,

E[Ye!] E[Y4-0] E[V4 = 1] E[Y]4 = 0]
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“Inferences about =
causation are
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if questions in
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worlds, such as:

... what would be
the risk if

everybody had
been treated?

o ...“what would be

the risk if
everybody had
been untreated?”

Causation vs. Association (Summary)

Treated <

N

Causation

VS.

E[ye!]

Population of interest

E [ Ya:O ]

Untreated

Association

E[Y]4 = 1]

VS,

E[Y]4 = 0]

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.

“Inferences about =
association are
concerned with
guestions in the
actual world, such
as:

e ... what is the risk
in the treated?

e ...“what 1s the risk
in the untreated?”




2. Revisiting why randomization leads to robust causal inferences.



The fundamental problem of causal inference

Table 2.1
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The fundamental problem of causal inference

Table 2.1
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» Because only one counterfactual is available for individuals (the one
corresponding to the actual level of exposure), it is often said that the
fundamental problem of causal inference is missing data.
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» Because only one counterfactual is available for individuals (the one
corresponding to the actual level of exposure), it is often said that the
fundamental problem of causal inference is missing data.

* What would happen if counterfactuals were missing at random?
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The fundamental problem of causal inference

Table 2.1
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» Because only one counterfactual is available for individuals (the one
corresponding to the actual level of exposure), it is often said that the
fundamental problem of causal inference is missing data.

* What would happen if counterfactuals were missing at random?

O R P ORFRRKEOOR
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» This is possible in an ideal randomized experiment (double-blind,
no loss to follow-up, and perfect adherence to the therapeutic
strategy) where all population characteristics are expected to be
evenly distributed across groups (including counterfactuals).
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Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



The role of randomization in causal inference

« Suppose we randomize an almost
infinite population by flipping a coin.

« If the coin lands on heads ($1),
Individuals are assigned to the
intervention (A = 1 [white]); otherwise

] ; ) Treated Untreated
(eagle), they receive no intervention.

 \We then observe individuals for five
days and calculate the risk of death.

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.
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The role of randomization in causal inference

« Suppose we randomize an almost
infinite population by flipping a coin.

« If the coin lands on heads ($1),
Individuals are assigned to the
intervention (A = 1 [white]); otherwise

] ; ) Treated Untreated
(eagle), they receive no intervention.

« \We then observe individuals for five PrlY = 1|14 = 1] = 0.3 Pr[Y = 1|4 = 0] = 0.6

days and calculate the risk of death.

RR =0.3/0.6 =0.5
RD =0.3-0.6=-0.3

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



The role of randomization in causal inference

What if we had mistakenly treated

the gray group instead of the white
group?

Would our results have been affected?

RR =? RD =7
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The role of randomization in causal inference:
exchangeability

 In summary, all groups defined by treatment level will have the same
counterfactual risk of the outcome as that observed in the population as a
whole:

PriY® = 1|4 = 1] =
PrlY®= 1|4 = 0] =
Pr(Y? = 1]
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The role of randomization in causal inference:
exchangeability

 In summary, all groups defined by treatment level will have the same
counterfactual risk of the outcome as that observed in the population as a

whole:

PriY® = 1|4 = 1] =
PriY®= 1|4 = 0] =
Pr(Y? = 1]
« Because the level of treatment actually received does not predict the

counterfactual outcome, we say that the counterfactual outcome and the
level of treatment are independent (treatment groups are exchangeable).

Exchangeability:
Y1 A for all a.
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The role of randomization in causal inference:

exchangeability

 In summary, all groups defined by treatment level will have the same

counterfactual risk of the outcome as that observed in the population as a

whole:

« Randomization plays a key role because, In
expectation, it leads to exchangeability.

« Because the level of treatment actually received does not predict the

counterfactual outcome, we say that the counterfactual outcome and the
level of treatment are independent (treatment groups are exchangeable).

Exchangeability:
Y1 A for all a.



In an ideal randomized experiment:
association Is causation

* [Again] If exchangeability holds, all treatment groups
will have the same counterfactual risk as the entire
population (since A was randomly assigned).

Population of interest

Treated <D Untreated

N

Causation Association
E[ye!] E[Ye0] E[Y4 = 1] E[¥]4 = 0]
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In an ideal randomized experiment:
association Is causation

* [Again] If exchangeability holds, all treatment groups
will have the same counterfactual risk as the entire
population (since A was randomly assigned).

Population of interest

Treated Untreated
* However, the counterfactual risk in the treated is not @
truly counterfactual because they actually received the
treatment (the same is true for the untreated). Causation / \ Association

* Thus, by calculating the risk in the treated, we can O Ve Q Q vs. D

estimate the counterfactual risk under treatment (and

. . . E[Y!] E[Y*°] E[Y4 = 1] E[Y]4 = 0]
similarly, under no treatment), and then comparing these
two quantities allows us to obtain causal effects.

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



3. Moving from marginal to conditionally randomized experiments



The role of conditional randomization in causal inference
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The role of conditional randomization in causal inference

Table 2.2

* In this design, since critically ill individuals had a
higher probability of being treated, treated
Individuals will have a higher baseline risk of
death.

Rheia
Kronos

Demeter
Hades

Hestia
Poseidon
Hera
Zeus

Artemis
Apollo
Leto

Ares

Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus
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Kronos

Demeter
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higher probability of being treated, treated
Individuals will have a higher baseline risk of
death.

Hestia
Poseidon
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« Even though this is an RCT, there is no marginal

Artemis
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exchangeability.
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The role of conditional randomization in causal inference

Table 2.2

* In this design, since critically ill individuals had a

Rheia
Kronos

Demeter
Hades

higher probability of being treated, treated
Individuals will have a higher baseline risk of
death.

Hestia
Poseidon
Hera
Zeus

« Even though this is an RCT, there is no marginal

Artemis
Apollo
Leto

exchangeability.

Ares

Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus

» However, in expectation, individuals are
exchangeable within levels of L (conditional Conditional exchangeability:
exchangeability). Yo 1L A|L for all a

R )P,k el el ooloo o ol
el = e S e i o e B e i el [ i (= e il e R ) 10N
cCooOorR R RFRERFRERFRHO R ~I— o ool o~ ol
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We can get the conditional causal RR (OR, RD) ...

« Since association is causation within each subgroup defined by L, by calculating the
associational RR (RD, OR) we can recover the causal RR (RD, OR) in each stratum:

Pr[y®=1 = 1|L = 1]/ Pr[Y*=% = 1|L = 1]

And
Pr[y*=1 = 1|L = 0]/ Pr[Y*=% = 1|L = 0]

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



We can get the marginal causal RR (OR, RD) ...

By using either standardization or inverse probability of treatment weighting (IPTW):

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Table 2.2

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera

Zeus
Artemis
Apollo
Leto

Ares
Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus
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IPTW: observed data
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IPTW: counterfactual risk under no treatment

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024,
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IPTW: counterfactual risk under treatment

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024,
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IPTW

WA=1/f(A|L)
1/.5=2

1/.5=2

1/.5=2

1/.5=2

1/.25=4

1/.25=4

1/.75=1.33

1/.75=1.33

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.
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« Each individual receives a weight equal to the inverse of the probability of
receiving the level of treatment they received (conditional on L).

IPTW creates a pseudo-population in which the distribution of confounders is

balanced across treatment groups.
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IPTW: R Code

# Estimation of IP weights via a logistic model

fit <- glm(gsmk ~ sex + race + age + I(age " 2) + as.factor(education) + smokeintensity +
I(smokeintensity * 2) + smokeyrs + [(smokeyrs ** 2) + as.factor(exercise) +
as.factor(active) + wt71 + [(wt71 " 2),
family = binomial(),
data = nhefs.nmv )

p.gsmk.obs <- ifelse(nhefs.nmv$gsmk == 0,
1 - predict(fit, type = "response"),
predict(fit, type = "response"))

nhefs.nmv$w <- 1/ p.qsmk.obs

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernan MA, Robins JM.
Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024.
Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



IPTW: R Code

# IPWeighted regression

library(*'geepack")
msm.w <- geeglm(wt82_ 71 ~ gsmk,
data = nhefs.nmv,
weights = w,
Id = seqn,
corstr = "independence" )

summary(msm.w)

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernan MA, Robins JM.
Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024.
Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



Standardization

« \We can recover the marginal counterfactual risk under each level of treatment as follows:

Pr[ye = 1] = S, Pr[Y® = 1|L = [|Pr[L =]

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Standardization

« \We can recover the marginal counterfactual risk under each level of treatment as follows:

PrlY® = 1] = ), Pr[Y* = 1|L = [|Pr[L =]

« Under conditional exchangeability, within L =1, the risk in the treated is equal to the risk
that would have been observed if everyone had been treated (the same for the untreated).
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Standardization

« \We can recover the marginal counterfactual risk under each level of treatment as follows:

PrlY® = 1] = ), Pr[Y* = 1|L = [|Pr[L =]

« Under conditional exchangeability, within L =1, the risk in the treated is equal to the risk
that would have been observed if everyone had been treated (the same for the untreated).

 Unify this into one equation:

Pr[ye = 1] = S, Pr[Y = 1|L = [,A = a|Pr[L =]

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Standardization

Pr[y® = 1] = S, Pr[Y = 1|L = [,A = a|Pr[L =]
* In summary:

o Stratification: Divide the population into strata based on L.

o Estimate stratum-specific risks: Calculate the outcome risk within each stratum for each
treatment level.

o Weighting: Estimate a weighted average of the stratum-specific risks by weighting them by
the proportion of the population in each stratum defined by L.

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Standardization

Pr[y® = 1] = S, Pr[Y = 1|L = [,A = a|Pr[L =]

« The marginal counterfactual risk [left side of the equation] is a weighted

average of the counterfactual risks in each of the strata defined by L, with

weights equal to the proportion of individuals in the population with L =0
and L =1, respectively:

Pr[y®=1 =1] =
Pr|Y%=1 = 1|L = 0| Pr[L = 0] + Pr|Y%1 = 1|L = 1] Pr[L = 1]

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.




Standardization (parametric g-formula):
R Code

# 1) Prepare data (expansion of the dataset): create a dataset with 3 copies of each subject

## 1st copy: equal to original one
nhefs$interv <- -1

## 2nd copy: treatment set to 0, outcome to missing
IntervO <- nhefs

intervOSinterv <- 0

interv0$gsmk <- 0

intervOswit82 71 <- NA

## 3rd copy: treatment set to 1, outcome to missing
intervl <- nhefs

intervlS$interv <- 1

interv1$gsmk <- 1

intervlswit82 71 <- NA

## combining datasets
onesample <- rbind(nhefs, interv0, intervl)

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernan MA, Robins JM.
Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024.
Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



Standardization (parametric g-formula):
R Code

# 2) Outcome modeling: Estimating the mean outcome within levels of treatment and confounders
(only original data is used for this step)

std <- glm(wt82_71 ~ gsmk + sex + race + age + I(age * age) + as.factor(education) +
smokeintensity + I(smokeintensity * smokeintensity) + smokeyrs +
I(smokeyrs * smokeyrs) + as.factor(exercise) +
+ as.factor(active) + wt71 + I(wt71 * wt71) + I(gsmk * smokeintensity),
data = onesample)

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernan MA, Robins JM.
Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024.
Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



Standardization (parametric g-formula):
R Code

# 3) Outcome prediction and standardization to the baseline confounders by averaging:

onesample$predicted _meanY <- predict(std, onesample)

## estimate mean outcome in each of the groups interv=0, and interv=1

# this mean outcome Is a weighted average of the mean outcomes in each combination
# of values of treatment and confounders, that is, the standardized outcome
mean(onesample[which(onesample$interv == -1), ]$predicted_meanY) #> [1] 2.56319
mean(onesample[which(onesample$interv == 0), J$predicted_meanY) #> [1] 1.660267
mean(onesample[which(onesample$interv == 1), ]$predicted meanY) #> [1] 5.178841

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernan MA, Robins JM.
Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024.
Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



IPTW vs Standardization

« Both methods are mathematically equivalent: they estimate what would happen if everyone
received treatment a. However, each method uses a different set of probabilities to do so:

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



IPTW vs Standardization

« Both methods are mathematically equivalent: they estimate what would happen if everyone
received treatment a. However, each method uses a different set of probabilities to do so:

o IPTW uses the conditional probability of treatment A given covariate (s) L.

o Standardization uses the probability of covariate L and the conditional probability of
outcome Y given variables Aand L.
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IPTW vs Standardization

« Both methods are mathematically equivalent: they estimate what would happen if everyone
received treatment a. However, each method uses a different set of probabilities to do so:

o IPTW uses the conditional probability of treatment A given covariate (s) L.

o Standardization uses the probability of covariate L and the conditional probability of
outcome Y given variables Aand L.

« Since both methods simulate what would have been observed if the variable (s) L had not
Influenced the probability of treatment, these methods are often said to adjust (or control) the
analysis for L.

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



4. Observational studies as an alternative to randomized trials.



When RCTs are not feasible:
The role of observational studies

* In many cases, RCTs are either unethical (e.g., when we are interested in ruling out adverse
effects), impractical (e.g., due to high costs), or too time-consuming.



When RCTs are not feasible:
The role of observational studies

* In many cases, RCTs are either unethical (e.g., when we are interested in ruling out adverse
effects), impractical (e.g., due to high costs), or too time-consuming.

* In these cases, the most appropriate (or only) option is to conduct an observational study
(studies in which the researcher simply observes and records the relevant data).



But how do we estimate causal effects
from observational data?

* We analyze our data as if the treatment had been randomized conditional on the measured
covariates L (although this is often only an approximation).
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But how do we estimate causal effects
from observational data?

* We analyze our data as if the treatment had been randomized conditional on the measured
covariates L (although this is often only an approximation).

* In other words, causal inference from observational data is based on the hope that such
studies can be considered a conditionally randomized experiment.

« An observational study can be conceptualized as a conditionally randomized experiment if
the following conditions are met (identifiability conditions):



But how do we estimate causal effects
from observational data?

* We analyze our data as if the treatment had been randomized conditional on the measured
covariates L (although this is often only an approximation).

* In other words, causal inference from observational data is based on the hope that such
studies can be considered a conditionally randomized experiment.

A counterfactual quantity is said to be identifiable if it can be expressed as a function of the
distribution (i.e., the probabilities) of the observed data (otherwise it is said to be unidentifiable).




Identifiability conditions

1. Consistency: The treatment values to be compared correspond to well-defined interventions
(treatment variation irrelevance — all versions of treatment have the same effects), which in
turn can be mapped to the treatment versions available in the data.

Consistency:
if A; =a,thenY?=Y"=Y;

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024,
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Identifiability conditions

Consistency: The treatment values to be compared correspond to well-defined interventions
(treatment variation irrelevance — all versions of treatment have the same effects), which in
turn can be mapped to the treatment versions available in the data.

Consistency:
if A; =a,thenY?=Y"=Y;

Exchangeability: The conditional probability of receiving each treatment value, while not
decided by the investigators, depends only on the measured covariates L.

Conditional exchangeability:
Yol A|L for all a
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Identifiability conditions

Consistency: The treatment values to be compared correspond to well-defined interventions
(treatment variation irrelevance — all versions of treatment have the same effects), which in
turn can be mapped to the treatment versions available in the data.

Consistency:
if A; =a,thenY?=Y"=Y;

Exchangeability: The conditional probability of receiving each treatment value, while not
decided by the investigators, depends only on the measured covariates L.

Conditional exchangeability:
Yol A|L for all a

Positivity: The probability of receiving each treatment value, conditional on L (in the
minimum set), is greater than zero (i.e., positive).

Positivity: Pr[A=alL=1] >
for all values | with Pr|[L =] #
in the population of interest.

0
0
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1.

Identifiability conditions

Consistency: The treatment values to be compared correspond to well-defined interventions
(treatment variation irrelevance — all versions of treatment have the same effects), which in
turn can be mapped to the treatment versions available in the data.

Consistency:

if A; =a, then Yo =YA =Y,

Exchangeability: The conditional probability of receiving each
decided by the investigators, depends only on the measured cova

Conditional exchangeability:

In an ideal randomized
experiment, these three
conditions are met by design.

Yol A|L for all a

Positivity: The probability of receiving each treatment value, conditional on L (in the

minimum set), is greater than zero (i.e., positive).

Positivity: Pr[A=alL=1] >
for all values | with Pr|[L =] #
in the population of interest.

0
0

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024,




Identifiability conditions

4. NO measurement error.

5. No model misspecification.

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



5. Estimating causal effects with observational data through the emulation
of target trials.



A simple 2-step algorithm for causal inference:

Ask the causal question and
specify the target trial
protocol.

\ 4

Answer the causal question
(Is the target trial feasible,
ethical, timely?)

A\ 4 \ 4

Emulate the target trial

Conduct the target trial using observational data.

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



What is a target trial?

« For each causal question (and for each average causal effect we wish to estimate [the estimand
or target parameter]), we can imagine a hypothetical randomized trial.
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What is a target trial?

« For each causal question (and for each average causal effect we wish to estimate [the estimand
or target parameter]), we can imagine a hypothetical randomized trial.

 This hypothetical trial is called the target trial.
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What is a target trial?

* For each causal question (and for each average causal effect we wish to estimate [the estimand
or target parameter]), we can imagine a hypothetical randomized trial.

 This hypothetical trial is called the target trial.

 \We can then specify and emulate the target trial protocol:

Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Ask the causal question

» For example, we might be interested in the following question:

o What is the effect of Covid-19 vaccination (completion of the 15t immunization series as
specified by the manufacturer) vs. no vaccination, on symptomatic infection and its
progression to hospitalization and death in a cohort of workers from the Mexican Social
Security Institute between 2020-Dec-24 and 2021-Jun-24?

By defining the causal question, we avoid naive analyses, such as assessing the effect of being a
prevalent user (i.e., initiating and surviving treatment) versus never having used the drug.

« This type of analysis do not inform treatment initiation.

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



Target trial protocol

Eligibility criteria
Treatment strategies
Treatment assignment
Time zero and follow-up
Outcomes
Causal contrasts
Data analysis

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



Target trial protocol

m i’ the target trial protocol _
! : = « Then we will use (and need) all the data

Eligibility criteria elements mentioned in the protocol to
Treatment strategies emulate each component of the target trial.

Treatment assignment

Time zero and follow-up * Therefore, we need to specify any protocol
Outcomes modifications that need to be made when

using observational data.
Causal contrasts

Data analysis

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



We need to understand our data in detail

How was data collected?

What do variables mean?

Are there idiosyncratic coding practices?

Is the data accurate (e.g., are there validation studies to quantify misclassification)?
Is there internal consistency?

Etcetera.



Target trial protocol

The protocol must be for a pragmatic trial (a randomized trial conducted under conditions that
reflect routine care, with no additional adherence promotion or monitoring):

« Participants and physicians are aware of treatments (i.e., treatment allocation is not blinded).
« Strategies include either active treatments or no treatments (i.e., No one receives a placebo).
 Participants are monitored as frequently as regular patients.

 Treatment strategies must exist in the "'real world"".

In addition, we cannot emulate blinding of outcome ascertainment with observational data (some
exceptions, such as independent ascertainment from death registries).



Eligibility criteria T McGill

Components TT Specification TT Emulation
Eligibility| Age 18+; employed at IMSS; no history of vaccination; no We have no information on contraindications.
Criteria| contraindications to vaccination; no documented history of Two additional exclusion criteria: 1) unreliable
SARS-CoV-2 infection; no Covid-19-like symptoms within | vaccination information, 2) unknown vaccine received.
one week; no known pregnancy or immunodeficiency; (the rest 1s the same)
recent health care user (at least one visit to IMSS within one Note: Eligibility criteria must be met at time zero.
year). Between 20/12/24 and 2021/06/24.

Treatment

Strategies

Treatment

Assignment




Treatment strategies < McGill

Components TT Specification TT Emulation
Eligibility| Age 18+; employed at IMSS; no history of vaccination; no We have no information on contraindications.
Criteria| contraindications to vaccination; no documented history of Two additional exclusion criteria: 1) unreliable
SARS-CoV-2 infection; no Covid-19-like symptoms within | vaccination information, 2) unknown vaccine received.
one week; no known pregnancy or immunodeficiency; (the rest 1s the same)
recent health care user (at least one visit to IMSS within one Note: Eligibility criteria must be met at time zero.
year). Between 20/12/24 and 2021/06/24.
Treatment 1) No immediate vaccination + no LTFU.
Strategies| 2)Immediate vaccination (BNT162b2, AZD1222, Gam- Same

COVID-Vac, Ad5-nCoV, CoronaVac) + no LTFU.

Treatment
Assignment




Emulating treatment assignment (randomization)

 Conditional randomized assignment is equivalent to "confounding adjustment":

* We can use:
o g-methods: Standardization, IP weighting, and g-estimation.

o Conventional methods for stratification-based adjustment: stratification (including
restriction) and matching.

o Model-based extension of conventional stratification: outcome regression.

* If we lack information on any relevant confounder (as specified in our protocol), we cannot
emulate random assignment (leading to confounding bias).

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.
Herndn MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.
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- = McGill
Treatment assignment
Components TT Specification TT Emulation
Eligibility| Age 18+; employed at IMSS; no history of vaccination; no We have no information on contraindications.

Criteria

contraindications to vaccination; no documented history of
SARS-CoV-2 infection; no Covid-19-like symptoms within
one week; no known pregnancy or immunodeficiency;
recent health care user (at least one visit to IMSS within one
year). Between 20/12/24 and 2021/06/24.

Two additional exclusion criteria: 1) unreliable
vaccination information, 2) unknown vaccine received.
(the rest 1s the same)

Note: Eligibility criteria must be met at time zero.

Treatment 1) No immediate vaccination + no LTFU.
Strategies| 2)Immediate vaccination (BNT162b2, AZD1222, Gam- Same
COVID-Vac, Ad5-nCoV, CoronaVac) + no LTFU.
Treatment Unblinded randomization. We will assume conditional randomization based on the
Assignment following baseline variables: sex, comorbidities, smoking

status, recent hospitalizations, prior influenza
vaccination, total number of Covid-19 tests, age, Rx-
Risk-ATC score, work setting, occupation, region, and
healthcare level.




Follow-up e

Components TT Specification TT Emulation

Time-zero| Begins at treatment assignment (time zero) and continues Same

and|until outcome of interest, loss to follow-up, death, treatment
follow-up|strategy discontinuation, or administrative censoring (2021 -
Jun-21), whichever first.

Outcomes

Causal
Contrasts

Statistical
Analysis

103




Emulating time zero and follow-up

 Time zero of follow-up (baseline) is defined by the occurrence of three events:

1. Meeting eligibility criteria.
2. Treatment assignment.

3. Start of outcome assessment.

« Misalignment of eligibility and treatment assignment can lead to immortal time or selection
bias (e.g., due to depletion of susceptibles).

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



Type of
emulation failure

1. T, after Eand A

2. T, at E but before A

3. T, before E and A

4. T, at E but before A

Failure to emulate time zero

TO
E A
1/ \i
| : )
A
|
e ﬂ|E
! >
i A
lr—*ﬂf S
: |
i A
Ei2
| >
|
|

Selection of...

eligible individuals who initiate a
treatment strategy and remain
under follow-up through reset T,

individuals who initiated a
treatment strategy before, and
remained under follow-up until,
eligibility (specified at T,)

individuals who initiated a
treatment strategy before, and
remained under follow-up until,
eligibility (specified after T)

eligible individuals at T, who
remained under follow-up until
completing a treatment strategy

Hernan MA, et al. Sauer BC, Hernandez-Diaz S, Platt R, Shrier 1. Specifying a target trial prevents
immortal time bias and other self-inflicted injuries in observational analyses. J Clin Epidemiol. 2016;79:70-75.

Immortal
time

No

No

Yes

Yes



What If the eligibility criteria are
met more than once?

« |t might be difficult to align eligibility and treatment assignment when eligibility criteria are met at
multiple times (e.g., in our vaccine study).

« Two potential solutions:
1. Choose one eligible time at random.

2. Use every eligible time (emulate a sequence of target trials, each with different start of
follow-up), estimate the effects in each, and then pool the results.

v" Each trial has the same eligibility criteria and follow-up protocol.

v Participants can be enrolled in more than one trial and more than one treatment strategy.

v Statistically efficient.



IMSS
Workers

@® Vaccimated

(O Unvaccinated

Emulating time zero and follow-up

Eligibility ﬁa %
(Week 1) I

Full matching
(exact, coarsened, and using PSs)

T McGill
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Emulating time zero and follow-up G el

Eligibility ﬁa % Follow-up until:
Week 1
ﬁa % % % (Week 1) e » 1) Outcome,
2) Death,

i &b b & B & ) Endofsuds.
B8 B
i & b &

IMSS
Workers

® Vaccinated

(O Unvaccinated
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Emulating time zero and follow-up ¥ McGill

Eligibility ﬁa % Follow-up until:
Week 1
ek D e —————— » 1) Outcome,

i &b b & ) Dea
S Yos B & 5 Endofsudy

8658
ceon | B8 *
88
Y-

@® Vaccinated

(O Unvaccinated



Outcomes 3 MEGE

Components TT Specification TT Emulation

Time-zero| Begins at treatment assignment (time zero) and continues Same

and|until outcome of interest, loss to follow-up, death, treatment
follow-up|strategy discontinuation, or administrative censoring (2021 -
Jun-21), whichever first.

Outcomes 6-month risk of: a) SARS-CoV-2 infection; b) Assessment of SARS-CoV-2 infection is not part of
symptomatic infection; ¢) Covid-19-related usual care.
hospitalization; d) Covid-19-related death. The rest is the same.
Causal
Contrasts
Statistical

Analysis




Causal contrasts ¥ McGill

Components TT Specification TT Emulation

Time-zero| Begins at treatment assignment (time zero) and continues Same

and|until outcome of interest, loss to follow-up, death, treatment
follow-up|strategy discontinuation, or administrative censoring (2021 -
Jun-21), whichever first.

Outcomes 6-month risk of: a) SARS-CoV-2 infection; b) Assessment of SARS-CoV-2 infection is not part of
symptomatic infection; ¢) Covid-19-related usual care.
hospitalization; d) Covid-19-related death. The rest is the same.
Causal 1. Intention-to-treat (ITT) effect. The ITT may be uninformative.
Contrasts 2. Per-protocol (PP) effect. The rest is the same.
Statistical

Analysis

444
111




Statistical analysis

T McGill

Components

TT Specification

TT Emulation

Time-zero

Begins at treatment assignment (time zero) and continues

Same

and|until outcome of interest, loss to follow-up, death, treatment
follow-up|strategy discontinuation, or administrative censoring (2021 -
Jun-21), whichever first.

Outcomes 6-month risk of: a) SARS-CoV-2 infection; b) Assessment of SARS-CoV-2 infection is not part of
symptomatic infection; ¢) Covid-19-related usual care.
hospitalization; d) Covid-19-related death. The rest is the same.

Causal 1. Intention-to-treat (ITT) effect. The ITT may be uninformative.
Contrasts 2. Per-protocol (PP) effect. The rest is the same.
Statistical| ITT: Use pooled logistic regression models to estimate the Same.
Analysis| 6-month risks for both groups. Then, calculate the risk

differences and risk ratios along with their 95% bootstrap
confidence intervals.

PP: The same procedure as above, but apply time-varying
inverse probability of treatment and censoring weights to
the models. Individuals are censored if they do not adhere to
their assignment.




Time-varying IPW for censoring = McGill
due to change of treatment strategy

k _
A __ f(A’mlA‘m—l)
SWk - 1_[ f(Amlj‘m—lrzm)

m=0

where:

« A, : an indicator of treatment at time m,
« A1 treatment history.

e L.: confounder history.

Hernan MA, et al. Chapter 21. G-methods for Time-Varying Treatments.
Causal Inference: What If: Chapman & Hall/CRC; 2020: 269-296. 113



Time-varying IPW for censoring = McGill

due to LTFU
( k+1
l_[ F(C _OlAm 1:V Cm 1_0) 'fC 0
- l —
Wlf+1 = 4 11 — OlAm L 1!Cm . =0) k+1
where:

« C,,= 0: an indicator of being uncensored at time m,
« A1 treatment history.

e L. confounder history.

« V: baseline values of covariates.

Hernan MA, et al. Chapter 21. G-methods for Time-Varying Treatments.
Causal Inference: What If: Chapman & Hall/CRC; 2020: 269-296. 114



|PW Pooled Logistic Regression Model = McGill
for the Discrete-Time Hazards

loglt Pr [Yk+1 — 1|/Tk, Yk — O, Ck+1 — O] — 60,]{ + 91A + 92L + 9314 X f(k)

where:

* Y,.,: the outcome ininterval k + 1.

A,: treatment history.

* C,.; = 0:an indicator of being uncensored at time k + 1,

A: a time-fixed indicator for being assigned to “always treat” (A= 1) or “never treat” (A= 0) at time zero.
L: Baseline values of confounders.

A t>_< (k): a (vector) of product terms between treatment and functions of time (allows for a time-varying hazard
ratio

Hernan MA, et al. Chapter 21. G-methods for Time-Varying Treatments.
Causal Inference: What If: Chapman & Hall/CRC; 2020: 269-296. 115



Final considerations

« Emulating a target trial helps prevent biases due to flawed study designs (e.g., immortal time
bias, selection bias due to prevalent users).

« However, this approach does not eliminate bias due to data issues (e.g., uncontrolled or
unmeasured confounding or information bias).

* In these situations, sensitivity analyses (e.g., negative controls) and quantitative bias analyses
may be helpful.



6. An introduction to the test-negative study design (TND).



Introduction

« The TND is a widely used and increasingly popular study design for estimating vaccine
effectiveness (i.e., the effect of vaccination on infection-related outcomes).

« Influenza vaccine composition is updated twice a year based on global surveillance data on
circulating strains.

 Therefore, influenza VE may vary from season to season and year to year.



Introduction

» Researchers needed a design to efficiently estimate influenza VE.

« Some authors proposed using individuals seeking medical care for influenza-like illness (ILI)
symptoms at surveillance centers or hospitals as the study population.

» Potential advantages: relatively inexpensive and quick to implement, reduces the possibility of
confounding by differential health-seeking behaviors (HSBs), and reduces the potential for
misclassification of infection status.
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* Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165-2168.

* Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol.

2016;184(5):345-353.



TND theoretical basis T McGill

* Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165-2168.
Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol.
2016;184(5):345-353.



TND theoretical basis T McGill

* Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165-2168.
Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol.
2016;184(5):345-353.
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* Selection of individuals who

e Collection of data on patient

~

underwent diagnostic testing for
the vaccine-preventable disease
due to symptoms of infection.

vaccination history and

confounder profiles. /




TND theoretical basis
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study population into
test-positive cases
and test-negative

controls.
\ J
ﬂ ﬂ w % € TeSt
T positive
@ cases

L S
hhhe

controls

[ ]

* Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165-2168.

2016;184(5):345-353.

* Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol.



retA
hbhe

R
(X

2.
3.

In the TND, the outcome is a
combination of three sequential steps:

1. Getting infected
Developing symptoms of infection
Being hospitalized/tested for these

symptoms
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The TND may also be implemented with EHRs

Table 1. Two Types of Studies Which Use a Test-Negative
Comparison Group

Diagnostic Records/

Setting Surveillance Program Electronic Health
Records
Data Prospective Retrospective
collection
Sampling Patients with a All patients tested for
common clinical influenza virus for
case definition diagnostic
recruited in a clinical purposes
setting and tested for
influenza virus
No common clinical
case definition
Case group Patients testing Cases testing positive
positive for influenza for influenza virus
virus identified from
medical/laboratory
records
Case status unknown
at time of recruitment
Comparison Patients testing Patients testing
group negative for negative for
influenza virus influenza virus
Vaccination Prospectively Obtained from
status ascertained and medical/registry

verified

records

T McGill



Statistical analysis ¥ McGill

logit Pr|Y = 1|V,L] =6, + 6,V + 06,L

4 A

VE = (1-(adjusted OR)) x 100
where:

1' test positive cases. VE: vaccine effectiveness.
0, test negative controls. OR: odds ratio.

e V/: vaccination status. K /

« L: confounding variables.

* Y. case status {




The control exchangeability assumption G el

* The probability of hospitalization/testing due to symptoms of a non-vaccine-targeted infection 1s
independent of vaccination status conditional on covariates.

(I=1,W=1H=1} LLV|C

* This means that, in the test-negative control group, vaccinated and unvaccinated individuals are
exchangeable and can therefore represent the source population for test-positive cases.



The control exchangeability assumption

Pr(I=2W =1,H=1|Z=2) /Pr(I=2,W=1,H=1|Z=z))
Pr(I=1W=1H=1|Z=z)/ Pr(I=LW=1,H=1|Z=z,))

(U=2W=1H=1Z=2) «(U=1W=1H=1|Z = zy)}
(I=2W=1H=1Z=2) *(U=1W=1H=1|Z = z2)}

PrI=1W=1H=1|Z=z)=Pr(I=LW=1,H=1|Z=z,)

CPrI=2,W=1LH=1|Z=7)
Yrr = _ _ _ _
Pr([=2,W=1LH=1Z=2,)

(1)

(2)

3)

(4)

T McGill



IP weighted logistic regression model inthe TND ~ © M<¢!

We can recover the marginal RR using IPTW.

To obtain IP weights, the propensity score model must be fitted to the test-negative control
population.

This ensures that the distribution of confounders within the test-negative control group i1s
representative of the distribution in the source population for both vaccinated and unvaccinated
individuals.

Using IPTW helps avoiding model misspecification due to effect measure modification.



TND IPTW: R Code

# Estimation of IP weights via a logistic regression model for a TND study
## PS model
TND_ps_mod <- glm(vac ~ confounders, family = binomial(), data = tnd_data_controls)

## 1P weights
tnd_data$ps <- predict(TND_ps_mod, type="response"”, newdata= tnd_data)
tnd_data$ipw <- ifelse(dat$V == 1, 1/ps, 1 /(1 -ps))

## IP weighted LR model
fit<- gIm(Y~ V, family= binomial, weights = ipw, data= tnd_data)

## Results
MRR = exp(fitScoefficients[2])
se = sqrt(vcovHC(fit)[2,2])
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4 A

VE = (1-(adjusted OR)) x 100

VE: vaccine effectiveness.
OR: odds ratio.
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Interpretation Risk,_, — Risky_;
VE = — — | x 100
( Risky—q )

Risk.,— Risk.,_
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Risky=¢ Risky=g
VE = (1-(adjusted OR)) x 100 \_ )

VE: vaccine effectiveness.
OR: odds ratio.
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Interpretation

/

\

VE = (1-(adjusted OR)) x 100

VE: vaccine effectiveness.
OR: odds ratio.

\_

VE = (RiSkv=0 — RiSkv=1

x 100
RiSkv=0 >

/

Risky—g Risky—q

VE = X 100
(RiSkvzo RiSkv=0>

NG

~

!

VE =(1

Risk,,—
_—¥=1) % 100
Risky—q

J

T McGill



Interpretation

/

\

VE = (1-(adjusted OR)) x 100

VE: vaccine effectiveness.
OR: odds ratio.

\_

Risky,—g — Risky -
VE = v=0 1) x 100
Risky—q

/

Risk.,— Risk,, —
VE = [——=2__—~>v=1}) + 100
Risky=¢ Risky=g

NG

~

!

VE =({1—— X 100
Risky—q

J

VE = (1 —-RR) x 100
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Interpretation example
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VE = (1-(adjusted OR)) x 100

VE: vaccine effectiveness.
OR: odds ratio.
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Interpretation example
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VE = (1- (adjusted OR)) x 100

VE: vaccine effectiveness.
OR: odds ratio.
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Interpretation example

4 N

VE = (1-(adjusted OR)) x 100

VE: vaccine effectiveness.
OR: odds ratio.

\_ /

T McGill

4 )
Risky,—o — Risk,-
VE =< Vﬁ?skvzo V‘1> x 100
- /
4 )
* Risky—p: 50%
* Risky=1:25%
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/. Potential sources of bias in test-negative design studies.



Confounding bias

A)
A HR CT S « A: age.
» HR: high-risk status.
e CT: calendar time.
\ Y * S: Sex.
vV ol |
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Confounding at baseline
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HR

CT




Confounding at baseline

- C,
v1 — Vo — 1,

| | | |
Prior Season Current Season




Time varying confounding

- C,

V-| —-I-| >V2 —-»Iz

| | | |
Prior Season Current Season




Tir

In the time-varying setting (effects of -
repeated vaccination), infection ()
acts as both a confounder and a
mediator. This leads to "treatment-
confounder feedback" and
consequently g methods may be more
appropriate.
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|

Confounding by HSBs

e
(HS)  C: other confounders (i.e., age, high-
risk status, sex, and calendar time).
« HS: health and healthcare seeking
behaviours.
« V: vaccination.
\/

I: Infection.




Confounding by HSBs

=~ (HS)
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Under the assumption of deterministic |

HSBs, the TND controls for this
source of confounding bias (at the
expense of reduced generalizability).

B)

=~ (HS) C

HS =1




Selection bias

A)

=]

~(HS)

Y
~ |

C: other confounders.
HS: HSBs.
V: vaccination.

N
S

T

.

I: infection.

T: testing.
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A)
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Under the assumption of deterministic |

HSBs, the TND controls for this
source of confounding and selection
(collider) bias.
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Information bias

The TND is generally thought to reduce misclassification of infection status by including only
patients with a laboratory test result.

In cohort or case-control studies, non-cases are assumed to be uninfected, but this is usually not
confirmed by testing.

Misclassification of infected or uninfected individuals in TND is less likely because TND
studies typically use molecular tests that are highly sensitive and specific.

However, this may still occur with less accurate tests, such as antigen-based tests, or when
other factors (e.g., timing, absence of symptoms) affect the diagnostic accuracy of the tests.




Outcome misclassification

C: other confounders.
V: vaccination.
I: infection.

I*: measured infection.

T: testing.
SQ: swab quality.
VS: viral shedding.

U: unmeasured factors that influence
measurement of infection status
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Outcome misclassification

C: other confounders.
V: vaccination.
I: infection.

I*: measured infection.

T: testing.
SQ: swab quality.
VS: viral shedding.

U: unmeasured factors that influence
measurement of infection status

S

3



Exposure misclassification

C: other confounders.
Uv V: vaccination.

C
I: infection.
! ! V*: measured vaccination.
- 4

V* I*: measured infection.

S

- — |%

U,and U,: unmeasured factors that
Influence measurement of
Infection/vaccination status
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