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Agenda

1.  A quick refresher on the distinction between causation and association and why it matters.

2.  Revisiting why randomization leads to robust causal inferences.

3.  Moving from marginal to conditionally randomized experiments.

4.  Observational studies as an alternative to randomized trials.

5.  Estimating causal effects with observational data through the emulation of target trials.

6.  An introduction to the test-negative study design.

7. Potential sources of bias in test-negative design studies.



Disclaimer

Slides are based on two primary sources:

1. Hernán MA, Robins JM. Causal 
Inference: What If. Boca Raton: 
Chapman & Hall/CRC; 2024. 

Available at:

https://www.hsph.harvard.edu/miguel-
hernan/causal-inference-book/

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


Disclaimer

2. CAUSALab Summer Courses on 
Causal Inference (2022 and 2023). 

A 5-day course in which students learn 
the principles of Target Trial 
Emulation and receive hands-on 
training to implement them in 
increasingly complex environments.

Learn more about the 2024 courses in: 
https://causalab.sph.harvard.edu/cours
es/

https://causalab.sph.harvard.edu/courses/
https://causalab.sph.harvard.edu/courses/


1. A quick refresher on the distinction between causation and association 
and why it matters.



Three core tasks in health research …

a)  Description:

b)  Prediction:

c)  Causal inference:

• Miguel A. Hernán, et al. (2019) CHANCE, 32:1, 42-49

• Rothman KJ, Lash TL, Haneuse S, VanderWeele TJ. Chapter 1: The scope of epidemiology. In: Lash TL, VanderWeele TJ,

 Haneuse S, Rothman KJ, eds. Modern Epidemiology. 4th ed. Wolters Kluwer; 2021:3-25.
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Three core tasks in health research …

a)  Description: Using data to provide a quantitative summary of the characteristics of defined 
populations (e.g., GBD). Useful for guiding resource allocation and hypothesis generation.

b)  Prediction: Using data to look for associations between different features of the population 
(mapping inputs and outputs). Useful for informing some decisions (e.g., patient monitoring).

c)  Causal inference:

• Miguel A. Hernán, et al. (2019) CHANCE, 32:1, 42-49

• Rothman KJ, Lash TL, Haneuse S, VanderWeele TJ. Chapter 1: The scope of epidemiology. In: Lash TL, VanderWeele TJ,

 Haneuse S, Rothman KJ, eds. Modern Epidemiology. 4th ed. Wolters Kluwer; 2021:3-25.



Causal inference

• It involves the qualitative assessment and/or estimation of the effect of exposures, including 
potential causes, on the occurrence of outcomes of interest.

• These exposures may be assessed at the individual level (e.g., occupations), at the microscale 
(e.g., microbiome), or at the macroscale (e.g., health policy).

• Miguel A. Hernán, et al. (2019) CHANCE, 32:1, 42-49

• Rothman KJ, Lash TL, Haneuse S, VanderWeele TJ. Chapter 1: The scope of epidemiology. In: Lash TL, VanderWeele TJ,

 Haneuse S, Rothman KJ, eds. Modern Epidemiology. 4th ed. Wolters Kluwer; 2021:3-25.



Causal inference

• It involves the qualitative assessment and/or estimation of the effect of exposures, including 
potential causes, on the occurrence of outcomes of interest.

• These exposures may be assessed at the individual level (e.g., occupations), at the microscale 
(e.g., microbiome), or at the macroscale (e.g., health policy).

• They are useful for guiding interventions, such as deciding what treatment is appropriate for a 
patient with diabetes or what policy should be implemented to increase health literacy.

• Miguel A. Hernán, et al. (2019) CHANCE, 32:1, 42-49

• Rothman KJ, Lash TL, Haneuse S, VanderWeele TJ. Chapter 1: The scope of epidemiology. In: Lash TL, VanderWeele TJ,

 Haneuse S, Rothman KJ, eds. Modern Epidemiology. 4th ed. Wolters Kluwer; 2021:3-25.



Example

Title: Risk Factors for Mortality in Covid-19 Patients

Abstract: In this retrospective cohort study, we aimed to

evaluate risk factors for mortality in Covid-19 patients. We

used univariable logistic regression models and selected

covariates for the multivariable model based on their

statistical significance. Our results identified hospitalization 

(OR: 2.10, 95% CI: 1.6-2.8, p <0.001), obesity (OR: 1.50, 

95% CI: 1.0-2.2, p = 0.03), and age (OR: 1.02, 95% CI: 1.01-

1.04, p = 0.004) as risk factors for Covid-19 mortality. In 

contrast, vaccinated individuals had lower odds of death 

(OR: 0.6, 95% CI: 0.4-0.9, p = 0.002).

Multivariable analysis

Variable OR 95% CI P

Hospitalization 2.5 1.8 - 3.4 0.001

Obesity 1.8 1.1 - 2.9 0.015

Diabetes 1.4 0.85 - 1.9 0.11

Hypertension 1.6 0.9 - 2.2 0.095

Age (years) 1.03 1.01 - 1.05 0.002

Sex (female) 0.85 0.7 - 1.03 0.08

Vaccination 0.5 0.35 - 0.7 0.0005



Example

Title: Risk Factors for Mortality in COVID-19 Patients

Abstract: In this retrospective cohort study, we aimed to 

evaluate risk factors for mortality in COVID-19 patients. We 

used univariable logistic regression models and selected 

variables based on their statistical significance for inclusion 

in the multivariable model. Our results identified 

hospitalization (OR: 2.10, 95% CI: 1.6-2.8, p < 0.001), 

obesity (OR: 1.50, 95% CI: 1.0-2.2, p = 0.03), and age (OR: 

1.02, 95% CI: 1.01-1.04, p = 0.004) as risk factors for 

COVID-19 mortality. In contrast, vaccinated individuals had 

lower odds of death (OR: 0.6, 95% CI: 0.4-0.9, p = 0.002).

• Using predictions (associations) to infer causality 
can lead to wrong decisions about interventions, 
such as advising against hospitalization for severe 
COVID-19 or recommending ivermectin for its 

treatment.

• Causal inference is fundamental to making 
informed, accurate decisions about interventions.

Multivariable analysis

Variable OR 95% CI P

Hospitalization 2.5 1.8 - 3.4 0.001

Obesity 1.8 1.1 - 2.9 0.015

Diabetes 1.4 0.85 - 1.9 0.11

Hypertension 1.6 0.9 - 2.2 0.095

Age (years) 1.03 1.01 - 1.05 0.002

Sex (female) 0.85 0.7 - 1.03 0.08

Vaccination 0.5 0.35 - 0.7 0.0005
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A

• Intervention

• Exposure

• Policy 

• Treatment

• …
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Association vs. Causation

Since both proportions were different, 
we can conclude that:

• Treatment A and outcome Y are  
dependent.

• Treatment A and outcome Y are 
associated.

• Treatment A predicts outcome Y.
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• [Again] using predictions 
(associations) to infer causality can 

lead to wrong decisions about 
interventions.

• Identifying patients with a poor 
prognosis is very different from 
identifying the best strategy to 

prevent or treat a disease...



Association vs. Causation
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The risk of death among            

transplant recipients is:

𝐏𝐫 𝒀 = 𝟏| 𝑨 = 𝟏 =
𝟕

𝟏𝟑
= 𝟎. 𝟓𝟒

The risk of death among                    

non-transplant recipients is:

𝐏𝐫 𝒀 = 𝟏| 𝑨 = 𝟎 =
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The reason for the mismatch between 
association and causation is simple: 

• People typically receive interventions 
for specific reasons. 

• For example, if a doctor initiates 
treatment A, it is because she believes 
it will improve the patient's 
prognosis…

So, what do we want to know?
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Causation vs. Association (Summary)

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.

“Inferences about 
causation are 
concerned with what 
if questions in 
counterfactual 
worlds, such as:

•  … what would be 
the risk if 
everybody had 
been treated?

• …“what would be 
the risk if 
everybody had 
been untreated?”

“Inferences about 

association are 
concerned with 
questions in the 
actual world, such 
as:

•  … what is the risk 
in the treated?

• …“what is the risk 
in the untreated?”



2. Revisiting why randomization leads to robust causal inferences.
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The fundamental problem of causal inference

• Because only one counterfactual is available for individuals (the one 
corresponding to the actual level of exposure), it is often said that the 
fundamental problem of causal inference is missing data.

• What would happen if counterfactuals were missing at random?

• This is possible in an ideal randomized experiment (double-blind, 
no loss to follow-up, and perfect adherence to the therapeutic 
strategy) where all population characteristics are expected to be 
evenly distributed across groups (including counterfactuals).

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



The role of randomization in causal inference

• Suppose we randomize an almost 
infinite population by flipping a coin. 

• If the coin lands on heads ($1), 
individuals are assigned to the 
intervention (A = 1 [white]); otherwise 
(eagle), they receive no intervention. 

• We then observe individuals for five 
days and calculate the risk of death.
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The role of randomization in causal inference:
exchangeability
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• Randomization plays a key role because, in 
expectation, it leads to exchangeability.



In an ideal randomized experiment:
 association is causation

• [Again] If exchangeability holds, all treatment groups 

will have the same counterfactual risk as the entire 
population (since A was randomly assigned).
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In an ideal randomized experiment:
 association is causation

• [Again] If exchangeability holds, all treatment groups 

will have the same counterfactual risk as the entire 
population (since A was randomly assigned).

• However, the counterfactual risk in the treated is not 
truly counterfactual because they actually received the 
treatment (the same is true for the untreated).

• Thus, by calculating the risk in the treated, we can 
estimate the counterfactual risk under treatment (and 
similarly, under no treatment), and then comparing these 
two quantities allows us to obtain causal effects.

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



3. Moving from marginal to conditionally randomized experiments
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The role of conditional randomization in causal inference

• In this design, since critically ill individuals had a 
higher probability of being treated, treated 
individuals will have a higher baseline risk of 
death.
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The role of conditional randomization in causal inference

• In this design, since critically ill individuals had a 
higher probability of being treated, treated 
individuals will have a higher baseline risk of 
death.

• Even though this is an RCT, there is no marginal 
exchangeability. 

• However, in expectation, individuals are 
exchangeable within levels of L (conditional 
exchangeability).

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



We can get the conditional causal RR (OR, RD) …

• Since association is causation within each subgroup defined by L, by calculating the 
associational RR (RD, OR) we can recover the causal RR (RD, OR) in each stratum:

𝐏𝐫[𝒀𝒂=𝟏 = 𝟏|𝑳 = 𝟏]/ 𝐏𝐫[𝒀𝒂=𝟎 = 𝟏|𝑳 = 𝟏]

And

𝐏𝐫[𝒀𝒂=𝟏 = 𝟏|𝑳 = 𝟎]/ 𝐏𝐫[𝒀𝒂=𝟎 = 𝟏|𝑳 = 𝟎]
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We can get the marginal causal RR (OR, RD) …

• By using either standardization or inverse probability of treatment weighting (IPTW):

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



IPTW: observed data
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IPTW: counterfactual risk under no treatment
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IPTW: counterfactual risk under treatment
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IPTW
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IPTW

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.

• Each individual receives a weight equal to the inverse of the probability of 
receiving the level of treatment they received (conditional on L). 

• IPTW creates a pseudo-population in which the distribution of confounders is 
balanced across treatment groups. 



IPTW: R Code

# Estimation of IP weights via a logistic model 

fit <- glm(qsmk ~ sex + race + age + I(age ^ 2) + as.factor(education) + smokeintensity + 

   I(smokeintensity ^ 2) + smokeyrs + I(smokeyrs ^ 2) + as.factor(exercise) + 

   as.factor(active) + wt71 + I(wt71 ^ 2), 

   family = binomial(), 

   data = nhefs.nmv )

p.qsmk.obs <- ifelse(nhefs.nmv$qsmk == 0, 

         1 - predict(fit, type = "response"), 

          predict(fit, type = "response")) 

nhefs.nmv$w <- 1 / p.qsmk.obs

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernán MA, Robins JM. 

Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024. 

Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



IPTW: R Code

# IPWeighted regression 

library("geepack") 

msm.w <- geeglm(wt82_71 ~ qsmk, 

    data = nhefs.nmv, 

    weights = w, 

    id = seqn, 

    corstr = "independence" ) 

summary(msm.w)

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernán MA, Robins JM. 

Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024. 

Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



Standardization

• We can recover the marginal counterfactual risk under each level of treatment as follows:

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Standardization

• We can recover the marginal counterfactual risk under each level of treatment as follows:

• Under conditional exchangeability, within L = l , the risk in the treated is equal to the risk 
that would have been observed if everyone had been treated (the same for the untreated).

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Standardization

• We can recover the marginal counterfactual risk under each level of treatment as follows:

• Under conditional exchangeability, within L = l , the risk in the treated is equal to the risk 
that would have been observed if everyone had been treated (the same for the untreated).

• Unify this into one equation:

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Standardization

• In summary:

o Stratification: Divide the population into strata based on L.

o Estimate stratum-specific risks: Calculate the outcome risk within each stratum for each 
treatment level.

o Weighting: Estimate a weighted average of the stratum-specific risks by weighting them by 
the proportion of the population in each stratum defined by L.

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Standardization

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.

• The marginal counterfactual risk [left side of the equation] is a weighted 
average of the counterfactual risks in each of the strata defined by L, with 
weights equal to the proportion of individuals in the population with L = 0 

and L = 1, respectively:

𝐏𝐫[𝒀𝒂=𝟏 = 𝟏] = 
𝐏𝐫 𝒀𝒂=𝟏 = 𝟏 𝑳 = 𝟎 𝐏𝐫 𝑳 = 𝟎 + 𝐏𝐫 𝒀𝒂=𝟏 = 𝟏 𝑳 = 𝟏 𝐏𝐫 𝑳 = 𝟏



Standardization (parametric g-formula): 
R Code

# 1) Prepare data (expansion of the dataset): create a dataset with 3 copies of each subject 

## 1st copy: equal to original one 
nhefs$interv <- -1

## 2nd copy: treatment set to 0, outcome to missing 
interv0 <- nhefs
interv0$interv <- 0 
interv0$qsmk <- 0 
interv0$wt82_71 <- NA 

## 3rd copy: treatment set to 1, outcome to missing 
interv1 <- nhefs 
interv1$interv <- 1 
interv1$qsmk <- 1 
interv1$wt82_71 <- NA

## combining datasets 
onesample <- rbind(nhefs, interv0, interv1)

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernán MA, Robins JM. 

Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024. 

Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



Standardization (parametric g-formula): 
R Code

# 2) Outcome modeling: Estimating the mean outcome within levels of treatment and confounders 

(only original data is used for this step)

std <- glm(wt82_71 ~ qsmk + sex + race + age + I(age * age) + as.factor(education) +

   smokeintensity + I(smokeintensity * smokeintensity) + smokeyrs + 

   I(smokeyrs * smokeyrs) + as.factor(exercise) +

   + as.factor(active) + wt71 + I(wt71 * wt71) + I(qsmk * smokeintensity), 

   data = onesample)

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernán MA, Robins JM. 

Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024. 

Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



Standardization (parametric g-formula): 
R Code

# 3) Outcome prediction and standardization to the baseline confounders by averaging:

onesample$predicted_meanY <- predict(std, onesample) 

## estimate mean outcome in each of the groups interv=0, and interv=1 

# this mean outcome is a weighted average of the mean outcomes in each combination 

# of values of treatment and confounders, that is, the standardized outcome 

mean(onesample[which(onesample$interv == -1), ]$predicted_meanY) #> [1] 2.56319 

mean(onesample[which(onesample$interv == 0), ]$predicted_meanY) #> [1] 1.660267 

mean(onesample[which(onesample$interv == 1), ]$predicted_meanY) #> [1] 5.178841

Shi J, McGrath S. R and Stata code for exercises accompanying: Hernán MA, Robins JM. 

Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC; 2024. 

Available at: https://remlapmot.github.io/cibookex-r/. Accessed Nov 11, 2024.



IPTW vs Standardization

• Both methods are mathematically equivalent: they estimate what would happen if everyone 
received treatment a. However, each method uses a different set of probabilities to do so:
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IPTW vs Standardization

• Both methods are mathematically equivalent: they estimate what would happen if everyone 
received treatment a. However, each method uses a different set of probabilities to do so:

o IPTW uses the conditional probability of treatment A given covariate (s) L.

o Standardization uses the probability of covariate L and the conditional probability of 
outcome Y given variables A and L.
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IPTW vs Standardization

• Both methods are mathematically equivalent: they estimate what would happen if everyone 
received treatment a. However, each method uses a different set of probabilities to do so:

o IPTW uses the conditional probability of treatment A given covariate (s) L.

o Standardization uses the probability of covariate L and the conditional probability of 
outcome Y given variables A and L.

• Since both methods simulate what would have been observed if the variable (s) L had not 
influenced the probability of treatment, these methods are often said to adjust (or control) the 
analysis for L.

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



4. Observational studies as an alternative to randomized trials.



When RCTs are not feasible: 
The role of observational studies

• In many cases, RCTs are either unethical (e.g., when we are interested in ruling out adverse 
effects), impractical (e.g., due to high costs), or too time-consuming.
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When RCTs are not feasible: 
The role of observational studies

• In many cases, RCTs are either unethical (e.g., when we are interested in ruling out adverse 
effects), impractical (e.g., due to high costs), or too time-consuming.

• In these cases, the most appropriate (or only) option is to conduct an observational study 
(studies in which the researcher simply observes and records the relevant data).

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



But how do we estimate causal effects 
from observational data?

• We analyze our data as if the treatment had been randomized conditional on the measured 
covariates L (although this is often only an approximation).
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But how do we estimate causal effects 
from observational data?

• We analyze our data as if the treatment had been randomized conditional on the measured 
covariates L (although this is often only an approximation).

• In other words, causal inference from observational data is based on the hope that such 
studies can be considered a conditionally randomized experiment.
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But how do we estimate causal effects 
from observational data?

• We analyze our data as if the treatment had been randomized conditional on the measured 
covariates L (although this is often only an approximation).

• In other words, causal inference from observational data is based on the hope that such 
studies can be considered a conditionally randomized experiment.

• An observational study can be conceptualized as a conditionally randomized experiment if 
the following conditions are met (identifiability conditions):
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But how do we estimate causal effects 
from observational data?

• We analyze our data as if the treatment had been randomized conditional on the measured 
covariates L (although this is often only an approximation).

• In other words, causal inference from observational data is based on the hope that such 
studies can be considered a conditionally randomized experiment.

• An observational study can be conceptualized as a conditionally randomized experiment if 
the following conditions are met (identifiability conditions):

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.

• A counterfactual quantity is said to be identifiable if it can be expressed as a function of the 
distribution (i.e., the probabilities) of the observed data (otherwise it is said to be unidentifiable).



Identifiability conditions

1. Consistency: The treatment values to be compared correspond to well-defined interventions 
(treatment variation irrelevance – all versions of treatment have the same effects), which in 
turn can be mapped to the treatment versions available in the data.
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Identifiability conditions

1. Consistency: The treatment values to be compared correspond to well-defined interventions 
(treatment variation irrelevance – all versions of treatment have the same effects), which in 
turn can be mapped to the treatment versions available in the data.

2. Exchangeability: The conditional probability of receiving each treatment value, while not 
decided by the investigators, depends only on the measured covariates L.
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Identifiability conditions

1. Consistency: The treatment values to be compared correspond to well-defined interventions 
(treatment variation irrelevance – all versions of treatment have the same effects), which in 
turn can be mapped to the treatment versions available in the data.

2. Exchangeability: The conditional probability of receiving each treatment value, while not 
decided by the investigators, depends only on the measured covariates L.

3. Positivity: The probability of receiving each treatment value, conditional on L (in the 
minimum set), is greater than zero (i.e., positive).
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Identifiability conditions

1. Consistency: The treatment values to be compared correspond to well-defined interventions 
(treatment variation irrelevance – all versions of treatment have the same effects), which in 
turn can be mapped to the treatment versions available in the data.

2. Exchangeability: The conditional probability of receiving each treatment value, while not 
decided by the investigators, depends only on the measured covariates L.

3. Positivity: The probability of receiving each treatment value, conditional on L (in the 
minimum set), is greater than zero (i.e., positive).

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.

In an ideal randomized 
experiment, these three 

conditions are met by design. 



Identifiability conditions

4. No measurement error.

5. No model misspecification. 

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



5. Estimating causal effects with observational data through the emulation 
of target trials.  



A simple 2-step algorithm for causal inference:

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.

Ask the causal question and 

specify the target trial 

protocol.

Answer the causal question 

(Is the target trial feasible, 

ethical, timely?)

Conduct the target trial 
Emulate the target trial 

using observational data.



What is a target trial?

• For each causal question (and for each average causal effect we wish to estimate [the estimand 
or target parameter]), we can imagine a hypothetical randomized trial.
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What is a target trial?

• For each causal question (and for each average causal effect we wish to estimate [the estimand 
or target parameter]), we can imagine a hypothetical randomized trial.

• This hypothetical trial is called the target trial.
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What is a target trial?

• For each causal question (and for each average causal effect we wish to estimate [the estimand 
or target parameter]), we can imagine a hypothetical randomized trial.

• This hypothetical trial is called the target trial.

• We can then specify and emulate the target trial protocol:

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Ask the causal question

• For example, we might be interested in the following question:

o What is the effect of Covid-19 vaccination (completion of the 1st immunization series as 
specified by the manufacturer) vs. no vaccination, on symptomatic infection and its 
progression to hospitalization and death in a cohort of workers from the Mexican Social 
Security Institute between 2020-Dec-24 and 2021-Jun-24?

• By defining the causal question, we avoid naive analyses, such as assessing the effect of being a 
prevalent user (i.e., initiating and surviving treatment) versus never having used the drug. 

• This type of analysis do not inform treatment initiation.

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



Target trial protocol

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.

Specify the target trial protocol

Eligibility criteria

Treatment strategies

Treatment assignment

Time zero and follow-up

Outcomes

Causal contrasts

Data analysis



Target trial protocol

• Then we will use (and need) all the data 
elements mentioned in the protocol to 
emulate each component of the target trial.

• Therefore, we need to specify any protocol 
modifications that need to be made when 
using observational data.

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.

Specify the target trial protocol

Eligibility criteria

Treatment strategies

Treatment assignment

Time zero and follow-up

Outcomes

Causal contrasts

Data analysis



We need to understand our data in detail

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.

• How was data collected?

• What do variables mean?

• Are there idiosyncratic coding practices?

• Is the data accurate (e.g., are there validation studies to quantify misclassification)?

• Is there internal consistency?

• Etcetera.



Target trial protocol

The protocol must be for a pragmatic trial (a randomized trial conducted under conditions that 
reflect routine care, with no additional adherence promotion or monitoring):

• Participants and physicians are aware of treatments (i.e., treatment allocation is not blinded).

• Strategies include either active treatments or no treatments (i.e., no one receives a placebo).

• Participants are monitored as frequently as regular patients. 

• Treatment strategies must exist in the "real world".

In addition, we cannot emulate blinding of outcome ascertainment with observational data (some 
exceptions, such as independent ascertainment from death registries). 

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



Components TT Specification TT Emulation

Eligibility 

Criteria

Age 18+; employed at IMSS; no history of vaccination; no 

contraindications to vaccination; no documented history of 

SARS-CoV-2 infection; no Covid-19-like symptoms within 

one week; no known pregnancy or immunodeficiency; 

recent health care user (at least one visit to IMSS within one 

year). Between 20/12/24 and 2021/06/24. 

We have no information on contraindications.

Two additional exclusion criteria: 1) unreliable 

vaccination information, 2) unknown vaccine received.

(the rest is the same)

Note: Eligibility criteria must be met at time zero. 

Treatment 

Strategies

1) No immediate vaccination. 

 2) Immediate vaccination (BNT162b2, AZD1222, Gam-

COVID-Vac, Ad5-nCoV, CoronaVac).

Same

Treatment 

Assignment

Weekly conditional open randomization (between  

December 24, 2020, and June 24, 2021).

We will assume conditional randomization based on the 

following baseline variables: sex, comorbidities, smoking 

status, recent hospitalizations, prior influenza 

vaccination, total number of Covid-19 tests, age, Rx-

Risk-ATC score, work setting, occupation, region, and 

healthcare level.
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Eligibility criteria



Components TT Specification TT Emulation

Eligibility 

Criteria

Age 18+; employed at IMSS; no history of vaccination; no 

contraindications to vaccination; no documented history of 

SARS-CoV-2 infection; no Covid-19-like symptoms within 

one week; no known pregnancy or immunodeficiency; 

recent health care user (at least one visit to IMSS within one 

year). Between 20/12/24 and 2021/06/24.

We have no information on contraindications.

Two additional exclusion criteria: 1) unreliable 

vaccination information, 2) unknown vaccine received.

(the rest is the same)

Note: Eligibility criteria must be met at time zero.

Treatment 

Strategies

1) No immediate vaccination + no LTFU. 

 2) Immediate vaccination (BNT162b2, AZD1222, Gam-

COVID-Vac, Ad5-nCoV, CoronaVac) + no LTFU.

Same

Treatment 

Assignment

Weekly conditional open randomization (between  

December 24, 2020, and June 24, 2021).

We will assume conditional randomization based on the 

following baseline variables: sex, comorbidities, smoking 

status, recent hospitalizations, prior influenza 

vaccination, total number of Covid-19 tests, age, Rx-

Risk-ATC score, work setting, occupation, region, and 

healthcare level.

100

Treatment strategies



Emulating treatment assignment (randomization)

• Conditional randomized assignment is equivalent to "confounding adjustment":

• We can use:

o g-methods: Standardization, IP weighting, and g-estimation. 

o Conventional methods for stratification-based adjustment: stratification (including 
restriction) and matching.

o Model-based extension of conventional stratification: outcome regression.

• If we lack information on any relevant confounder (as specified in our protocol), we cannot 
emulate random assignment (leading to confounding bias).

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.

Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2024.



Components TT Specification TT Emulation

Eligibility 

Criteria

Age 18+; employed at IMSS; no history of vaccination; no 

contraindications to vaccination; no documented history of 

SARS-CoV-2 infection; no Covid-19-like symptoms within 

one week; no known pregnancy or immunodeficiency; 

recent health care user (at least one visit to IMSS within one 

year). Between 20/12/24 and 2021/06/24.

We have no information on contraindications.

Two additional exclusion criteria: 1) unreliable 

vaccination information, 2) unknown vaccine received.

(the rest is the same)

Note: Eligibility criteria must be met at time zero.

Treatment 

Strategies

1) No immediate vaccination + no LTFU. 

 2) Immediate vaccination (BNT162b2, AZD1222, Gam-

COVID-Vac, Ad5-nCoV, CoronaVac) + no LTFU.

Same

Treatment 

Assignment

Unblinded randomization. We will assume conditional randomization based on the 

following baseline variables: sex, comorbidities, smoking 

status, recent hospitalizations, prior influenza 

vaccination, total number of Covid-19 tests, age, Rx-

Risk-ATC score, work setting, occupation, region, and 

healthcare level.
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Treatment assignment



Components TT Specification TT Emulation

Time-zero 

and 

follow-up

Begins at treatment assignment (time zero) and continues 

until outcome of interest, loss to follow-up, death, treatment 

strategy discontinuation, or administrative censoring (2021-

Jun-21), whichever first.

Same

Outcomes 6-month risk of: a) SARS-CoV-2 infection; b) 

symptomatic infection; c) Covid-19-related 

hospitalization; d) Covid-19-related death.

Assessment of SARS-CoV-2 infection is not part of 

usual care. 

The rest is the same.

Causal 

Contrasts

1. Intention-to-treat (ITT) effect. 

2. Per-protocol (PP) effect.

The ITT may be uninformative. 

The rest is the same. 

Statistical 

Analysis

ITT: For each trial and outcome, calculate six-month risks 

for both vaccinated and unvaccinated individuals using 

pooled logistic regression models. Then calculate risk 

differences and risk ratios, pool estimates from all trials, 

and generate 95% bootstrap confidence intervals.

PP: Same as with the ITT effect, but weight models with 

time-varying inverse probability of treatment and censoring 

weights. For these analyses, individuals will be censored 

upon non-adherence to their assigned strategies (with 

additional censoring of the matched pair). 

As outlined in the TT protocol.

Two sensitivity analyses: negative control outcomes + 

record-level quantitative bias analyses. 
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Follow-up



Emulating time zero and follow-up

• Time zero of follow-up (baseline) is defined by the occurrence of three events:

1.  Meeting eligibility criteria.

2.  Treatment assignment.

3.  Start of outcome assessment.

• Misalignment of eligibility and treatment assignment can lead to immortal time or selection 
bias (e.g., due to depletion of susceptibles).

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



Failure to emulate time zero

Hernán MA, et al. Sauer BC, Hernández-Díaz S, Platt R, Shrier I. Specifying a target trial prevents 

immortal time bias and other self-inflicted injuries in observational analyses. J Clin Epidemiol. 2016;79:70-75. 



What if the eligibility criteria are 
met more than once?

• It might be difficult to align eligibility and treatment assignment when eligibility criteria are met at 
multiple times (e.g., in our vaccine study).

• Two potential solutions:

1.  Choose one eligible time at random.

2.  Use every eligible time (emulate a sequence of target trials, each with different start of 
follow-up), estimate the effects in each, and then pool the results.

✓  Each trial has the same eligibility criteria and follow-up protocol.

✓Participants can be enrolled in more than one trial and more than one treatment strategy. 

✓Statistically efficient.

CAUSALab. Material for the CAUSALab Summer Course on Causal Inference. Harvard T.H. Chan School of Public Health; 2022.



IMSS 

Workers

Eligibility

(Week 1)

Vaccinated

Unvaccinated

Full matching

(exact, coarsened, and using PSs)

t0
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IMSS 

Workers

Eligibility

(Week 1)

Vaccinated

Unvaccinated

Follow-up until: 

1) Outcome, 

2) Death,

3) LTFU, 

4) End of study. 
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Emulating time zero and follow-up

t0



IMSS 

Workers

Eligibility

(Week 1)

Vaccinated

Unvaccinated

Follow-up until: 

1) Outcome, 

2) Death,

3) LTFU, 

4) End of study. 
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Emulating time zero and follow-up

t0

Week 2

Week n



Components TT Specification TT Emulation

Time-zero 

and 

follow-up

Begins at treatment assignment (time zero) and continues 

until outcome of interest, loss to follow-up, death, treatment 

strategy discontinuation, or administrative censoring (2021-

Jun-21), whichever first.

Same

Outcomes 6-month risk of: a) SARS-CoV-2 infection; b) 

symptomatic infection; c) Covid-19-related 

hospitalization; d) Covid-19-related death.

Assessment of SARS-CoV-2 infection is not part of 

usual care. 

The rest is the same.

Causal 

Contrasts

1. Intention-to-treat (ITT) effect. 

2. Per-protocol (PP) effect.

The ITT may be uninformative. 

The rest is the same. 

Statistical 

Analysis

ITT: For each trial and outcome, calculate six-month risks 

for both vaccinated and unvaccinated individuals using 

pooled logistic regression models. Then calculate risk 

differences and risk ratios, pool estimates from all trials, 

and generate 95% bootstrap confidence intervals.

PP: Same as with the ITT effect, but weight models with 

time-varying inverse probability of treatment and censoring 

weights. For these analyses, individuals will be censored 

upon non-adherence to their assigned strategies (with 

additional censoring of the matched pair). 

As outlined in the TT protocol.

Two sensitivity analyses: negative control outcomes + 

record-level quantitative bias analyses. 
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Outcomes



Components TT Specification TT Emulation

Time-zero 

and 

follow-up

Begins at treatment assignment (time zero) and continues 

until outcome of interest, loss to follow-up, death, treatment 

strategy discontinuation, or administrative censoring (2021-

Jun-21), whichever first.

Same

Outcomes 6-month risk of: a) SARS-CoV-2 infection; b) 

symptomatic infection; c) Covid-19-related 

hospitalization; d) Covid-19-related death.

Assessment of SARS-CoV-2 infection is not part of 

usual care. 

The rest is the same.

Causal 

Contrasts

1. Intention-to-treat (ITT) effect. 

2. Per-protocol (PP) effect.

The ITT may be uninformative. 

The rest is the same. 

Statistical 

Analysis

ITT: Use pooled logistic regression models to estimate the 

6-month risks for both groups. Then, calculate the risk 

differences and risk ratios along with their 95% bootstrap 

confidence intervals.

PP: The same procedure as above, but apply time-varying 

inverse probability of treatment and censoring weights to 

the models. Individuals are censored if they do not adhere to 

their assignment.

Same.
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Causal contrasts



112

Statistical analysis

Components TT Specification TT Emulation

Time-zero 

and 

follow-up

Begins at treatment assignment (time zero) and continues 

until outcome of interest, loss to follow-up, death, treatment 

strategy discontinuation, or administrative censoring (2021-

Jun-21), whichever first.

Same

Outcomes 6-month risk of: a) SARS-CoV-2 infection; b) 

symptomatic infection; c) Covid-19-related 

hospitalization; d) Covid-19-related death.

Assessment of SARS-CoV-2 infection is not part of 

usual care. 

The rest is the same.

Causal 

Contrasts

1. Intention-to-treat (ITT) effect. 

2. Per-protocol (PP) effect.

The ITT may be uninformative. 

The rest is the same. 

Statistical 

Analysis

ITT: Use pooled logistic regression models to estimate the 

6-month risks for both groups. Then, calculate the risk 

differences and risk ratios along with their 95% bootstrap 

confidence intervals.

PP: The same procedure as above, but apply time-varying 

inverse probability of treatment and censoring weights to 

the models. Individuals are censored if they do not adhere to 

their assignment.

Same.
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Time-varying IPW for censoring
due to change of treatment strategy

Hernán MA, et al. Chapter 21. G-methods for Time-Varying Treatments.  

Causal Inference: What If: Chapman & Hall/CRC; 2020: 269-296.

where:

• Am : an indicator of treatment at time 𝑚, 

• ҧ𝐴m-1: treatment history.

• ത𝐿m: confounder history.
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Time-varying IPW for censoring 
due to LTFU

where:

• Cm= 0: an indicator of being uncensored at time 𝑚, 

• ҧ𝐴m-1: treatment history.

• ത𝐿m-1: confounder history.

• V: baseline values of covariates.

Hernán MA, et al. Chapter 21. G-methods for Time-Varying Treatments.  

Causal Inference: What If: Chapman & Hall/CRC; 2020: 269-296.
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IPW Pooled Logistic Regression Model 
for the Discrete-Time Hazards

Hernán MA, et al. Chapter 21. G-methods for Time-Varying Treatments.  

Causal Inference: What If: Chapman & Hall/CRC; 2020: 269-296.

where:

• 𝑌𝑘+1: the outcome in interval 𝑘 + 1.

• ҧ𝐴k: treatment history.

• Ck+1 = 0: an indicator of being uncensored at time k + 1, 

• 𝐴: a time-fixed indicator for being assigned to “always treat” (A= 1) or  “never treat” (A= 0) at time zero.

• L: Baseline values of confounders. 

• 𝐴 × 𝑓(𝑘):  a (vector) of product terms between treatment and functions of time (allows for a time-varying hazard 
ratio)

logit Pr 𝑌𝑘+1 = 1 ҧ𝐴𝑘 , 𝑌𝑘 = 0, 𝐶𝑘+1 = 0 = θ0,𝑘 + θ1𝐴 + θ2𝐿 + θ3𝐴 × 𝑓(𝑘)



Final considerations

• Emulating a target trial helps prevent biases due to flawed study designs (e.g., immortal time 
bias, selection bias due to prevalent users).

• However, this approach does not eliminate bias due to data issues (e.g., uncontrolled or 
unmeasured confounding or information bias).

• In these situations, sensitivity analyses (e.g., negative controls) and quantitative bias analyses 
may be helpful.



6. An introduction to the test-negative study design (TND).



Introduction

• The TND is a widely used and increasingly popular study design for estimating vaccine 
effectiveness (i.e., the effect of vaccination on infection-related outcomes).

• Influenza vaccine composition is updated twice a year based on global surveillance data on 
circulating strains.

• Therefore, influenza VE may vary from season to season and year to year.

• Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165–2168.
• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 

2016;184(5):345-353. 



Introduction

• Researchers needed a design to efficiently estimate influenza VE.

• Some authors proposed using individuals seeking medical care for influenza-like illness (ILI) 
symptoms at surveillance centers or hospitals as the study population.

• Potential advantages: relatively inexpensive and quick to implement, reduces the possibility of 
confounding by differential health-seeking behaviors (HSBs), and reduces the potential for 
misclassification of infection status.

• Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165–2168.
• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 

2016;184(5):345-353. 



Target population
(e.g., IMSS workers 
between 2020-Dec 

and 2021-Dec)

TND theoretical basis

V = 1

V = 0

• Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165–2168.
• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 

2016;184(5):345-353. 
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TND theoretical basis

V = 1

V = 0

• Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165–2168.
• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 

2016;184(5):345-353. 



• Selection of individuals who 
underwent diagnostic testing for 
the vaccine-preventable disease 

due to symptoms of infection.

• Collection of data on patient 
vaccination history and 

confounder profiles.

TND theoretical basis

V = 1

V = 0

• Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165–2168.
• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 

2016;184(5):345-353. 



TND theoretical basis
Classification of the 

study population into 
test-positive cases 
and test-negative 

controls. 

Test 
positive 

cases

Test 
negative 
controls

V = 1

V = 0
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TND theoretical basis
Classification of the 

study population into 
test-positive cases 
and test-negative 

controls. 

Test 
positive 

cases

Test 
negative 
controls

V = 1

V = 0

• Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165–2168.
• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 

2016;184(5):345-353. 

In the TND, the outcome is a 
combination of three sequential steps:

1. Getting infected
2. Developing symptoms of infection
3. Being hospitalized/tested for these 

symptoms



The TND may also be implemented with EHRs

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



where:

• 𝑌: case status ቊ
1, test positive cases.

0, test negative controls.

• 𝑉: vaccination status.

• 𝐿: confounding variables.

logit Pr 𝑌 = 1 𝑉, 𝐿 = θ0 + θ1𝑉 + θ2𝐿

127

Statistical analysis

𝑉𝐸 =  (1 – (adjusted OR))  ×  100

VE: vaccine effectiveness.
OR: odds ratio.

• Jackson, M. L., & Nelson, J. C. (2013). The test-negative design for estimating influenza vaccine effectiveness. Vaccine, 31(17), 2165–2168.
• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 

2016;184(5):345-353. 



The control exchangeability assumption

• Schnitzer ME. Estimands and Estimation of COVID-19 Vaccine Effectiveness Under the Test-Negative Design: Connections to Causal Inference. Epidemiology. 
2022;33(3):325-333. 

• The probability of hospitalization/testing due to symptoms of a non-vaccine-targeted infection is 
independent of vaccination status conditional on covariates.

• This means that, in the test-negative control group, vaccinated and unvaccinated individuals are 
exchangeable and can therefore represent the source population for test-positive cases.

𝐼 = 1, 𝑊 = 1, 𝐻 = 1 ⊥⊥ 𝑉| 𝐶



The control exchangeability assumption

(1)

(2)

(3)

(4)

• Schnitzer ME. Estimands and Estimation of COVID-19 Vaccine Effectiveness Under the Test-Negative Design: Connections to Causal Inference. Epidemiology. 
2022;33(3):325-333. 

(𝐼 = 2, 𝑊 = 1, 𝐻 = 1| 𝑍 = 𝑧)  ∗ (𝐼 = 1, 𝑊 = 1, 𝐻 = 1| 𝑍 = 𝑧0)

(𝐼 = 2, 𝑊 = 1, 𝐻 = 1| 𝑍 = 𝑧0)  ∗ (𝐼 = 1, 𝑊 = 1, 𝐻 = 1| 𝑍 = 𝑧)



IP weighted logistic regression model in the TND

• Schnitzer ME. Estimands and Estimation of COVID-19 Vaccine Effectiveness Under the Test-Negative Design: Connections to Causal Inference. Epidemiology. 
2022;33(3):325-333. 

• We can recover the marginal RR using IPTW.

• To obtain IP weights, the propensity score model must be fitted to the test-negative control 
population. 

• This ensures that the distribution of confounders within the test-negative control group is 
representative of the distribution in the source population for both vaccinated and unvaccinated 
individuals.

• Using IPTW helps avoiding model misspecification due to effect measure modification.



TND IPTW: R Code

# Estimation of IP weights via a logistic regression model for a TND study

## PS model

TND_ps_mod <- glm(vac ~ confounders, family = binomial(),  data = tnd_data_controls)

## IP weights

tnd_data$ps  <-  predict(TND_ps_mod, type="response", newdata= tnd_data) 

tnd_data$ipw <- ifelse(dat$V == 1, 1/ps, 1 /(1 -ps))

## IP weighted LR model

fit<- glm(Y~ V, family= binomial, weights = ipw, data= tnd_data)

## Results

mRR = exp(fit$coefficients[2])

se = sqrt(vcovHC(fit)[2,2])



Interpretation
VE =

Riskv=0 − Riskv=1

Riskv=0
× 100

𝑉𝐸 =  (1 – (adjusted OR))  ×  100

VE: vaccine effectiveness.
OR: odds ratio.
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Interpretation
VE =

Riskv=0 − Riskv=1

Riskv=0
× 100

𝑉𝐸 =  (1 – (adjusted OR))  ×  100

VE: vaccine effectiveness.
OR: odds ratio.



VE =
Riskv=0

Riskv=0
−

Riskv=1

Riskv=0
 × 100

VE = 1 −
Riskv=1

Riskv=0
 × 100

VE = 1 − RR  × 100

Interpretation
VE =

Riskv=0 − Riskv=1

Riskv=0
× 100

𝑉𝐸 =  (1 – (adjusted OR))  ×  100

VE: vaccine effectiveness.
OR: odds ratio.



Interpretation example

VE =
Riskv=0 − Riskv=1

Riskv=0
× 100

𝑉𝐸 =  (1 – (adjusted OR))  ×  100

VE: vaccine effectiveness.
OR: odds ratio.



• Riskv=0: 50%
• Riskv=1: 25%

Interpretation example

VE =
Riskv=0 − Riskv=1

Riskv=0
× 100

𝑉𝐸 =  (1 – (adjusted OR))  ×  100

VE: vaccine effectiveness.
OR: odds ratio.



• Riskv=0: 50%
• Riskv=1: 25%

VE =
50% − 25%

50%
× 100 = 50%

Interpretation example

VE =
Riskv=0 − Riskv=1

Riskv=0
× 100

𝑉𝐸 =  (1 – (adjusted OR))  ×  100

VE: vaccine effectiveness.
OR: odds ratio.



7. Potential sources of bias in test-negative design studies.



Confounding bias

• A: age.

• HR: high-risk status. 

• CT: calendar time.

• S: sex.

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Confounding at baseline

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Confounding at baseline

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Time varying confounding

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Time varying confounding

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 

In the time-varying setting (effects of 
repeated vaccination), infection ( I ) 

acts as both a confounder and a 
mediator. This leads to "treatment-

confounder feedback" and 
consequently g methods may be more 

appropriate.



Confounding by HSBs

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 

• C: other confounders (i.e., age, high-
risk status, sex, and calendar time).

• HS: health and healthcare seeking 
behaviours. 

• V: vaccination.

• I: infection.



Confounding by HSBs

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Confounding by HSBs

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 

Under the assumption of deterministic 
HSBs, the TND controls for this 

source of confounding bias (at the 
expense of reduced generalizability).



Selection bias

• C: other confounders.

• HS: HSBs. 

• V: vaccination.

• I: infection.

• T: testing.

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



• A: age.

• HR: high-risk status. 

• CT: calendar time.

• S: sex.

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 

Selection bias



• A: age.

• HR: high-risk status. 

• CT: calendar time.

• S: sex.

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 

Selection biasUnder the assumption of deterministic 
HSBs, the TND controls for this 

source of confounding and selection 
(collider) bias.



Information bias

• The TND is generally thought to reduce misclassification of infection status by including only 
patients with a laboratory test result.

• In cohort or case-control studies, non-cases are assumed to be uninfected, but this is usually not 
confirmed by testing.

• Misclassification of infected or uninfected individuals in TND is less likely because TND 
studies typically use molecular tests that are highly sensitive and specific. 

• However, this may still occur with less accurate tests, such as antigen-based tests, or when 
other factors (e.g., timing, absence of symptoms) affect the diagnostic accuracy of the tests.

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Outcome misclassification

• C: other confounders.

• V: vaccination.

• I: infection.

• I*: measured infection.

• T: testing.

• SQ: swab quality.

• VS: viral shedding.

• U: unmeasured factors that influence 
measurement of infection status

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Outcome misclassification

• C: other confounders.

• V: vaccination.

• I: infection.

• I*: measured infection.

• T: testing.

• SQ: swab quality.

• VS: viral shedding.

• U: unmeasured factors that influence 
measurement of infection status
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Exposure misclassification

• C: other confounders.

• V: vaccination.

• I: infection.

• V*: measured vaccination.

• I*: measured infection.

• UI and Uv: unmeasured factors that 
influence measurement of 
infection/vaccination status

• Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. Am J Epidemiol. 
2016;184(5):345-353. 



Thanks

https://ortizbrizuela.github.io/info/
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