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Slides 3 - 58: Main content

Slides 59 - 73: Additional worked

example

Expected competencies

Knows why we use "matching" in epidemiology.

Knows advantages and disadvantages of matching

Objectives

To discuss advantages and disadvantages of matching

To illustrate the use of logistic regression in presence of paired data

To illustrate and discuss the use of (conditional) logistic regression for the analysis of

matched/paired data
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Paired Data vs Matched data
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Paired data

Expected to account for "known & unknown" potential confounders

Correlated - by nature

E.g., twins, same people pre-post observations, eyes in the same individual, etc.

Variable correlation type

,constant, exchangeable, lagged, etc.t1 ≠ t0
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Matching

Making comparable a set of subjects:

“Matching refers to the selection of a reference series – unexposed subjects in a cohort

study or controls in a case-control study – that is identical, or nearly so, to the index

series with respect to the distribution of one or more potentially confounding factors.”

(RGL 2008, p. 171)

"When estimating causal effects using observational data, it is desirable to replicate a

randomized experiment as closely as possible by obtaining treated and control groups

with similar covariate distributions. This goal can often be achieved by choosing well-

matched samples of the original treated and control groups, thereby reducing bias due

to the covariates." (Stuart E, 2010) Matching methods for causal inference: A review

and a look forward
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Why do we match?

The main objective of matching is to make the comparison groups as similar as possible on

everything except the variable of interest.

Address confounding

Remember Exchangeability ?

 or 

The related term, Ignorability , assumes that there are no unobserved differences

between the treatment and control groups, conditional on the observed covariates.

Also called Conditional Exchangeability : 

Pr(Y x|X = 1) = Pr(Y x|X = 0) Y x ⊥⊥ X

X ⊥⊥ Y (0),Y (1)|Z
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Why do we match?

"Although causal assumptions are often invoked when using matching, matching is

simply an adjustment method that can be used regardless of whether these

assumptions are met; it is the interpretation of the estimated effect after matching

as causal that requires these assumptions."

Matching Methods for Confounder Adjustment: An Addition to the Epidemiologist’s Toolbox,

Epidemiologic Reviews, Volume 43, Issue 1, 2021, Pages 118–129
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Two settings
(1) Outcome values are not yet available:

Matching is used to select subjects for follow-up.

Relevant for high cost studies or logistics considerations preventing data collection for the

full control group.

The basis for original theoretical work and developments, comparing selecting matched

versus random samples of the control group.

(2) Outcome data is already available:

The goal of the matching is to reduce bias in the estimation of the treatment effect.

Outcome values are not used in the matching process!

The matching can be done multiple times

Best balance –the most similar treated and control groups– the final matched samples.

Matching methods for causal inference: A review and a look forward
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Claimed Advantages of Matching for Causal Inference

by Liz Stuart:

"1, matching methods should not be seen in conflict with regression adjustment and in fact the

two methods are complementary and best used in combination.

"2, matching methods highlight areas of the covariate distribution where there is not sufficient

overlap between the treatment and control groups, ... treatment effect estimates would rely

heavily on extrapolation.

Selection models and regression models perform poorly when there is insufficient overlap,

... standard diagnostics do not checking this.

Matching methods in part serve to make researchers aware of the quality of resulting

inferences".

3, matching methods have straightforward diagnostics by which their performance can be

assessed".

Matching methods for causal inference: A review and a look forward
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Matching by study design

Matching is often thought about as analogous to physical control in randomized experiments

Case Controls: The effect of matching in a case-control study is to introduce bias into the

crude association, which is accounted for only by adjusting for the matching factors in the

analysis.

If the matching factors are associated with exposure, then matching on such factors will

introduce a confounding-like bias that needs to be accounted for in the analysis.

Conditional logistic regression is a multivariate regression approach which treats each

matched pair as a separate stratum and is the analytic control of choice for the matching

introduced bias.

Cohort studies: Matching exposed to unexposed subjects according to some matching factors

requires no additional  analytic control for these matching factors in cohort studies.

 Debatable for some, but in principle.

1

1
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Case–control matching: effects, misconceptions, and recommendations

1. Matching, even for non-confounders, can create selection bias;

2. Matching distorts dose–response relations between matching variables and the outcome;

3. Unbiased estimation requires accounting for the actual matching protocol as well as for

any residual confounding effects;

4. For efficiency, identically matched groups should be collapsed;

5. Matching may harm precision and power;

6. Matched analyses may suffer from sparse-data bias, even when using basic sparse-data

methods.

"Supporting advice to limit case–control matching to a few strong well- measured confounders, which would devolve to

no matching if no such confounders are measured".

"On the positive side, odds ratio modification by matched variables can be assessed in matched case–control studies

without further data, and when one knows either the distribution of the matching factors or their relation to the

outcome in the source population, one can estimate and study patterns in absolute rates."

Mansournia, M.A., Jewell, N.P. & Greenland, S. Case–control matching: effects, misconceptions, and

recommendations. Eur J Epidemiol 33, 5–14 (2018).
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Efficiency !!

If matching INDUCES confounding and/or selection bias in case-control studies, why do

we do it?

By selecting only the most relevant controls, one save time and money (except if data is

already collected).

Some argue that matching provides non-parametric control (e.g., Ho et al., Political

Analysis 2007)
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How do we match people?

Matching can involve subset selection (i.e., selecting units from the sample to retain and

dropping the rest) or,

Stratification (i.e., assigning units to pairs or strata containing both exposed and

unexposed units);

Some methods, like pair matching, involve both.

14 / 73



Matching steps

Matching methods have four key steps: #1 to #3 for “design” and #4 “analysis:”

1. Defining “closeness”: the distance measure used to determine whether an individual is a

good match for another,

2. Implementing a matching method, given that measure of closeness,

3. Assessing the quality of the resulting matched samples , and perhaps iterating with Steps

(1) and (2) until well-matched samples result, and

4. Analysis of the outcome and estimation of the treatment effect, given the matching done

in Step (3).

Matching methods for causal inference: A review and a look forward

15 / 73

https://projecteuclid.org/journals/statistical-science/volume-25/issue-1/Matching-Methods-for-Causal-Inference--A-Review-and-a/10.1214/09-STS313.full


1) Closeness (i)
Two main aspects to determining the measure of distance (or “closeness”) to use in matching:

A) Determining which covariates to include

The key concept is strong ignorability.

The assumption: no unobserved differences between the treatment and control groups,

conditional on the observed covariates.

Include all variables known to be related to both treatment assignment and the outcome.

Should not include variables that may have been affected by the treatment of interest

(Rosenbaum, 1984; Frangakis and Rubin, 2002; Greenland, 2003).

B) Combining those covariates into one distance measure.

“Distance:” is a measure of the similarity between two individuals

Matching methods for causal inference: A review and a look forward
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1) Closeness (ii)
Four primary ways to define the distance  between individuals  and  for matching:

1. Exact: 

2. Mahalanobis (Distance between a point and a distribution): distance of the vector from the

mean divided by the covariance matrix to account for correlation

3. Propensity score 

4. Linear propensity score 

These measures can be combined, e.g., exact matching on key covariates followed by propensity score matching

within groups.

When exact matching is not possible (e.g., sample size limitations), “fine balance” methods may be a good

alternative (Rosenbaum et al., 2007).

Exact matches often leads to many individuals not being matched, which can result in larger bias than if the

matches are inexact but more individuals remain in the analysis.

 We have a lecture on this!

Matching methods for causal inference: A review and a look forward

Dij i j

Dij = 0,  if Xi = Xj;  Dij = ∞,  if Xi ≠ Xj

1

1

1
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Exposed units (filled circles) and unexposed

units (unfilled circles) are aligned horizontally

by their propensity score. The size of the dots

corresponds to the value of the resulting

matching weights for the matching methods

and propensity score weights for weighting by

the odds.

Matching and weighting for the average exposure effect in the exposed

Matching Methods for Confounder Adjustment: An Addition to the Epidemiologist’s Toolbox,

Epidemiologic Reviews, Volume 43, Issue 1, 2021, Pages 118–129
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2) Implementing matching

Type: “Individually matched” or “Group matched”

The most commonly used design is 1:1 matched

Nearest neighbor matching

The order of matching for "treated" may change the quality of the matches

Selecting the number of matches involves a bias : variance trade-off.

Multiple controls for each treated individual will generally increase bias since the 2nd, 3rd,

and 4th closest matches are, by definition, further away from the treated individual than is

the 1st closest match.

Multiple matches can decrease variance due to the larger matched sample size.

With or without replacement: controls that look similar to many treated individuals can be used

multiple times and replacement can decrease bias. Also, the order in which the treated

individuals are matched does not matter.

Recall: Once we match on certain factors, we are forfeiting estimating their effect

Matching Methods for Confounder Adjustment
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Impletment matching

Option Benefits Cautions

Matching on the

covariates directly (e.g.,

Mahalanobis distance

matching)

Can better balance the joint

distribution of covariates; does

not require an exposure model

May not perform well with many

covariates, due to curse of

dimensionality

Matching on the

propensity score

Requires matching only on a

single dimension; has theoretical

balancing properties; tends to

perform well empirically

Relies on specification of

exposure model, pairs may not

be close on covariates

Restrictions on

closeness of matches

Can improve balance; yields close

pairs; improves robustness to

assumptions about outcome

model

Dropping units decreases

precision and can change the

target population/estimand

Matching with

replacement

Better balance than without

replacement; good with small

unexposed samples or when ratio

of exposed to unexposed is high

Reusing units decreases

precision; increases reliance on

a few units

k:1 matching
Retains more units, thereby

increasing precision
Balance can be worse 20 / 73
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3) Assess quality of the matching (i)
Covariate balance and effective sample size.

Balance: The “standardized bias” or “standardized difference in means” (SDM)

The difference in means of each covariate, divided by the standard deviation in the full

treated group.

Similar to an effect size and is compared before and after matching (Rosenbaum and

Rubin, 1985b).

The SDM should be computed for each covariate, as well as two-way interactions and

squares.

For regression adjustment to be trustworthy, the absolute SDM should be and the

variance ratios should be between 0.5 and 2 (Rubin 1973, Cochran and Rubin 1973 & Rubin

2001).

< 0.25
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Standardized Difference in Means (SDM)

Data

library(stddiff); library("MatchIt") #?matchIt
set.seed(7042023); treat<- rbinom(100, 1, .45); outc<- rbinom(100, 1, .25); 
numeric1<-round(abs(rnorm(100)+1)*10,0); binary1<- rbinom(100, 1, .55); 
numeric2<-round(abs(rnorm(100)+1)*10,0); binary2<- rbinom(100, 1, .25)
data<-data.frame(outc, treat, numeric1, binary1, numeric2, binary2) #;summary(data)

Estimation of the SDM

##the std difference using the package
stddiff.numeric(data=data, gcol=2,vcol=c(3, 5)) #;stddiff.binary(data=data, gcol=2,vcol=c(2,4

##          mean.c  sd.c mean.t  sd.t missing.c missing.t stddiff stddiff.l
## numeric1 10.745 8.033 11.756 6.661         0         0   0.137    -0.258
## numeric2 11.145 7.901 11.111 9.203         0         0   0.004    -0.390
##          stddiff.u
## numeric1     0.531
## numeric2     0.398

##the std difference in means by hand
(mean(data$numeric1[data$treat==1])- mean(data$numeric1[data$treat==0]))/
  sd(data$numeric1[data$treat==1])

## [1] 0.151641
22 / 73



Assess quality of the matching (ii)

Hypothesis tests and p-values that incorporate information on the sample size (e.g., t-tests) should not be used as measures of

balance (Austin, 2007; Imai et al., 2008).

1. Balance is inherently an in-sample property, without reference to any broader population or super-population.

2. NHST can be misleading as measures of balance, because they often conflate changes in balance with changes in

statistical power. E.g., randomly discarding control individuals seemingly leads to increased balance, simply

because of the reduced power.

Hypothesis tests should not be used as part of a stopping rule to select a matched sample when those samples have

varying sizes (or effective sample sizes).

Some argue that NHST are OK for testing balance due to the reduced power for estimating the treatment effect (Hansen,

2008), but that argument requires trading off Type I and Type II errors. The cost of those two types of errors may differ

for balance checking and treatment effect estimation.

What about the "observations are independent" assumption?

Matching methods for causal inference: A review and a look forward
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4) Analyze
When satisfactory matching (i.e., good covariate balance and a reasonable effective sample

size) is NOT achieved after repeated specification and assessment of the quality, maybe the

sample is fundamentally so different that no effect can be robustly estimated.

When satisfactory matching is achieved, one can estimates the exposure effect and its

uncertainty (i.e., its standard error, confidence interval, and p-value).

Stratification and Regression.

Similar to the idea of “double robustness”, and the intuition is that regression adjustment

is used to “clean up” small residual covariate imbalance between the groups.

Matching methods should also make the treatment effect estimates less sensitive to

particular outcome model specifications (Ho et al., 2007).
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4) Analyze

Lee B, Kim N, Won S, Gim J. Propensity score matching for comparative studies: a tutorial with R and Rex. J Minim

Invasive Surg 2024;27:55-71. https://doi.org/10.7602/jmis.2024.27.2.55 25 / 73
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W pairs

E -E

D 1 0

-D 1 0

X pairs

E -E

D 1 0

-D 0 1

Y pairs

E -E

D 0 1

-D 1 0

Z pairs

E -E

D 0 1

-D 0 1

Stratification for Matching

Assume case-control data: Consider 100 matched pairs (i.e., 100 cases and 100 controls, each

paired by matching factors)

There are 100 2x2 tables, each containing the two observations in the matched pair, which can

be grouped by their combination of exposure and cases vs controls as: W, X, Y, and Z pairs.
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Then, how to analyze this?

Stratification for Matching

The 100 2x2 tables can be summarized further as follows:

Example: W=30, X=30, Y=10, Z=30  W + X + Y + Z = 100 TOTAL PAIRS

Disease Present

Exposure(+) Exposure (-)

~Disease absent Exposure(+) W = 30 X = 30

Exposure(-) Y = 10 Z = 30

For all tables, from  to 100, .

→

i = 1 N + i = 2
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Two stratified analysis options for Matching:

1) Mantel-Haenszel Odds Ratio (ME3 2008, p. 287, eq 16-8)

2) McNemar Test and McNemar Odds Ratio (ME3 2008, p. 286-288)

, with 

ORMH = ( )∑
i
A1iB0i/N+i

∑iA0iB1i/N+i

X2 = ( ) , df = 1
(X−Y )2

X+Y
ORMcN = X/Y
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1) Mantel-Haenszel Odds Ratio for Matching

Type W tables (case and control are exposed),  and .

Type X tables (case is exposed, control is unexposed),  and 

Type Y tables (case is unexposed, control is exposed),  and 

Type Z tables (case and control are unexposed),  and .

ORMH = ( )∑
i
A1iB0i/N+i

∑
i
A0iB1i/N+i

A1i = B1i = 1 A0i = B0i = 0

A1i = B0i = 1 A0i = B1i = 0

A1i = B0i = 0 A0i = B1i = 1

A1i = B1i = 0 A0i = B0i = 1
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1) Mantel-Haenszel Odds Ratio

Type W tables (case and control are exposed),  and .

Type X tables (case is exposed, control is unexposed),  and 

Type Y tables (case is unexposed, control is exposed),  and 

Type Z tables (case and control are unexposed),  and .

The Type W and Type Z tables have values of zero for all products of  and  as well as

all products of  and .

W and Z are concordant pairs, cases and controls have the same exposure level and in the

do not contribute to the OR estimation.

A1i = B1i = 1 A0i = B0i = 0

A1i = B0i = 1 A0i = B1i = 0

A1i = B0i = 0 A0i = B1i = 1

A1i = B1i = 0 A0i = B0i = 1

A1i B0i

A0i B1i

ORMH
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D

E -E

~D E W = 30 X = 30

-E Y = 10 Z = 30

1) Mantel-Haenszel Odds Ratio

Estimating using tables X and Y Type tables, the OR estimate is

15/5 = 3.0.

Can be obtained using mantelhaen.test function of the stats package, the cmh.test

function of the lawstat, stratastats, or epi.2by2. Input data must be either a list of

2x2 tables or a 3Dimensional array (e.g. 3 levels or 2x2x2 table).

ORMH = ( )∑
i
A1iB0i/N+i

∑iA0iB1i/N+i

ORMH = (30/2)/(10/2)
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D

E -E

~D E W (30) X (30)

-E Y (10) Z (30)
 = 

= 0.365

Two stratified analysis options:

2) McNemar Test and McNemar Odds Ratio

Sum across all matched pair tables to form a single summary table:

The McNemar  test the null hypothesis of no association between exposure and outcome.

Using the numbers above, .

3 and the 95% CI is exp(1.099 ± 1.96(0.365)) = exp(0.383, 1.814) = (1.467, 6.14)

X2 = ( ) , df = 1
(X−Y )2

X+Y

ORMcN = X/Y = 30/10 = 3

SE = √(1/X + 1/Y ) √(1/30 + 1/10)

χ2

χ2 = (30 − 10)2/(30 + 10) = 400/40 = 10

ORMcN =
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2) McNemar Test and McNemar Odds Ratio

X <- cbind(c(30,10), c(30,30));
mn_test <- mcNemar(X, alpha = 0.05)
mn_test

## 
## Matched Pairs Analysis: McNemar's Chi^2 Statistic and Odds Ratio
##  
## McNemar's Chi^2 Statistic (corrected for continuity) = 9.025 which has a p-value of: 0.003
##  
## McNemar's Odds Ratio (b/c): 3
## 95% Confidence Limits for the OR are: [1.521, 8.68]
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2) McNemar Test and McNemar Odds Ratio

kable(mn_test$X)

Exposed Person: Disease

Present

Exposed Person: Disease

Absent

Control Person: Disease

Present
30 30

Control Person: Disease

Absent
10 30

Can use this code to obtain details

summary(mn_test)
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What to do if I have more data, other covariates to account
for?

As long as you have gone through steps 1 to 3, one can
move to the analysis step using Regressions...
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Regression Adjustment for Matching

Straightforward way: Fit a regression model including the matching weights in the estimation

and using the coefficient on exposure as the exposure effect estimate; which is equivalent to

computing a (weighted) difference in means.

A binary regression model with a log link can be used to estimate the risk ratio.

g-computation methods and targeted minimum loss-based estimation, can be used to

ensure the resulting effect estimate is interpretable as marginal rather than conditional

when the effect measure is non-collapsible.

The coefficient on exposure in stratified, conditional, and covariate-adjusted models for

odds or hazard ratios corresponds to a conditional effect; thus, these models should be

avoided after matching, which is best suited for estimating marginal effects.
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It’s not matching or regression, it’s matching and regression.
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Example: Infertility after Spontaneous and Induced Abortion: This is a matched case-

control study dating from before the availability of conditional logistic regression. There are 83-

strata indicated by the variable stratum.

data("infert"); set.seed(7042024); infert$treat <- rbinom(length(infert$case), 1, .6) #creati
summary(infert[, c("case", "treat","education", "parity", "induced", 

"age", "spontaneous", "stratum")]); dim(infert) #?infert

##       case            treat          education       parity     
##  Min.   :0.0000   Min.   :0.0000   0-5yrs : 12   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   6-11yrs:120   1st Qu.:1.000  
##  Median :0.0000   Median :1.0000   12+ yrs:116   Median :2.000  
##  Mean   :0.3347   Mean   :0.6048                 Mean   :2.093  
##  3rd Qu.:1.0000   3rd Qu.:1.0000                 3rd Qu.:3.000  
##  Max.   :1.0000   Max.   :1.0000                 Max.   :6.000  
##     induced            age         spontaneous        stratum     
##  Min.   :0.0000   Min.   :21.00   Min.   :0.0000   Min.   : 1.00  
##  1st Qu.:0.0000   1st Qu.:28.00   1st Qu.:0.0000   1st Qu.:21.00  
##  Median :0.0000   Median :31.00   Median :0.0000   Median :42.00  
##  Mean   :0.5726   Mean   :31.50   Mean   :0.5766   Mean   :41.87  
##  3rd Qu.:1.0000   3rd Qu.:35.25   3rd Qu.:1.0000   3rd Qu.:62.25  
##  Max.   :2.0000   Max.   :44.00   Max.   :2.0000   Max.   :83.00

## [1] 248   9

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source: Trichopoulos et al (1976) Br. J. of Obst. and Gynaec. 83, 645–650. R-datasets packages
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Assessing the dataset, closeness and quality of the matching Example The “standardized

difference in means” (SDM) using stddiff package

#(mean(infert$age[infert$treat==1])- mean(infert$age[infert$treat==0]))/
#                        sd(infert$age[infert$treat==1])
stddiff.numeric(data=infert,gcol=9,vcol=c(2,3 ))

##        mean.c  sd.c mean.t  sd.t missing.c missing.t stddiff stddiff.l
## age    31.796 5.079 31.313 5.370         0         0   0.092    -0.162
## parity  2.194 1.232  2.027 1.264         0         0   0.134    -0.121
##        stddiff.u
## age        0.347
## parity     0.389

# stddiff.category(data=infert,gcol=9,vcol=c(4,6, 1))
stddiff.binary(data=infert,gcol=9,vcol=c(4,6 ))

##               p.c   p.t missing.c missing.t stddiff stddiff.l stddiff.u
## induced     0.551 0.587         0         0   0.072    -0.183     0.327
## spontaneous 0.704 0.493         0         0   0.440     0.183     0.698

This is the step to check the balance across variables
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Implementing the matching Example The “standardized difference in means” (SDM) using

matchIt package Assessing the matching

m.out<- matchit(treat ~  age+ parity + spontaneous + induced + education, 
                 data = infert, method = NULL, distance = "glm")
m.out

## A matchit object
##  - method: None (no matching)
##  - distance: Propensity score
##              - estimated with logistic regression
##  - number of obs.: 248 (original)
##  - target estimand: ATT
##  - covariates: age, parity, spontaneous, induced, education

This is the step to ask the software to match/check individuals treated and not treated by the

given covariates
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Assessing the matching using matchIt package: Example

round(summary(m.out)$"sum.all"[,1:4], 3) #summary(m.out)

##                  Means Treated Means Control Std. Mean Diff. Var. Ratio
## distance                 0.621         0.581           0.426      0.928
## age                     31.313        31.796          -0.090      1.118
## parity                   2.027         2.194          -0.132      1.051
## spontaneous              0.493         0.704          -0.313      0.704
## induced                  0.587         0.551           0.048      1.026
## education0-5yrs          0.060         0.031           0.124         NA
## education6-11yrs         0.507         0.449           0.115         NA
## education12+ yrs         0.433         0.520          -0.176         NA

This is the step to check the balance across variables before matching. Recall in this data

individuals were already matched
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Assessing the quality of the matching using matchIt package: Example

Plot of “standardized difference in means” (SDM)

This plot helps with the visualization of the (un)balance across variables
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Regression model for Matched Data

The model for a matched data with k = 1, ..., K strata is

Where  is "Disease/Outcome, ,  is log-odds in the  stratum

Unless the number of subjects in each stratum is large, fitting these models using the

unconditional ML does not work well.

In individually matched there is only one case in each stratum and hence we need some

way of getting rid of the nuisance parameters.

Conditional likelihood: the probability of the observed data conditional on the stratum total

and the number of cases observed is the conditional likelihood for the k the stratum.

logit[πk(X)] = αk + β1X1+. . . +βpXp

D πk(X) = Pr(Dik = 1|X) αk kth
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Considerations for Regression Adjustment with Matched
Data

Using standard logistic regression model to analyze the matched data, the effect estimates

(i.e., exponentiated slope coefficients) will generally be overestimates.

If the data are matched 1-to-1 in pairs, the OR estimate obtained from a standard logistic

model will be the square of the correct value.

To complete the matched data analysis, one needs a set of indicator variable that records

that matched strata.

The coefficients for the  indicator variables (i.e. stratum-specific intercepts) are

“nuisance parameters” in the sense that they have no epidemiologic interpretation.

k − 1
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##                  Coeff 2.5 % 97.5 %
## (Intercept)      -1.03 -3.94   1.84
## treat            -0.10 -0.72   0.53
## age               0.04 -0.02   0.10
## parity           -0.83 -1.24  -0.46
## education6-11yrs -1.06 -2.63   0.54
## education12+ yrs -1.43 -3.10   0.24
## spontaneous       2.04  1.46   2.68
## induced           1.29  0.72   1.91

##                    OR 2.5 % 97.5 %
## (Intercept)      0.36  0.02   6.27
## treat            0.91  0.49   1.70
## age              1.04  0.98   1.11
## parity           0.43  0.29   0.63
## education6-11yrs 0.35  0.07   1.72
## education12+ yrs 0.24  0.04   1.28
## spontaneous      7.70  4.31  14.64
## induced          3.65  2.05   6.75

Standard Logistic Regression for matching: Regression Example using the infert data set

mod.logistic <- glm(case ~ treat + age + parity + education + spontaneous +induced, 
                    family = binomial(), data = infert)

Although the model ran and produced results, we know this model is wrong because does not

account for the matched structure
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##                   Coeff  2.5 % 97.5 %
## (Intercept)       -2.70 -31.88  24.10
## treat             -0.38  -1.19   0.43
## age               -0.02  -0.64   0.60
## parity            -0.57  -6.76   6.47
## education6-11yrs   1.76 -29.00  36.37
## education12+ yrs   0.05 -30.71  34.27
## spontaneous        3.25   2.40   4.25
## induced            2.25   1.38   3.24
## factor(stratum)2   2.83 -36.39  47.06
## factor(stratum)3   1.96  -7.07  11.07
## factor(stratum)4   0.28 -16.76  19.30
## factor(stratum)5  -1.27 -10.68   7.55
## factor(stratum)6  -3.29 -18.61  10.49
## factor(stratum)7   1.41  -5.23   8.37
## factor(stratum)8  -0.98  -6.86   4.97
## factor(stratum)9  -1.33  -8.60   6.26
## factor(stratum)10 -0.46  -7.85   7.02
## factor(stratum)11  0.02  -6.89   7.05
## factor(stratum)12 -2.39 -17.23  11.03
## factor(stratum)13  0.95  -5.49   7.43
## factor(stratum)14 -2.23 -14.83   9.46
## factor(stratum)15 -1.37 -7.92 5.07

##                      OR 2.5 %       97.5 %
## (Intercept)        0.07  0.00 2.922792e+10
## treat              0.68  0.30 1.530000e+00
## age                0.98  0.53 1.820000e+00
## parity             0.57  0.00 6.431500e+02
## education6-11yrs   5.82  0.00 6.261757e+15
## education12+ yrs   1.05  0.00 7.646079e+14
## spontaneous       25.83 10.98 7.018000e+01
## induced            9.49  3.98 2.555000e+01
## factor(stratum)2  16.90  0.00 2.744061e+20
## factor(stratum)3   7.13  0.00 6.451847e+04
## factor(stratum)4   1.33  0.00 2.399727e+08
## factor(stratum)5   0.28  0.00 1.905830e+03
## factor(stratum)6   0.04  0.00 3.585211e+04
## factor(stratum)7   4.11  0.01 4.314480e+03
## factor(stratum)8   0.38  0.00 1.444700e+02
## factor(stratum)9   0.26  0.00 5.245200e+02
## factor(stratum)10  0.63  0.00 1.119140e+03
## factor(stratum)11  1.02  0.00 1.151240e+03
## factor(stratum)12  0.09  0.00 6.194493e+04
## factor(stratum)13  2.58  0.00 1.686550e+03
## factor(stratum)14  0.11  0.00 1.285116e+04
## factor(stratum)15 0.25 0.00 1.595600e+02

Standard Logistic Regression Example using the infert data set Adding the stratum (n=83)

variable

mod.logistic1 <- glm(case ~ treat + age + parity+ education + spontaneous +induced + 
                       factor(stratum),
                     family = binomial(), data = infert)
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Standard Logistic Regression Example using the infert data set Adding the stratum

variable (n=83)

Then the OR formula is just the usual logistic regression formula for exposure E,

confounder C, but adding in 82 indicator variables for the 83 strata of matched pairs.

This doesn't seem Efficient...
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Conditional Logistic Regression is the righ type for matched
data

We can make use of a conditional maximum likelihood method to estimate the exposure

effect in this design, rather than the usual unconditional model.

The “conditional” part refers to "conditioned on the strata of matched pairs".

The k stratum-specific conditional likelihood is obtained as the probability of the observed

data conditioned on the number of observations in stratum  and the number of these

that are cases.

The probability of the observed data relative to the probability of the data under all other

possible assignments of the  cases and  controls to  subjects.

k

n1k n0k nk(= n1k + n0k)
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Considerations for the Conditional Logistic Regression

This conditional likelihood is complex (see Hosmer & Lemeshow 2000, pp. 225-226)

For 1-to-1 matching there are only 2 subjects per stratum, and the conditional likelihood

for stratum k is: ,

where  is the data vector for the case and  is the data vector for the control.

Given values for , the expression above is interpreted as the modeled

probability that an exposed subject is a case, assuming the 1-to-1 matched design (so one

of the two observations in the stratum must be a case).

For any stratum in which  the prob. of each observation being a case is 0.5,

regardless the value of , and therefore the stratum is uninformative.

Checking on the frequency of the 2 types of discordant pairs, recognizing that if one or the

other doesn’t occur that the conditional estimator is undefined.

lk(β) = ( )eβ
x1k

eβ
x1k+eβ

x0k

x1k x0k

β,  x1k and x0k

x1k = x0k

β
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Conditional Logistic Regression for matched data, Example using the infert data

modelclogit <- clogit(case ~ treat + spontaneous + induced + strata(stratum), data = infert)
cbind(Coeff=round(coef(modelclogit), 2), round(confint(modelclogit), 2)) #summary(modelclogit

##             Coeff 2.5 % 97.5 %
## treat       -0.26 -0.89   0.37
## spontaneous  2.00  1.30   2.70
## induced      1.45  0.73   2.17

This shows that only contributing parameters are used in the estimation

clogit(case ~ treat + spontaneous + induced +
       age + parity+ education +
         strata(stratum), data = infert)

## Call:
## clogit(case ~ treat + spontaneous + induced + age + parity + 
##     education + strata(stratum), data = infert)
## 
##                     coef exp(coef) se(coef)      z        p
## treat            -0.2580    0.7726   0.3210 -0.804    0.422
## spontaneous       1.9992    7.3834   0.3575  5.592 2.24e-08
## induced           1.4499    4.2626   0.3659  3.962 7.43e-05
## age                   NA        NA   0.0000     NA       NA
## parity                NA        NA   0.0000     NA       NA
## education6-11yrs      NA        NA   0.0000     NA       NA
## education12+ yrs      NA        NA   0.0000     NA       NA
## 
## Likelihood ratio test=53.8  on 3 df, p=1.239e-11
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Using Standard (Unconditional) Logistic

Regression

##                    OR 2.5 % 97.5 %
## (Intercept)      0.36  0.02   6.27
## treat            0.91  0.49   1.70
## age              1.04  0.98   1.11
## parity           0.43  0.29   0.63
## education6-11yrs 0.35  0.07   1.72
## education12+ yrs 0.24  0.04   1.28
## spontaneous      7.70  4.31  14.64
## induced          3.65  2.05   6.75

Using Conditional Logistic Regression

##               OR 2.5 % 97.5 %
## treat       0.77  0.41   1.45
## spontaneous 7.38  3.66  14.88
## induced     4.26  2.08   8.73

Conditional Logistic Regression for matched data, Example using the infert data
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## A matchit object
##  - method: Coarsened exact matching
##  - number of obs.: 248 (original), 96 (matched)
##  - target estimand: ATT
##  - covariates: age, parity, spontaneous, induced, education

Sample Sizes:

Control Treated

All 99 149

Matched 52 52

Unmatched 47 97

Discarded 0 0

Matching and Conditional Logistic Regression: Example using the infert data and

red[using the matchIt package].

m.out2 <- matchit(treat  ~ age+ parity + spontaneous + induced + education, 
                 data = infert, method ="cem", cutpoints = list(parity=3),
                 grouping = list( education= list(c("0-5yrs","6-11yrs"), "12+ yrs")),
                 k2k = TRUE, k2k.method = "mahalanobis")

For illustration ONLY, here we changed the matching structure but the dataset was already

matched
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Matching and Conditional Logistic Regression: Example using the infert data and the

matchIt package to plot of balance

This plot illustrates the balance before (unadjusted) and after (adjusted) matching
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Matching and Conditional Logistic Regression: Example using the infert data and the

matchIt package to provide a Summary of Balance Before-Matching

##                  Means Treated Means Control Std. Mean Diff. Var. Ratio
## age                     31.313        31.796          -0.090      1.118
## parity                   2.027         2.194          -0.132      1.051
## spontaneous              0.493         0.704          -0.313      0.704
## induced                  0.587         0.551           0.048      1.026
## education0-5yrs          0.060         0.031           0.124         NA
## education6-11yrs         0.507         0.449           0.115         NA
## education12+ yrs         0.433         0.520          -0.176         NA

Summary of Balance After-Matching

##                  Means Treated Means Control Std. Mean Diff. Var. Ratio
## age                     32.521        32.458           0.012      0.966
## parity                   1.625         1.708          -0.066      1.029
## spontaneous              0.417         0.417           0.000      1.000
## induced                  0.375         0.375           0.000      1.000
## education0-5yrs          0.083         0.042           0.175         NA
## education6-11yrs         0.354         0.396          -0.083         NA
## education12+ yrs         0.562         0.562           0.000         NA

54 / 73



With weights

match.data1 <- match.data(m.out2)
#;head(match.data1)
mod.logistic2 <- glm(case ~ treat + age + p
                     family = binomial(), 
                     data = match.data1, we
#summary(mod.logistic2); coeftest(mod.logis
cbind(Coeff= round(coefficients(mod.logisti

##                  Coeff 2.5 % 97.5 %
## (Intercept)       0.58 -4.44   5.56
## treat             1.02  0.03   2.07
## age              -0.05 -0.16   0.06
## parity           -0.65 -1.44   0.05
## education6-11yrs -0.08 -2.45   2.54
## education12+ yrs -1.06 -3.64   1.62
## spontaneous       2.16  1.13   3.35
## induced           1.47  0.28   2.75

Without weights

mod.logistic2a <- glm(case ~ treat + age + 
                     data = match.data1)
cbind(round(coefficients(mod.logistic2a), 2

##                        2.5 % 97.5 %
## (Intercept)       0.58 -4.44   5.56
## treat             1.02  0.03   2.07
## age              -0.05 -0.16   0.06
## parity           -0.65 -1.44   0.05
## education6-11yrs -0.08 -2.45   2.54
## education12+ yrs -1.06 -3.64   1.62
## spontaneous       2.16  1.13   3.35
## induced           1.47  0.28   2.75

summary(match.data1$weights)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1       1       1       1       1       1

Matching and Conditional Logistic Regression: Example using the infert data and the

matchIt package

Coefficients are identical because all have same weight=1
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Using clogit function

mod.clog3 <- clogit(case ~ treat + age + parity+ education + spontaneous + induced,
                     data = match.data1)
cbind(Coeff=round(coefficients(mod.clog3), 2), round(confint(mod.clog3),2))

##                  Coeff 2.5 % 97.5 %
## treat             1.00  0.00   2.01
## age              -0.05 -0.16   0.06
## parity           -0.65 -1.37   0.08
## education6-11yrs -0.07 -2.49   2.35
## education12+ yrs -1.05 -3.60   1.50
## spontaneous       2.13  1.04   3.23
## induced           1.45  0.24   2.67

GLM using weights and the strata

cbind(Coeff=round(coefficients(mod.logistic2), 2), round(confint(mod.logistic2),2))

##                  Coeff 2.5 % 97.5 %
## (Intercept)       0.58 -4.44   5.56
## treat             1.02  0.03   2.07
## age              -0.05 -0.16   0.06
## parity           -0.65 -1.44   0.05
## education6-11yrs -0.08 -2.45   2.54
## education12+ yrs -1.06 -3.64   1.62
## spontaneous       2.16  1.13   3.35
## induced           1.47  0.28   2.75
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What is the quantity estimated in presence of Matching?

The estimand matching is most often used for is the average exposure effect among those

who were exposed, also known as the average treatment effect on the treated (ATT),

I.e., the average difference between the observed outcomes for those exposed and

their counterfactual outcomes had they not been exposed.

This is the same quantity estimated using weighting by the odds (if such).

Some matching methods allow estimation of the average exposure effect in the

population, e.g., estimated with inverse probability weights. 

The choice of estimand depends on the desired target population of interest, which

should be specified before the analysis, and matching methods appropriate for that

estimand should be used.

 More on this on the propensity score lecture!

1

1
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The Bayesian way???

infert1 <- infert[order(infert$stratum), ]
post <- stan_clogit(case ~ spontaneous + induced + (1 | parity),
                  strata = stratum,
                  data = infert1, # order necessary subset = parity <= 2,
                     QR = TRUE, cores = 2, seed = 7042023)
post
PPD <- posterior_predict(post) #; summary(PPD)
post1 <- stan_clogit(case ~  treat + spontaneous + induced + (1 |education),
                    data = infert[order(infert$stratum), ],
                    strata = stratum, QR = TRUE, cores = 4, seed = 7042023)
post1

Conditional logistic (clogit) regression models via Stan
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QUESTIONS?

COMMENTS?

RECOMMENDATIONS?
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Details of the McNemar Test

summary(mn_test)

## 
## Matched Pairs Analysis: McNemar's Statistic and Odds Ratio (Detailed Summary):
##  
##                                 Exposed Person: Disease Present
## Control Person: Disease Present                              30
## Control Person: Disease Absent                               10
##                                 Exposed Person: Disease Absent
## Control Person: Disease Present                             30
## Control Person: Disease Absent                              30
## 
## Entries in above matrix correspond to number of pairs. 
##  
## McNemar's Chi^2 Statistic (corrected for continuity) = 9.025 which has a p-value of: 0.003
## Note: The p.value for McNemar's Test corresponds to the hypothesis test: H0: OR = 1 vs. HA: OR !=
## McNemar's Odds Ratio (b/c): 3
## 95% Confidence Limits for the OR are: [1.521, 8.68]
## The risk difference is: 0.2
## 95% Confidence Limits for the rd are: [0.072, 0.328]
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Code for the Plot of “standardized difference in means” (SDM)

#plot(summary(m.out)) #this provides a series of Q-Q plots
cobalt::love.plot(m.out, thresholds = c(m = .1), abs= T)+ #this provide the line at 0.1
 labs(title = 'Standardized Difference in Means', subtitle = "`infert` dataset", 
      x="Absolute Standardized\ Mean Difference", y=" ") +
  geom_vline(xintercept = 0.25, color= "blue", linetype =2)+ #this provide the line at 0.25
   theme_light() +
    theme( panel.spacing = unit(0.5, "lines"),
          strip.text.x = element_text(size = 14),
           strip.text.y = element_text(size = 16))
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Additonal worked example

62 / 73



Matching and Conditional Logistic Regression
Using the simualted example and the matchIt package.

m.out.sim <- matchit(treat ~ numeric1 + binary1 + numeric2 + binary2,  
                     data = data,  method = NULL, distance = "glm")
m.out.sim

## A matchit object
##  - method: None (no matching)
##  - distance: Propensity score
##              - estimated with logistic regression
##  - number of obs.: 100 (original)
##  - target estimand: ATT
##  - covariates: numeric1, binary1, numeric2, binary2

## 
## Call:
## matchit(formula = treat ~ numeric1 + binary1 + numeric2 + binary2, 
##     data = data, method = NULL, distance = "glm")
## 
## Summary of Balance for All Data:
##          Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## distance        0.4720        0.4320          0.4484     0.7164    0.1157
## numeric1       11.7556       10.7455          0.1516     0.6876    0.0699
## binary1         0.5333        0.4727          0.1215          .    0.0606
## numeric2       11.1111       11.1455         -0.0037     1.3567    0.0683
## binary2 0 1111 0 2364 -0 3986 0 1253
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Matching and Conditional Logistic Regression
Using the simualted example

m.out.sim1 <- matchit(treat ~ numeric1 + binary1 + numeric2 + binary2,  data = data, 
                 distance = "mahalanobis", replace = TRUE)
m.out.sim1

## A matchit object
##  - method: 1:1 nearest neighbor matching with replacement
##  - distance: Mahalanobis
##  - number of obs.: 100 (original), 74 (matched)
##  - target estimand: ATT
##  - covariates: numeric1, binary1, numeric2, binary2
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Matching and Conditional Logistic Regression
Using the simualted example, Plot of balance simualted Example
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Matching and Conditional Logistic Regression
Summary of Balance for All Data (Pre-Matching) Using the simualted example

## 
## Call:
## matchit(formula = treat ~ numeric1 + binary1 + numeric2 + binary2, 
##     data = data, distance = "mahalanobis", replace = TRUE)
## 
## Summary of Balance for All Data:
##          Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## numeric1       11.7556       10.7455          0.1516     0.6876    0.0699
## binary1         0.5333        0.4727          0.1215          .    0.0606
## numeric2       11.1111       11.1455         -0.0037     1.3567    0.0683
## binary2         0.1111        0.2364         -0.3986          .    0.1253
##          eCDF Max
## numeric1   0.2061
## binary1    0.0606
## numeric2   0.1455
## binary2    0.1253
## 
## Summary of Balance for Matched Data:
##          Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## numeric1       11.7556       11.3778          0.0567     0.8437    0.0521
## binary1         0.5333        0.5333          0.0000          .    0.0000
## numeric2       11.1111       11.2889         -0.0193     1.0977    0.0529
## binary2         0.1111        0.1111          0.0000          .    0.0000
##          eCDF Max Std. Pair Dist.
## numeric1 0 1556 0 3169
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Matching and Conditional Logistic Regression
Summary of Balance for Matched Data Using the simualted example

## 
## Call:
## matchit(formula = treat ~ numeric1 + binary1 + numeric2 + binary2, 
##     data = data, distance = "mahalanobis", replace = TRUE)
## 
## Summary of Balance for Matched Data:
##          Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## numeric1       11.7556       11.3778          0.0567     0.8437    0.0521
## binary1         0.5333        0.5333          0.0000          .    0.0000
## numeric2       11.1111       11.2889         -0.0193     1.0977    0.0529
## binary2         0.1111        0.1111          0.0000          .    0.0000
##          eCDF Max Std. Pair Dist.
## numeric1   0.1556          0.3169
## binary1    0.0000          0.0000
## numeric2   0.1333          0.3236
## binary2    0.0000          0.0000
## 
## Sample Sizes:
##               Control Treated
## All             55.        45
## Matched (ESS)   22.75      45
## Matched         29.        45
## Unmatched       26.         0
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Estimation without weights

sim.match.data1 <- match.data(m.out.sim1)
mod.sim1 <- glm(outc ~ treat + numeric1 + b
                     family = binomial(), d
#summary(mod.sim1)
cbind(Coeff=round(mod.sim1$coefficients, 2)

##             Coeff 2.5 % 97.5 %
## (Intercept) -1.12 -2.65   0.30
## treat       -0.33 -1.40   0.74
## numeric1    -0.04 -0.12   0.04
## binary1      0.48 -0.59   1.59
## numeric2     0.06  0.00   0.12
## binary2     -0.66 -2.67   0.92

summary(sim.match.data1 $weights)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.6444  1.0000  1.0000  1.0000  1.0000  2.5778

Estimation using matching weights

mod.sim2 <- glm(outc ~ treat + numeric1 + b
                     family = binomial(), d
#summary(mod.sim2)
round(coeftest(mod.sim2, vcov. = vcovCL), 2

## 
## z test of coefficients:
## 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)    -1.30       0.78   -1.65     0.10
## treat          -0.55       0.56   -0.97     0.33
## numeric1       -0.01       0.04   -0.35     0.73
## binary1         0.64       0.59    1.10     0.27
## numeric2        0.06       0.03    1.91     0.06
## binary2        -0.47       0.86   -0.55     0.58
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05

Matching and Conditional Logistic Regression

Using the simualted example
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modelclogit2 <- clogit(outc ~ treat + numer
                       weights = weights, d
cbind(Coeff= round(coef(modelclogit2), 2), 

##          Coeff 2.5 % 97.5 %
## treat    -0.33 -1.38   0.72
## numeric1 -0.04 -0.12   0.04
## binary1   0.47 -0.60   1.54
## numeric2  0.05  0.00   0.11
## binary2  -0.65 -2.36   1.05

Sample Sizes:

Control Treated

All 55. 45

Matched (ESS) 18.58 45

Matched 28. 45

Unmatched 27. 0

Discarded 0. 0

Matching and Conditional Logistic Regression

Estimation using Conditional Logistic Regression

clogit Regression using the simualted example
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Matching and Conditional Logistic Regression

Modification of the matching using the simualted example

m.out.sim2<- matchit(treat ~ numeric1 + binary1 + numeric2 + binary2, data = data,
                  method = "cem", cutpoints = list(numeric1 = 5),
                  grouping = list(binary1 = list(c(0, 1)) ))
summary(m.out.sim2, un=F)

## 
## Call:
## matchit(formula = treat ~ numeric1 + binary1 + numeric2 + binary2, 
##     data = data, method = "cem", cutpoints = list(numeric1 = 5), 
##     grouping = list(binary1 = list(c(0, 1))))
## 
## Summary of Balance for Matched Data:
##          Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## numeric1       10.5882       10.1314          0.0686     1.0238    0.0384
## binary1         0.5882        0.4539          0.2692          .    0.1343
## numeric2        8.0294        7.9127          0.0127     0.9265    0.0231
## binary2         0.0882        0.0882          0.0000          .    0.0000
##          eCDF Max Std. Pair Dist.
## numeric1   0.1314          0.3284
## binary1    0.1343          1.0857
## numeric2   0.1216          0.2049
## binary2    0.0000          0.0000
## 
## Sample Sizes:
##               Control Treated
## All             55.        45
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##   outc treat numeric1 binary1 numeric2 binary2   weights subclass
## 1    1     1       15       1       12       0 1.0000000        9
## 2    0     1       10       1       17       1 1.0000000       11
## 3    0     0       28       0        8       0 0.3970588        1
## 4    0     1        8       0        7       0 1.0000000        6
## 6    0     1        6       1        9       0 1.0000000        6
## 8    1     0       13       0       14       1 0.7941176        2

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.3971  1.0000  1.0000  1.0000  1.0588  1.5882

##  1  2  3  4  5  6  7  8  9 10 11 12 13 
##  3  4  5  7 13  7  2  6  5  2  2  3  2

Matching and Conditional Logistic Regression

Modification of the matching using the simualted example

match.data2 <- match.data(m.out.sim2)
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The Bayesian Way

dat2 <- match.data2[order(match.data2$subclass), ] # order by strata
post3 <- stan_clogit(outc ~  treat +   numeric1 +  numeric2 +binary1+ (1 | binary2), #
                    strata = subclass,
                    data = dat2,
                    chains = 2, iter = 100)
post3
post4 <- stan_clogit(outc ~  treat +  numeric1 +  numeric2 + binary1+ (1 | binary2),
                    data = dat2[order(dat2$subclass), ], # order necessary
                    strata = subclass, QR = TRUE,
                    cores = 2, seed = 704)

post4
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Regression equation

Consider the 1:1 matched design (simplest case) with , ..., K strata and p covariates

Where ,  is log-odds in the  stratum;  be the data vector for

the control and  be the data vector for the case.  .

k = 1
logit(πk(X)) = αk + β'X

πk(X) = Pr(Dik = 1|X) αk kth X0k

X1k Sk = D0k + D1k

Lk(β) = Pr(D1k = 1,D0k = 0|X1k,X0k,Sk = 1,nk = 2)
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