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Expected competencies

e Knows why we use "matching" in epidemiology.

e Knows advantages and disadvantages of matching

Obijectives

e To discuss advantages and disadvantages of matching
e Toillustrate the use of logistic regression in presence of paired data

e To illustrate and discuss the use of (conditional) logistic regression for the analysis of
matched/paired data

e Slides 3 - 58: Main content

e Slides 59 - 73: Additional worked
example
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Paired Data vs Matched data
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Paired data

* Expected to account for "known & unknown" potential confounders

e Correlated - by nature
o E.g., twins, same people pre-post observations, eyes in the same individual, etc.
e Variable correlation type

o t1 = tg,constant, exchangeable, lagged, etc.
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Matching

e Making comparable a set of subjects:

“Matching refers to the selection of a reference series - unexposed subjects in a cohort
study or controls in a case-control study - that is identical, or nearly so, to the index
series with respect to the distribution of one or more potentially confounding factors.”
(RGL 2008, p. 171)

"When estimating causal effects using observational data, it is desirable to replicate a
randomized experiment as closely as possible by obtaining treated and control groups
with similar covariate distributions. This goal can often be achieved by choosing well-
matched samples of the original treated and control groups, thereby reducing bias due
to the covariates.” (Stuart E, 2010) Matching methods for causal inference: A review
and a look forward
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Why do we match?

The main objective of matching is to make the comparison groups as similar as possible on
everything except the variable of interest.

e Address confounding

o Remember Exchangeability ?
Pr(Y*|X=1)=Pr(Y*|X=0)orY”* Il X

o The related term, Ignorability , assumes that there are no unobserved differences
between the treatment and control groups, conditional on the observed covariates.

e Also called Conditional Exchangeability : X 1L Y (0 vy ()| 7
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Why do we match?

"Although causal assumptions are often invoked when using matching, matching is
simply an adjustment method that can be used regardless of whether these
assumptions are met; it is the interpretation of the estimated effect after matching
as causal that requires these assumptions.”

Matching Methods for Confounder Adjustment: An Addition to the Epidemiologist’s Toolbox,
Epidemiologic Reviews, Volume 43, Issue 1, 2021, Pages 118-129
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Two settings

(1) Outcome values are not yet available:

e Matching is used to select subjects for follow-up.

e Relevant for high cost studies or logistics considerations preventing data collection for the
full control group.

e The basis for original theoretical work and developments, comparing selecting matched
versus random samples of the control group.

(2) Outcome data is already available:

e The goal of the matching is to reduce bias in the estimation of the treatment effect.

. Outcome values are not used in the matching process!
. The matching can be done multiple times
. Best balance -the most similar treated and control groups- the final matched samples.

Matching methods for causal inference: A review and a look forward
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Claimed Advantages of Matching for Causal Inference

by Liz Stuart:

e "1, matching methods should not be seen in conflict with regression adjustment and in fact the
two methods are complementary and best used in combination.

e "2, matching methods highlight areas of the covariate distribution where there is not sufficient
overlap between the treatment and control groups, ... treatment effect estimates would rely
heavily on extrapolation.

o Selection models and regression models perform poorly when there is insufficient overlap,
... standard diagnostics do not checking this.

o Matching methods in part serve to make researchers aware of the quality of resulting
inferences".

e 3, matching methods have straightforward diagnostics by which their performance can be
assessed".

Matching methods for causal inference: A review and a look forward
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Matching by study design

Matching is often thought about as analogous to physical control in randomized experiments

Case Controls: The effect of matching in a case-control study is to introduce bias into the
crude association, which is accounted for only by adjusting for the matching factors in the
analysis.

e If the matching factors are associated with exposure, then matching on such factors will
introduce a confounding-like bias that needs to be accounted for in the analysis.

e Conditional logistic regression is a multivariate regression approach which treats each
matched pair as a separate stratum and is the analytic control of choice for the matching
introduced bias.

Cohort studies: Matching exposed to unexposed subjects according to some matching factors
requires no additional 1 analytic control for these matching factors in cohort studies.

1 Debatable for some, but in principle.
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Case-control matching: effects, misconceptions, and recommendations

1.
2.
3.

Matching, even for non-confounders, can create selection bias;
Matching distorts dose-response relations between matching variables and the outcome;

Unbiased estimation requires accounting for the actual matching protocol as well as for
any residual confounding effects;

. For efficiency, identically matched groups should be collapsed;

5. Matching may harm precision and power;

. Matched analyses may suffer from sparse-data bias, even when using basic sparse-data

methods.

"Supporting advice to limit case-control matching to a few strong well- measured confounders, which would devolve to
no matching if no such confounders are measured".

"On the positive side, odds ratio modification by matched variables can be assessed in matched case-control studies
without further data, and when one knows either the distribution of the matching factors or their relation to the
outcome in the source population, one can estimate and study patterns in absolute rates.”

Mansournia, M.A., Jewell, N.P. & Greenland, S. Case-control matching: effects, misconceptions, and
recommendations. Eur ] Epidemiol 33, 5-14 (2018).
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If matching INDUCES confounding and/or selection bias in case-control studies, why do
we do it?

Efficiency !

e By selecting only the most relevant controls, one save time and money (except if data is

already collected).
e Some argue that matching provides non-parametric control (e.g., Ho et al., Political

Analysis 2007)
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How do we match people?

e Matching can involve subset selection (i.e., selecting units from the sample to retain and
dropping the rest) or,
e Stratification (i.e., assigning units to pairs or strata containing both exposed and
unexposed units);
o Some methods, like pair matching, involve both.
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Matching steps

Matching methods have four key steps: #1 to #3 for “design” and #4 “analysis:”

1. Defining “closeness”: the distance measure used to determine whether an individual is a
good match for another,

2. Implementing a matching method, given that measure of closeness,

3. Assessing the quality of the resulting matched samples, and perhaps iterating with Steps
(1) and (2) until well-matched samples result, and

4. Analysis of the outcome and estimation of the treatment effect, given the matching done
in Step (3).

Matching methods for causal inference: A review and a look forward
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1) Closeness (i)

Two main aspects to determining the measure of distance (or “closeness”) to use in matching:

A) Determining which covariates to include

* The key concept is strong ignorability.

* The assumption: no unobserved differences between the treatment and control groups,
conditional on the observed covariates.

* Include all variables known to be related to both treatment assignment and the outcome.

e Should not include variables that may have been affected by the treatment of interest
(Rosenbaum, 1984, Frangakis and Rubin, 2002; Greenland, 2003).

B) Combining those covariates into one distance measure.

e “Distance:” is a measure of the similarity between two individuals

Matching methods for causal inference: A review and a look forward
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1) Closeness (ii

Four primary ways to define the distance D;; between individuals 7 and j for matching:

1. Exact: Dij = 0, Zf X; = Xj; Dz‘j = 00, Zf X; 74 Xj

2. Mahalanobis (Distance between a point and a distribution): distance of the vector from the
mean divided by the covariance matrix to account for correlation

3. Propensity score 1

4. Linear propensity score 1

e These measures can be combined, e.g., exact matching on key covariates followed by propensity score matching
within groups.

e When exact matching is not possible (e.g., sample size limitations), “fine balance” methods may be a good
alternative (Rosenbaum et al., 2007).

e Exact matches often leads to many individuals not being matched, which can result in larger bias than if the
matches are inexact but more individuals remain in the analysis.

1 \We have a lecture on this!

Matching methods for causal inference: A review and a look forward
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Matching and weighting for the average exposure effect in the exposed
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Matching Methods for Confounder Adjustment: An Addition to the Epidemiologist’s Toolbox,
Epidemiologic Reviews, Volume 43, Issue 1, 2021, Pages 118-129
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2) Implementing matching

e Type: “Individually matched” or “Group matched”
* The most commonly used design is 1:1 matched
o Nearest neighbor matching

o The order of matching for "treated" may change the quality of the matches

Selecting the number of matches involves a bias : variance trade-off.

e Multiple controls for each treated individual will generally increase bias since the 2nd, 3rd,
and 4th closest matches are, by definition, further away from the treated individual than is
the 1st closest match.

* Multiple matches can decrease variance due to the larger matched sample size.

With or without replacement: controls that look similar to many treated individuals can be used
multiple times and replacement can decrease bias. Also, the order in which the treated
individuals are matched does not matter.

¢ Recall: Once we match on certain factors, we are forfeiting estimating their effect

Matching Methods for Confounder Adjustment 19773
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Impletment matching

Option Benefits Cautions
Matching on the . :
. g Can better balance the joint May not perform well with many
covariates directly (e.g., . . .. .. , .
. distribution of covariates; does covariates, due to curse of
Mahalanobis distance : . . :
: not require an exposure model dimensionality
matching)
Requires matching only on a : e
: : . : : Relies on specification of
Matching on the single dimension; has theoretical ,
) . : exposure model, pairs may not
propensity score balancing properties; tends to :
. be close on covariates
perform well empirically
Can improve balance; yields close , .
- L Dropping units decreases
Restrictions on pairs; improves robustness to .
, precision and can change the
closeness of matches assumptions about outcome . :
target population/estimand
model
Better balance than without : :
: : : Reusing units decreases
Matching with replacement; good with small S :
. precision; increases reliance on
replacement unexposed samples or when ratio :
L a few units
of exposed to unexposed is high
: Retains more units, thereb
k:1 matching y Balance can be worse 20/ 73
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3) Assess quality of the matching (i)

Covariate balance and effective sample size.

e Balance: The “standardized bias” or “standardized difference in means” (SDM)

o The difference in means of each covariate, divided by the standard deviation in the full
treated group.

o Similar to an effect size and is compared before and after matching (Rosenbaum and
Rubin, 1985b).

o The SDM should be computed for each covariate, as well as two-way interactions and
squares.

e For regression adjustment to be trustworthy, the absolute SDM should be < 0.25 and the

variance ratios should be between 0.5 and 2 (Rubin 1973, Cochran and Rubin 1973 & Rubin
2001).
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Standardized Difference in Means (SDM)

Data

library(stddiff); library("MatchIt") #?matchIt

set.seed(7042023); treat<- rbinom(100, 1, .45); outc<- rbinom(100, 1, .25);
numericl<-round(abs(rnorm(100)+1)*10,0); binaryl<- rbinom(100, 1, .55);
numeric2<-round(abs(rnorm(100)+1)*x10,0); binary2<- rbinom(100, 1, .25)
data<-data.frame(outc, treat, numericl, binaryl, numeric2, binary2) #;summary(data)

Estimation of the SDM

##the std difference using the package
stddiff.numeric(data=data, gcol=2,vcol=c(3, 5)) #;stddiff.binary(data=data, gcol=2,vcol=c(2,

## mean.c sd.c mean.t sd.t missing.c missing.t stddiff stddiff.l
## numericl 10.745 8.033 11.756 6.661 0 0 0.137 -0.258
## numeric2 11.145 7.901 11.111 9.203 0 0] 0.004 -0.390
## stddiff.u
## numericl 0.531
## numeric2 0.398

##the std difference in means by hand
(mean(dataSnumericl[data$treat==1])- mean(dataSnumericl[data$treat==0]))/
sd(data$numericl[dataS$treat==1])

## [1] 0.151641 22 /73



Assess quality of the matching (i

Hypothesis tests and p-values that incorporate information on the sample size (e.g., t-tests) should not be used as measures of
balance (Austin, 2007; Imai et al., 2008).

1. Balance is inherently an in-sample property, without reference to any broader population or super-population.

2. NHST can be misleading as measures of balance, because they often conflate changes in balance with changes in
statistical power. E.g., randomly discarding control individuals seemingly leads to increased balance, simply

because of the reduced power.

e Hypothesis tests should not be used as part of a stopping rule to select a matched sample when those samples have
varying sizes (or effective sample sizes).

e Some argue that NHST are OK for testing balance due to the reduced power for estimating the treatment effect (Hansen,
2008), but that argument requires trading off Type I and Type I errors. The cost of those two types of errors may differ
for balance checking and treatment effect estimation.

What about the "observations are independent" assumption?

Matching methods for causal inference: A review and a look forward
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4) Analyze

When satisfactory matching (i.e., good covariate balance and a reasonable effective sample
size) is NOT achieved after repeated specification and assessment of the quality, maybe the
sample is fundamentally so different that no effect can be robustly estimated.

When satisfactory matching is achieved, one can estimates the exposure effect and its
uncertainty (i.e., its standard error, confidence interval, and p-value).

e Stratification and Regression.

e Similar to the idea of “double robustness”, and the intuition is that regression adjustment
is used to “clean up” small residual covariate imbalance between the groups.

e Matching methods should also make the treatment effect estimates less sensitive to
particular outcome model specifications (Ho et al., 2007).
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4) Analyze

Continuous
outcome

Matched dataset

Pooled (independent)

Two sample t-test

Wilcoxon rank-sum test

Linear regression model

Unpooled (matched)

Paired t-test

Wilcoxon signed rank test

Linear mixed model

Chi-square test or Fisher exact test McNemar test
e Cochran-Mantel-Haenszel test
outcome
(Unconditional) Logistic model Conditional logistic model
Log-rank test Stratified log-rank test
Survival
outcome
Cox PH regression model Stratified Cox PH regression

Lee B, Kim N, Won S, Gim J. Propensity score matching for comparative studies: a tutorial with R and Rex. ] Minim

Invasive Surg 2024,;27:55-71. https://doi.org/10.7602/jmis.2024.27.2.55
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Stratification for Matching
Assume case-control data: Consider 100 matched pairs (i.e., 100 cases and 100 controls, each
paired by matching factors)

There are 100 2x2 tables, each containing the two observations in the matched pair, which can
be grouped by their combination of exposure and cases vs controls as: W, X, Y, and Z pairs.

W pairs Y pairs
E -E E -E
D10 D 01
D10 -D 10

X pairs Z pairs
E -E E -E
D10 D 01
-D 0 1 -D 0 1
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Stratification for Matching

The 100 2x2 tables can be summarized further as follows:

Example: W=30, X=30, Y=10, Z=30 — W + X+ Y + Z =100 TOTAL PAIRS

Disease Present
Exposure(+) Exposure (-)
~Disease absent Exposure(+) W =30 X =30
Exposure(-) Y=10 Z =30

For all tables, fromz = 1to 100, NV + 72 = 2.

Then, how to analyze this?
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Two stratified analysis options for Matching:

1) Mantel-Haenszel Odds Ratio (ME3 2008, p. 287, eq 16-8)

> AoiBii/ N+t

ORyH = (

2) McNemar Test and McNemar Odds Ratio (ME3 2008, p. 286-288)

X-Y)? .
X2 = (555 ) df = 1,with ORaey = X/Y
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1) Mantel-Haenszel Odds Ratio for Matching

> ApiBii/N+i

ORpy g = (

Type W tables (case and control are exposed), A1; = Bi; = 1 and Ayp; = By; = 0.

Type X tables (case is exposed, control is unexposed), A;; = Bg; = 1 and Ag; = B1; =0

Type Y tables (case is unexposed, control is exposed), A1; = Bg; = 0and Ag; = B1; =1

Type Z tables (case and control are unexposed), A1; = Bi; = 0and Ayp; = By; = 1.
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1) Mantel-Haenszel Odds Ratio

e Type W tables (case and control are exposed), A;; = By; = 1and Ay; = By; = 0.

e Type X tables (case is exposed, control is unexposed), A1; = By; = 1and Ag; = B1; =0
e TypeY tables (case is unexposed, control is exposed), A;; = By; = 0and Ay; = By; =1
e Type Z tables (case and control are unexposed), A;; = By; = 0and Ay; = By; = 1.

e The Type W and Type Z tables have values of zero for all products of A;; and By, as well as
all products of Ay; and By;.

e W and Z are concordant pairs, cases and controls have the same exposure level and in the
OR, g do not contribute to the OR estimation.
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1) Mantel-Haenszel Odds Ratio

D

E -E
~D E W=30 X=30
-E Y=10 Z2=30

OR —
M ( > i AoiBii/ N+t

e Estimating OR ;g = (30/2)/(10/2) using tables X and Y Type tables, the OR estimate is
15/5 = 3.0.

e Can be obtained using mantelhaen. test function of the stats package, the cmh. test
function of the lawstat, stratastats, or epi.2by2. Input data must be either a list of
2x2 tables or a 3Dimensional array (e.g. 3 levels or 2x2x2 table).
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Two stratified analysis options:

2) McNemar Test and McNemar Odds Ratio

Sum across all matched pair tables to form a single summary table:

D 2
2 _ ((XY) _
o X_(X+Y),df_1
~D E W (30) X(30) ORyeny = X/Y =30/10=3
B Y(0) 230 SE = ,/(1/X+1/Y)=,/(1/30 +1/10)

= 0.365

The McNemar x2 test the null hypothesis of no association between exposure and outcome.

e Using the numbers above, x2 = (30 — 10)2/(30 + 10) = 400/40 = 10.

OR);.ny = 3 and the 95% CI is exp(1.099 + 1.96(0.365)) = exp(0.383, 1.814) = (1.467, 6.14)
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2) McNemar Test and McNemar Odds Ratio

X <= cbind(c(30,10), c(30,30));
mn_test <- mcNemar (X, alpha = 0.05)
mn_test

#H#
#H#
#H#
#H#
#H#
#H#
#H#

Matched Pairs Analysis: McNemar's Chi”2 Statistic and Odds Ratio

McNemar's Chi”2 Statistic (corrected for continuity)

McNemar's 0dds Ratio (b/c): 3
95% Confidence Limits for the OR are:

[1.521, 8.68]

9.025 which has a p-value of: 0.003
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2) McNemar Test and McNemar Odds Ratio

kable (mn_tests$X)

Exposed Person: Disease Exposed Person: Disease
Present Absent
Control Person: Disease 30 30
Present
Control P : Di
ontrol Person: Disease 10 30

Absent

Can use this code to obtain details

summary (mn_test)
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What to do if | have more data, other covariates to account
for?

As long as you have gone through steps 1to 3, one can
move to the analysis step using Regressions...
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Regression Adjustment for Matching

Straightforward way: Fit a regression model including the matching weights in the estimation
and using the coefficient on exposure as the exposure effect estimate; which is equivalent to
computing a (weighted) difference in means.

* A binary regression model with a log link can be used to estimate the risk ratio.

e g-computation methods and targeted minimum loss-based estimation, can be used to
ensure the resulting effect estimate is interpretable as marginal rather than conditional
when the effect measure is non-collapsible.

* The coefficient on exposure in stratified, conditional, and covariate-adjusted models for
odds or hazard ratios corresponds to a conditional effect; thus, these models should be
avoided after matching, which is best suited for estimating marginal effects.
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It’s not matching or regression, it’s matching and regression.
Posted on June 22, 2014 1:36 PM by Andrew
A colleague writes:

Why do people keep praising matching over regression for being non parametric? Isn’t it fing parametric in the matching stage, in effect, given how
many types of matching there are... youre making structural assumptions about how to deal with similarities and differences.... the likelihood two

observations are similar based on something quite similar to parametric assumptions... you're just hiding the parametric part..

My reply: It’s not matching or regression, it’s matching and regression. Matching is a way to discard some data so that the regression model can fit better. Trying to do
matching without regression is a fool’s errand or a mug’s game or whatever you want to call it. Jennifer and I discuss this in chapter 10 of our book, also it’s in Don

Rubin’s PhD thesis from 1970!

This entry was posted in Causal Inference by Andrew. Bookmark the permalink.

It's not matching or regression, it's matching and regression.
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Example: Infertility after Spontaneous and Induced Abortion: This is a matched case-
control study dating from before the availability of conditional logistic regression. There are 83-
strata indicated by the variable stratum.

data("infert"); set.seed(7042024); infert$treat <- rbinom(length(infert$case), 1, .6) #creat
summary (infert[, c("case", "treat","education", "parity", "induced",
"age", "spontaneous", "stratum")]); dim(infert) #?infert

# case treat education parity

## Min. 0.0000 Min. 0.0000 0-5yrs : 12 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:0.0000 6-11yrs:120 1st Qu.:1.000
## Median :0.0000 Median :1.0000 12+ yrs:116 Median :2.000
## Mean 0.3347 Mean 0.6048 Mean :2.093
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :1.0000 Max. 1.0000 Max. :6.000
## induced age spontaneous stratum

## Min. :0.0000 Min. $21.00 Min. :0.0000 Min. ¢ 1.00
## 1st Qu.:0.0000 1st Qu.:28.00 1st Qu.:0.0000 1st Qu.:21.00
## Median :0.0000 Median :31.00 Median :0.0000 Median :42.00
## Mean :0.5726 Mean :31.50 Mean :0.5766 Mean :41.87
## 3rd Qu.:1.0000 3rd Qu.:35.25 3rd Qu.:1.0000 3rd Qu.:62.25
## Max. :2.0000 Max. 144,00 Max. 2.0000 Max . :83.00

## [1] 248 9

One case with two prior spontaneous abortions and two prior induced abortions is omitted.
Source: Trichopoulos et al (1976) Br. J. of Obst. and Gynaec. 83, 645-650. R-datasets packages

38/73



Assessing the dataset, closeness and quality of the matching Example The “standardized

difference in means” (SDM) using stdd1i ff package

#(mean(infertsage[infertStreat==1])- mean(infertsage[infertStreat==0]))/
# sd(infertsage[infertsStreat==1])
stddiff.numeric(data=infert,gcol=9,vcol=c(2,3 ))

# mean.c sd.c mean.t sd.t missing.c missing.t stddiff stddiff.1l
## age 31.796 5.079 31.313 5.370 0 0 0.092 -0.162
## parity 2.194 1.232 2.027 1.264 0 0] 0.134 -0.121
## stddiff.u
## age 0.347
## parity 0.389

# stddiff.category(data=infert,gcol=9,vcol=c(4,6, 1))
stddiff.binary(data=infert,gcol=9,vcol=c(4,6 ))

# p.cC p.t missing.c missing.t stddiff stddiff.l stddiff.u
## induced 0.551 0.587 0] 0] 0.072 -0.183 0.327
## spontaneous 0.704 0.493 0 0] 0.440 0.183 0.698

This is the step to check the balance across variables
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Implementing the matching Example The “standardized difference in means” (SDM) using

matchIt package Assessing the matching

m.out<- matchit(treat ~

m.out

## A matchit object

##
##
##
##
##
##

This is the step to ask the software to match/check individuals treated and not treated by the

method: None (no matching)
distance: Propensity score
- estimated with logistic regression
number of obs.: 248 (original)
target estimand: ATT
covariates: age, parity, spontaneous, induced, education

given covariates

age+ parity + spontaneous + induced + education,
data = infert, method = NULL, distance = "glm")
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Assessing the matching using matchIt package: Example

round (summary (m.out)$"sum.all"[,1:4], 3) #summary(m.out)

#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t

This is the step to check the balance across variables before matching. Recall in this data

Means Treated Means Control Std.

0.
31.

2.
. 704
.551
.031
.449
.520

distance 0.
age 31.
parity 2.
spontaneous

induced

education0-5yrs

education6-11yrs
educationl2+ yrs

[l o oNOoNO]

621
313
027

.493
.587
.060
.507
.433

individuals were already matched

[l o oNOoNO)

581
796
194

Mean Diff. Var.
.426
.090
.132
.313
.048
.124
.115
.176

Ratio

H O KR O

.928
.118
.051
. 704
.026

NA
NA
NA
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Assessing the quality of the matching using matchIt package: Example

Plot of “standardized difference in means” (SDM)

Standardized Difference in Means
‘infert” dataset

distance
age
parity
spontaneous Sample
induced Unadjusted

education_0-5yrs
education_6-11yrs

education_ 12+ yrs

0.0 0.1 0.2 0.3 0.4
Absolute Standardized Mean Difference

This plot helps with the visualization of the (un)balance across variables
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Regression model for Matched Data

The model for a matched data with k=1, ..., K strata is

logit|m(X)] = o + By X1+ .. +8,X,
Where D is "Disease/Outcome, i (X) = Pr(D;;, = 1|X), oy, is log-odds in the kg, stratum

e Unless the number of subjects in each stratum is large, fitting these models using the
unconditional ML does not work well.

e Inindividually matched there is only one case in each stratum and hence we need some
way of getting rid of the nuisance parameters.

Conditional likelihood: the probability of the observed data conditional on the stratum total
and the number of cases observed is the conditional likelihood for the k the stratum.
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Considerations for Regression Adjustment with Matched
Data

e Using standard logistic regression model to analyze the matched data, the effect estimates
(i.e., exponentiated slope coefficients) will generally be overestimates.

e If the data are matched 1-to-1 in pairs, the OR estimate obtained from a standard logistic
model will be the square of the correct value.

* To complete the matched data analysis, one needs a set of indicator variable that records
that matched strata.

o The coefficients for the £ — 1 indicator variables (i.e. stratum-specific intercepts) are
“nuisance parameters” in the sense that they have no epidemiologic interpretation.
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Standard Logistic Regression for matching: Regression Example using the infert data set

mod.logistic <- glm(case ~ treat + age + parity + education + spontaneous +induced,
binomial(), data

##
##
##
##
##
##
##
##
##

(Intercept)
treat

age

parity
education6-11lyrs
educationl2+ yrs
spontaneous
induced

family
Coeff 2.
-1.03 -3.
-0.10 -0.
0.04 -0.
-0.83 -1.
-1.06 -2.
-1.43 -3.
2.04
1.29

1.
0.

%

94
72
02
24
63
10
46
72

97.5
.84
.53
.10
.46
.54
.24
.68
.91

HNOOOO O

%

#H#
#H#
#H#
#H#
#H#
#H#
#H#
#H#
#H#

infert)

(Intercept)
treat

age

parity
education6-11lyrs
educationl2+ yrs
spontaneous
induced

W N OO HrHr oo

OR 2.

.36
.91
.04
.43
.35
.24
.70
.65

N DO OOO OO

%
.02
.49
.98
.29
.07
.04
.31
.05

97.5
.27
.70
11
.63
.72
.28
14.
.75

R H O RO

%

64

Although the model ran and produced results, we know this model is wrong because does not

account for the matched structure
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Standard Logistic Regression Example using the infert data set Adding the stratum (n=83)
variable

mod.logisticl <- glm(case ~ treat + age + parity+ education + spontaneous +induced +
factor(stratum),
family = binomial(), data = infert)

## Coeff 2.5 % 97.5 % ## OR 2.5 % 97.5 %
## (Intercept) -2.70 -31.88 24.10 ## (Intercept) 0.07 0.00 2.922792e+10
## treat -0.38 -1.19 0.43 ## treat 0.68 0.30 1.530000e+00
## age -0.02 -0.64 0.60 ## age 0.98 0.53 1.820000e+00
## parity -0.57 -6.76 6.47 ## parity 0.57 0.00 6.431500e+02
## education6-1l1lyrs 1.76 -29.00 36.37 ## education6-11lyrs 5.82 0.00 6.261757e+15
## educationl2+ yrs 0.05 -30.71 34.27 ## educationl2+ yrs 1.05 0.00 7.646079e+14
## spontaneous 3.25 2.40 4.25 ## spontaneous 25.83 10.98 7.018000e+01
## 1dinduced 2.25 1.38 3.24 ## 1dinduced 9.49 3.98 2.555000e+01
## factor(stratum)2 2.83 -36.39 47.06 ## factor(stratum)2 16.90 0.00 2.744061e+20
## factor(stratum)3 1.96 -7.07 11.07 ## factor(stratum)3 7.13 0.00 6.451847e+04
## factor(stratum)4 0.28 -16.76 19.30 ## factor(stratum)4 1.33 0.00 2.399727e+08
## factor(stratum)5 -1.27 -10.68 7.55 ## factor(stratum)5 0.28 0.00 1.905830e+03
## factor(stratum)e6 -3.29 -18.61 10.49 ## factor(stratum)é6 0.04 0.00 3.585211e+04
## factor(stratum)7 1.41 -5.23 8.37 ## factor(stratum)7 4,11 0.01 4.314480e+03
## factor(stratum)8 -0.98 -6.86 4,97 ## factor(stratum)s8 0.38 0.00 1.444700e+02
## factor(stratum)9 -1.33 -8.60 6.26 ## factor(stratum)9 0.26 0.00 5.245200e+02
## factor(stratum)l1l0 -0.46 -7.85 7.02 ## factor(stratum)l® 0.63 ©0.00 1.119140e+03
## factor(stratum)ll 0.02 -6.89 7.05 ## factor(stratum)ll 1.02 0.00 1.151240e+03
## factor(stratum)l2 -2.39 -17.23 11.03 ## factor(stratum)l2 0.09 0.00 6.194493e+04
## factor(stratum)l3 ©0.95 -5.49 7.43 ## factor(stratum)l3 2.58 0.00 1.686550e+03
## factor(stratum)l4 -2.23 -14.83 9.46 ## factor(stratum)l4 0.11 ©0.00 1.285116e¥Ht/ 73
## Factor(stratium)l15 -1.37 -=-7.9?2 5 07 ## Factor(stratiim)15 0.25 O0.00 1.595600e+0?



Standard Logistic Regression Example using the infert data set Adding the stratum
variable (n=83)

e Then the OR formula is just the usual logistic regression formula for exposure E,
confounder C, but adding in 82 indicator variables for the 83 strata of matched pairs.

This doesn't seem Efficient...
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Conditional Logistic Regression is the righ type for matched
data

e We can make use of a conditional maximum likelihood method to estimate the exposure
effect in this design, rather than the usual unconditional model.

o The “conditional” part refers to "conditioned on the strata of matched pairs".
* The k stratum-specific conditional likelihood is obtained as the probability of the observed

data conditioned on the number of observations in stratum k and the number of these
that are cases.

* The probability of the observed data relative to the probability of the data under all other
possible assignments of the .y, cases and ngy controls to nk(= ny; + ng) subjects.
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Considerations for the Conditional Logistic Regression

e This conditional likelihood is complex (see Hosmer & Lemeshow 2000, pp. 225-226)
e For 1-to-1 matching there are only 2 subjects per stratum, and the conditional likelihood
1k
for stratum k is: I(8) = (ﬁL)
e

T T
Lk y o0k

where x1; is the data vector for the case and xy, is the data vector for the control.

e Given values for 8, x1; and xok, the expression above is interpreted as the modeled
probability that an exposed subject is a case, assuming the 1-to-1 matched design (so one
of the two observations in the stratum must be a case).

e For any stratum in which x1; = xox the prob. of each observation being a case is 0.5,
regardless the value of £, and therefore the stratum is uninformative.

e Checking on the frequency of the 2 types of discordant pairs, recognizing that if one or the
other doesn't occur that the conditional estimator is undefined.
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Conditional Logistic Regression for matched data, Example using the infert data

modelclogit <- clogit(case ~ treat + spontaneous + induced + strata(stratum), data

infert)

cbind(Coeff=round(coef(modelclogit), 2), round(confint(modelclogit), 2)) #summary(modelclogi

##
##
##
##

This shows that only contributing parameters are used in the estimation

Coeff 2.5 % 97.5 %
treat -0.26 -0.89 0.37
spontaneous 2.00 1.30 2.70
induced 1.45 0.73 2.17

clogit(case ~ treat + spontaneous + 1induced +

##
##
##
##
##
##
##
##
##
##
##
##
##
H##

age + parity+ education
strata(stratum), data

Call:

clogit(case ~ treat + spontaneous + induced + age + parity +

+
= infert)

education + strata(stratum), data = infert)
coef exp(coef) se(coef)
treat -0.2580 0.7726 0.3210 -0.8
spontaneous 1.9992 7.3834 0.3575 5.5
induced 1.4499 4.2626 0.3659 3.9
age NA NA 0.0000
parity NA NA 0.0000
education6-11lyrs NA NA 0.0000
educationl2+ yrs NA NA 0.0000
Likelihood ratio test=53.8 on 3 df, p=1.239%e-11

z
04
92
62
NA
NA
NA
NA

P
0.422

2.24e-08
7.43e-05
NA
NA
NA
NA
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Conditional Logistic Regression for matched data, Example using the infert data

Using Standard (Unconditional) Logistic

Regression

#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t

(Intercept)
treat

age

parity
education6-11yrs
educationl2+ yrs
spontaneous
induced

W NOOoOoOH OO

OR 2.5
.36
.91
.04
.43
.35
.24
.70
.65

N DO OO OO O

%
.02
.49
.98
.29
.07
.04
.31
.05

97.5
.27
.70
.11
.63
.72
.28
14.
.75

HH R KR

%

64

Using Conditional Logistic Regression

## OR
## treat Q.77
## spontaneous 7.38
## dinduced 4.26

2.5 %
0.41
3.66
2.08

97.5 %
1.45
14.88
8.73
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Matching and Conditional Logistic Regression: Example using the infert data and
red[using the matchIt package].

m.out2 <- matchit(treat ~ age+ parity + spontaneous + induced + education,
data = infert, method ="cem", cutpoints = list(parity=3),
grouping = list( education= list(c("0-5yrs","6-11lyrs"), "12+ yrs")),
k2k = TRUE, k2k.method = "mahalanobis")

## A matchit object

## - method: Coarsened exact matching Sample Sizes:

## - number of obs.: 248 (original), 96 (matched)

## - target estimand: ATT Control Treated

## - covariates: age, parity, spontaneous, induced, edr--""--
All 99 149
Matched 52 52
Unmatched 47 97
Discarded 0 0

For illustration ONLY, here we changed the matching structure but the dataset was already
matched
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Matching and Conditional Logistic Regression: Example using the infert data and the
matchIt package to plot of balance

age

parity

spontaneous

induced

education_0-5yrs

education_6-11yrs

education_12+ yrs

Standardized Difference in Means

‘infert” dataset

[

0.0

I
o .:
I

Py I

I

I

I

I

I

I

® I

I

I

L X |
I

I

L B J :
I

o !

I

1

0.1

Absolute Standardized Mean Difference

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Sample
@ Unadjusted
® Adjusted

This plot illustrates the balance before (unadjusted) and after (adjusted) matching
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Matching and Conditional Logistic Regression: Example using the infert data and the

matchIt package to provide a Summary of Balance Before-Matching

# Means Treated Means Control Std.
## age 31.313 31.796

## parity 2.027 2.194

## spontaneous 0.493 0.704

## dinduced 0.587 0.551

## education0-5yrs 0.060 0.031

## education6-1llyrs 0.507 0.449

## educationl2+ yrs 0.433 0.520
Summary of Balance After-Matching

# Means Treated Means Control Std.
## age 32.521 32.458

## parity 1.625 1.708

## spontaneous 0.417 0.417

## induced 0.375 0.375

## education@-5yrs 0.083 0.042

## education6-1lyrs 0.354 0.396

## educationl2+ yrs 0.562 0.562

Mean Diff. Var.

-0.090
-0.132
-0.313
0.048
0.124
0.115
-0.176

Mean Diff.
0.012
-0.066
0.000
0.000
0.175
-0.083
0.000

Var.

Ratio
1.118
1.051
0.704
1.026
NA
NA
NA

Ratio
0.966
1.029
1.000
1.000
NA
NA
NA
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Matching and Conditional Logistic Regression: Example using the infert data and the
matchIt package

With weights Without weights

match.datal <- match.data(m.out2) mod.logistic2a <- glm(case ~ treat + age +
#,;head(match.datal) data = match.datal)
mod.logistic2 <- glm(case ~ treat + age + p cbind(round(coefficients(mod.logistic2a), 2

family = binomial(),
data = match.datal, we

os os
#sgmmary(mod.ZogisticZ);.c?effest(mod.Z?gi§ zz (Intercept) 0.58 %4.42 975?52
cbind(Coeff= round(coefficients(mod.logistii 44 treat 1.02 0.03 2.07
## age -0.05 -0.16 0.06
## Coeff 2.5 % 97.5 % ## parity -0.65 -1.44 0.05
## (Intercept) 0.58 -4.44 5.56 ## education6-1lyrs -0.08 -2.45 2.54
## treat 1.02 0.03 2.07 ## educationl2+ yrs -1.06 -3.64 1.62
## age -0.05 -0.16 0.06 ## spontaneous 2.16 1.13 3.35
## parity -0.65 -1.44 0.05 ## dinduced 1.47 0.28 2.75
## education6-1lyrs -0.08 -2.45 2.54
## educationl2+ yrs -1.06 -3.64 1.62 summary (match.datal$wedights)
## spontaneous 2.16 1.13 3.35
## dnduced 1.47 0.28 2.75
## Min. 1st Qu. Median Mean 3rd Qu. Max.
H# 1 1 1 1 1 1

Coefficients are identical because all have same weight=1

55/73



Using clogit function

mod.clog3 <- clogit(case ~ treat + age + parity+ education + spontaneous + +induced,
match.datal)
cbind(Coeff=round(coefficients(mod.clog3), 2), round(confint(mod.clog3),2))

#H#
##
#H#
##
#H#
##
#H#
##

treat

age

parity
education6-11yrs
educationl2+ yrs
spontaneous
induced

data

Coeff 2.5 % 97.5 %

.00
.05
.65

07
05

.13
.45

0.
-0.
-1.
-2.
-3.

1.

0.

00
16
37
49
60
04
24

N WERENOON

.01
.06
.08
.35
.50
.23
.67

GLM using weights and the strata

cbind(Coeff=round(coefficients(mod.logistic2), 2), round(confint(mod.logistic2),2))

#H#
##
#H#
##
#H#
##
#H#
##
#H#

(Intercept)
treat

age

parity
education6-11yrs
educationl2+ yrs
spontaneous
induced

Coeff 2.5 % 97.5
.44
.03
.16
.44
.45
.64
.13
.28

0.
1.
-0.
-0.
-0.
-1.
2.
1.

58
02
05
65
08
06
16
47

N WERENOONWU

%

.56
.07
.06
.05
.54
.62
.35
.75
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What is the quantity estimated in presence of Matching?

e The estimand matching is most often used for is the average exposure effect among those
who were exposed, also known as the average treatment effect on the treated (ATT),

o Ie., the average difference between the observed outcomes for those exposed and
their counterfactual outcomes had they not been exposed.

o This is the same quantity estimated using weighting by the odds (if such).

e Some matching methods allow estimation of the average exposure effect in the
population, e.g., estimated with inverse probability weights. !

o The choice of estimand depends on the desired target population of interest, which
should be specified before the analysis, and matching methods appropriate for that
estimand should be used.

1 More on this on the propensity score lecture!
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The Bayesian way???

infertl <- 1dinfert[order (infert$stratum), ]
post <- stan_clogit(case ~ spontaneous + induced + (1 | parity),
strata = stratum,
data = infertl, # order necessary subset = parity <= 2,
QR = TRUE, cores = 2, seed = 7042023)
post
PPD <- posterior_predict(post) #; summary(PPD)
postl <- stan_clogit(case ~ treat + spontaneous + induced + (1 |education),
data = infert[order(infert$stratum), ],
strata = stratum, QR = TRUE, cores = 4, seed = 7042023)

postl
> post > postl _
stan_clogit stan_clogit
P . . . family: binomial [clogit]
Famlly.. binomial [clogit] i A formula: case ~ treat + spontaneous + induced + (1 | education)
formula: case ~ spontaneous + induced + (1 | parity) observations: 248

observations: 248
—————— Median MAD_SD

Median MAD_SD treat -0.9 0.4
spontaneous 2.0 2.3 spontaneous 2.1 0.4
induced 1.4 0.4 induced 1.4 0.4

Error terms:
Error terms:

Groups Name Std.Dev.
Groups Name Std.Dev. education (Intercept) 1.4
parity (Intercept) 1.4 Num, levels: education 3

Num. levels: parity 6

Conditional logistic (clogit) regression models via Stan S8 /73


http://mc-stan.org/rstanarm/reference/stan_clogit.html

QUESTIONS?

COMMENTS?
RECOMMENDATIONS?
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Details of the McNemar Test

summary (mn_test)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Matched Pairs Analysis: McNemar's Statistic and Odds Ratio (Detailed Summary):
Exposed Person: Disease Present

Control Person: Disease Present 30

Control Person: Disease Absent 10
Exposed Person: Disease Absent

Control Person: Disease Present 30

Control Person: Disease Absent 30

Entries in above matrix correspond to number of pairs.

McNemar's Chi”2 Statistic (corrected for continuity) = 9.025 which has a p-value of: 0.003

Note: The p.value for McNemar's Test corresponds to the hypothesis test: HO: OR = 1 vs. HA: OR !=
McNemar's 0dds Ratio (b/c): 3

95% Confidence Limits for the OR are: [1.521, 8.68]

The risk difference is: 0.2

95% Confidence Limits for the rd are: [0.072, 0.328]
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Code for the Plot of “standardized difference in means” (SDM)

#plot(summary(m.out)) #this provides a series of Q-Q plots
cobalt::love.plot(m.out, thresholds = c(m = .1), abs= T)+ #this provide the line at 0.1
labs(title = 'Standardized Difference in Means', subtitle = " 1infert dataset",
x="Absolute Standardized\ Mean Difference", y=" ") +
geom_vline(xintercept = 0.25, color= "blue", linetype =2)+ #this provide the line at 0.25
theme_light() +
theme( panel.spacing = unit(0.5, "lines"),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 16))

Standardized Difference in Means
‘infert” dataset

distance

age ®
parity

spontaneous ® Sample

induced o @ Unadjusted

education_0-5yrs ®

education_6-11yrs o
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Additonal worked example
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Matching and Conditional Logistic Regression

Using the simualted example and the matchIt package.

m.out.sim <- matchit(treat ~ numericl + binaryl + numeric2 + binary2,
data = data, method = NULL, distance = "glm")
m.out.sim

## A matchit object

## - method: None (no matching)

## - distance: Propensity score

## - estimated with logistic regression

## - number of obs.: 100 (original)

## - target estimand: ATT

## - covariates: numericl, binaryl, numeric2, binary2

H#

## Call:

## matchit(formula = treat ~ numericl + binaryl + numeric2 + binary2,

#i data = data, method = NULL, distance = "glm")

H#

## Summary of Balance for All Data:

# Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## distance 0.4720 0.4320 0.4484 0.7164 0.1157
## numericl 11.7556 10.7455 0.1516 0.6876 0.0699
## binaryl 0.5333 0.4727 0.1215 . 0.0606
## numeric2 11.1111 11.1455 -0.0037 1.3567 0.0683
HH4 hanaryv) A 1111 A D27NGAA —R R09QA A 1HO9K2
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Matching and Conditional Logistic Regression

Using the simualted example

m.out.siml <- matchit(treat ~ numericl + binaryl + numeric2 + binary2,

distance = "mahalanobis", replace = TRUE)

m.out.siml

## A matchit object

#Ht
##
#Ht
##
#Ht

method: 1:1 nearest neighbor matching with replacement
distance: Mahalanobis

number of obs.: 100 (original), 74 (matched)

target estimand: ATT

covariates: numericl, binaryl, numeric2, binary2

data = data,
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Matching and Conditional Logistic Regression

Using the simualted example, Plot of balance simualted Example

Standardized Difference in Means
‘infert’ dataset

| I
| I
numeric1 o : :
| |
I |
| I
| |
binary1 o | 1
, , Sample
| I
I | Unadjusted
| |
. | I ® Adjusted
numeric?2 o | |
I |
| I
| I
| I
binary2 - @ | |
| I
| I
1 1
0.00 0.05 0.10 0.15 0.20 0.25

Absolute Standardized Mean Difference
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Matching and Conditional Logistic Regression

Summary of Balance for All Data (Pre-Matching) Using the simualted example

#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##

NTRTS

Call:
matchit(formula =

treat ~ numericl + binaryl + numeric2 + binary2,
data = data, distance = "mahalanobis",

Summary of Balance for All Data:

Means Treated Means Control Std.

numericl 11.
binaryl 0.
numeric2 11.
binary2 0.

eCDF Max

numericl 0.2061
binaryl 0.0606
numer-ic2 0.1455
binary2 0.1253

7556
5333
1111
1111

Summary of Balance for
Means Treated

numericl 11.
binaryl 0.
numeric2 11.
binary2 0.

eCDF Max

. S 1 A 1T~

7556
5333
1111
1111
Std.

10.7455
0.4727
11.1455
0.2364

Matched Data:

Means Control
11.3778
0.5333
11.2889
0.1111

Pair Dist.

P N ey =

Std.

replace =

Mean Diff.
0.1516
0.1215

-0.0037
-0.3986

Mean Diff.
0.0567
0.0000

-0.0193
0.0000

TRUE)

Var. Ratio eCDF

0.6876

1.3567

0.
.0606
.0683
.1253

[Ol oM O]

Var. Ratio eCDF

0.8437

1.0977

0.
.0000
.0529
.0000

[Ol oM O]

Mean
0699

Mean
0521

66 /73



Matching and Conditional Logistic Regression

Summary of Balance for Matched Data Using the simualted example

#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##

Call:
matchit(formula = treat ~ numericl + binaryl + numeric2 + binary2,
data = data, distance = "mahalanobis", replace = TRUE)
Summary of Balance for Matched Data:
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF
numericl 11.7556 11.3778 0.0567 0.8437 0.
binaryl 0.5333 0.5333 0.0000 . 0]
numeric2 11.1111 11.2889 -0.0193 1.0977 0]
binary2 0.1111 0.1111 0.0000 0]
eCDF Max Std. Pair Dist.
numericl 0.1556 0.3169
binaryl 0.0000 0.0000
numer-ic2 0.1333 0.3236
binary2 0.0000 0.0000
Sample Sizes:
Control Treated
All 55. 45
Matched (ESS) 22.75 45
Matched 29. 45
Unmatched 26. 0
Discarded 0. 0]

Mean
0521

.0000
.0529
.0000
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Matching and Conditional Logistic Regression

Using the simualted example

Estimation without weights

sim.match.datal <- match.data(m.out.siml)
mod.siml <- glm(outc ~ treat + numericl + b
binomial(), d

#summary (mod.siml)

cbind(Coeff=round(mod.siml$coefficients, 2)

H

## (Intercept)
## treat

## numericl
## binaryl

## numeric2

## binary2

summary (sim.match.datal Sweights)

## Min. 1st Qu.
1.0000

## 0.6444

Coeff 2.5
-1.12 -2
-0.33 -1
-0.04 -0
0.48 -0
0.06 0
-0.66 -2

family

% 97.5
.65
.40
.12
.59
.00
.67

Median
1.0000

[l O IO OO

%

.30
.74
.04
.59
.12
.92

Mean 3rd Qu.
1.0000

Estimation using matching weights

mod.sim2 <- glm(outc ~ treat + numericl + b
family = binomial(), d

#summary (mod.sim2)
round (coeftest(mod.sim2, vcov.

#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##

2.5778

z test of coefficients:

Estimate Std. Err
(Intercept) -1.30 0.
treat -0.55 0]
numericl -0.01 0
binaryl 0.64 0
numeric2 0.06 0
binary?2 -0.47 0
Signif. codes: 0 '*xx' 0.001
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1

.3
T
W2
. O¢
« 5¢

= vcovCL), 2
or z value Pr(>|z]|.
78 -1.65 0.
.56 -0.97 0]
.04 -0.35 0]
.59 1.10 0]
.03 1.91 0]
.86 -0.55 0]
'xx!' 0.01 'x' 0.

0!



Matching and Conditional Logistic Regression

Estimation using Conditional Logistic Regression

clogit Regression using the simualted example

Sample Sizes:
modelclogit2 <- clogit(outc ~ treat + numer

weights = weights, d Control Treated
cbind(Coeff= round(coef(modelclogit2), 2),
All 55. 45
## Coeff 2.5 % 97.5 %
## treat  -0.33 -1.38 0.72 Matched (ESS) 18.58 45
## numericl -0.04 -0.12 0.04
#% binaryl 0.47 -0.60 1.54 Matched 28. 45
## numeric2 0.05 0.00 0.11
## binary2 -0.65 -2.36 1.05 Unmatched 27. 0
Discarded 0. 0
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Matching and Conditional Logistic Regression

Modification of the matching using the simualted example

m.out.sim2<- matchit(treat ~ numericl + binaryl + numeric2 + binary2, data = data,

method = "cem", cutpoints = list(numericl = 5),
grouping = list(binaryl = list(c(0, 1)) ))

summary(m.out.sim2, un=F)

##t
##
##t
##
##t
##
##t
##
##t
##
##t
##
##t
##
##t
##
##t
##
##t
##
##t

Call:
matchit(formula = treat ~ numericl + binaryl + numeric2 + binary2,
data = data, method = "cem", cutpoints = list(numericl = 5),
grouping = list(binaryl = list(c(0, 1))))
Summary of Balance for Matched Data:
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
numericl 10.5882 10.1314 0.0686 1.0238 0.0384
binaryl 0.5882 0.4539 0.2692 . 0.1343
numeric2 8.0294 7.9127 0.0127 0.9265 0.0231
binary2 0.0882 0.0882 0.0000 0.0000
eCDF Max Std. Pair Dist.
numericl 0.1314 0.3284
binaryl 0.1343 1.0857
numeric2 0.1216 0.2049
binary2 0.0000 0.0000
Sample Sizes:
Control Treated 70/ 73
All 55. 45



Matching and Conditional Logistic Regression

Modification of the matching using the simualted example

match.data2 <- match.data(m.out.sim2)

#H#
#H#
#H#
#H#
#H#
#H#
#H#

##
##

##
##

0o~ WNRE

outc treat numericl binaryl numeric2
1 1 15 1 12

0] 1 10 1 17

0] 0] 28 0] 8

0 1 8 0 7

0] 1 6 1 9

1 0] 13 0] 14
Min. 1st Qu. Median Mean 3rd Qu.
0.3971 1.0000 1.0000 1.0000 1.0588
1 2 3 4 5 6 7 8 9 10 11 12 13
3 4 5 713 7 2 6 5 2 2 3 2

binary2

H OO OoORO
O HKFHOR R

Max .
1.5882

outc

O © M O O © O B O O O O o o

treat

o]
1
o
o]
1
o
1
1
o]
1
o
1
1
1

numericl

binary1

M 2 B B O O O O O O © © o o

numeric2

[ I R I NI -

-
v

binary2

© © © 0 o © © 0 O o @ © o o

weights
0.9565217
1.0000000
0.9565217
0.9565217
1.0000000
0.9565217
1.0000000
1.0000000
0.9565217
1.0000000
2.8695652
1.0000000
1.0000000
1.0000000

subclass  *

Wow W W NN R R R R e R e e
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The Bayesian Way

dat2 <- match.data2[order (match.data2$subclass), 1 # order by strata

post3 <- stan_clogit(outc ~ treat + numericl + numeric2 +binaryl+ (1 | binary2), #
strata = subclass,
data = dat2,
chains = 2, 1diter = 100)

post3

post4 <- stan_clogit(outc ~ treat + numericl + numeric2 + binaryl+ (1 | binary2),
data = dat2[order(dat2$subclass), ], # order necessary
strata = subclass, QR = TRUE,
cores = 2, seed = 704)

post4
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Regression equation
Consider the 1:1 matched design (simplest case) with k = 1, ..., K strata and p covariates
logit(mi(X)) = ap + B'X

Where m,(X) = Pr(D;; = 1|X), ay, is log-odds in the kg, stratum; Xy, be the data vector for
the control and X7, be the data vector for the case. S, = Do, + D1y, .

Ly(B) = Pr(D1r = 1, Do, = 0| X1k, Xok, Sk = 1,n, = 2)
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