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What to do, if you want to:

Estimate median survival times, plot survival over time after treatment, or estimate the
probability of surviving beyond a prespecified time interval (eg, 5-year survival rate)?

Assess whether survival times are related to covariates and/or adjust for potential
confounders.

e Account for censoring and avoid lead time bias

Objectives

1. Review the concept of time-to-event a.k.a. "survival" analysis

2. Provide an introduction to epidemiological and statistical methods for the appropriate
analysis of time-to-event data

More about this on 705
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Relationship between Incidence Rate and Incidence
Proportion

e The method of calculating risks over a time period with changing incidence rates is
known as survival analysis.

* "The cumulative probability of the event during a given interval lasting m units of time and
beginning at time x, is the proportion of new events during that period of time in which the
denominator is the initial population corrected for losses".

(Szklo M, Nieto FJ. Epidemiology : Beyond the Basics. Fourth ed.)
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Assumptions in the Estimation of Cumulative Incidence
Based on Survival Analysis

e Uniformity of Events and Losses Within Each Interval (Classic Life Table).
* Events and losses are approximately uniform during each defined interval.

e If risk changes rapidly within a given interval, then calculating a cumulative risk over the
interval is not very informative.

e The rationale underlying the method to correct for losses—that is, subtracting one-half of
the losses from the denominator also depends on the assumption that losses occur
uniformly.

e Independence of censoring AND Survival

e No secular trends!
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Incidence Proportion & Survival Proportion

Survival proportion: complementary to Incidence Proportion

e "Proportion of a closed population at risk that does not become diseased within a given
period of time."

e S=1—-R,

where R = incidence proportion; S = survival proportion

e Equivalently, the proportion of remaining disease free alive individuals by the end of the
follow-up period.

Lash, T, et al. Modern Epidemiology 4th, Wolters Kluwer Health, 2021
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Survival probability

e Survival probability at a certain time, S(t), is a conditional probability of surviving
beyond that time, given that an individual has survived just prior to that time.

e Can be estimated as the number of individuals who are alive without loss to follow-up at
that time, divided by the number of individuals who were alive just prior to that time.

* The Kaplan-Meier estimate of survival probability is the product of these conditional
probabilities up until that time.

 Attime O, the survival probability is 1, i.e. S(tp) = 1
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Product Limit Formula

Kaplan-Meier Formula

* The product limit formula shows us how to calculate the survival proportion (and thereby
the incidence proportion) over a period of time when the risk changes.

e It shows that we need to multiply the survival proportions over all the intervals to calculate
the overall survival proportion.
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Product Limit Formula

Example:

Start (0) 2 4 8 14 19 (End)
Index ( k) 1234 5
Nb Outcomes ( Az ) 0 1211 0
Nb at Risk ( Vg )
% Surviving ( Sk )

Nine people over 20 years
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Product Limit Formula (Kaplan-Meier Formula)

Incidence Proportion =1— S

Z N — Ag

where v are sub-intervals

PLF = We need to multiply the survival proportions over all the intervals to calculate the overall
survival proportion.
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Product Limit Formula (Kaplan-Meier Formula)

Start(0) 2 4 8 14 19(End)

Index ( k) 1 2 3 4 5
Nb Outcomes ( Az ) 0 A I I A I
Nb at Risk ( Vg ) 9 9 8 6 5 4
% Surviving ( Sk ) 8/9 6/8 5/6 4/5 4/4

Interval length ( Ny A Ag )
Person-time ( A Ay)
Incidence Rate ( I R},)
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Product Limit Formula (Kaplan-Meier Formula)

Hand calculations for 9 people followed for 19 months.

Start (0)
Index ( k)
Nb Outcomes ( Ay ) 0
Nb at Risk ( [N} ) 9
% Surviving ( S, )
Interval length ( N, A A} )
Person-time ( AAy)
Incidence Rate (I Ry )

2

9

8/9

18
1/18

4 8 14
2 3 4
2 1 1
8 6 5
6/8 5/6 4/5
2 4 6
16 24 30

2/16 1/24 1/30

19 (End)
5

0

4

4/4

5

20

0/20

S = (8/9)x(6/8)x(5/6)x (4/5)x (4/4)
S =0.444

Incidence Proportion =1 — 5 =0.556
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Kaplan-Meier Formula

* The Kaplan-Meier approach involves the calculation of the probability of each event at the
time it occurs.

e The denominator for this calculation is the population at risk at the time of each event’s
occurrence

o The probability of each event is a “conditional probability” — conditioned on being at
risk (alive and not censored) at the event time.

e The advantage of the Kaplan-Meier Product-Limit method over the life table method is that
the resulting estimates do not depend on the grouping of the data (into a certain number
of time intervals).

o However, the Product-Limit method and the life table method are identical if the
intervals of the life table contain at most one observation.

e Regardless of the method used in the calculation (actuarial or Kaplan-Meier), the
cumulative incidence is a proportion, unitless, and its value range from 0 to 1 (or 100%)
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Kaplan-Meier Formula

Survival = S; , Cumulative probability of the event (1-5;) — 1-S54 = 1-0.18 = 0.82

TABLE 2-3 (alculation of Kaplan—Meier survival estimates for the example in Figure 2-3.

Number of
individuals
atrisk
)

13 5

20 2

*Obtained by multiplying the conditional probabilities in column (5)—see text. t Examples of how to determine how many

Conditional

probability

of the event

4)
q,= di/m;

1/10 = 0.100

1/8 =0.125

1/7 = 0.143

1/5 = 0.200

1/3 = 0333

1/2 = 0.500

Conditional
probability
of survival
(5)
pi=1-g
9/10 = 0.900
7/8 = 0.875
6/7 = 0.857
4/5 = 0.800
2/3 = 0667

1/2 = 0.500

Cumulative
probability
of survival

0.540
0.360

0.180

individuals were at risk at three of the event times (1, 3, and 17 months) are shown with vertical arrows in Figure 2-3 (Szklo M,

Nieto FJ. Epidemiology : Beyond the Basics. Fourth ed.)
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Simulated Examples

Recall from the previous scenarios

Some coding

Outcome X
== . surv_object<-Surv(time = dats$t,
o ® ® event = dat$02)

15 @
- 4 eventKM<- survfit(surv_object ~ 1,
g N ? data = dat,
§1m o - . type="kaplan-meier")

5+ — ° °

o T
(I) il3 é EIB 1I2 1I5 1I8 2I1 2I4
Follow-up (months)

Output
## Call: survfit(formula = surv_object ~ 1, data = dat, type = "kaplan-meier")
H#
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
H# 1 20 1 0.950 0.0487 0.859 1.000
## 7 18 2 0.844 0.0826 0.697 1.000
H# 8 16 1 0.792 0.0928 0.629 0.996
## 10 14 2 0.679 0.1087 0.496 0.929
H# 17 6 1 0.565 0.1373 0.351 0.910
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Other Example
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Assumptions in the Estimation of Cumulative Incidence
Based on Survival Analysis

Uniformity of Events and Losses Within Each Interval (Classic Life Table).

Events and losses are approximately uniform during each defined interval.

If risk changes rapidly within a given interval, then calculating a cumulative risk over the
interval is not very informative.

The rationale underlying the method to correct for losses—that is, subtracting one-half of
the losses from the denominator also depends on the assumption that losses occur
uniformly.

Independence of censoring AND Survival

No secular trends!
18 /37



Exponential Formula

The exponential formula relates the incidence rate to the incidence proportion.
Simplified:

Risk =1 — e—Incidencemtex Time

Elaborated: Deriving the survival proportion as a function of the incidence rates for each
interval:

e Total person-time at risk in the interval is N A,
e Number of Outcomes at time ¢, is Ay,

e Number of people at Risk (alive by the end of follow-up) NV,

* Incidence Rate in the time following = IR = (N:lAk k)
t

 Incidence Proportion over same sub interval = I P, = IR, Ay,

e Survival Proportion for the sub interval =S, = 1 — IR, Ay

Lash, Timothy, L. et al. Modern Epidemiology. (4th Edition). 2020
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Exponential Formula

0 2 4 8 14 19

Index ( k) 1 2 3 4 5
Nb Outcomes ( Az ) 0 1 2 1 1 0
Nb at Risk ( /N ) 99 8 6 5 4

% Surviving ( .Sk ) 8/9 6/8 5/6 4/5 4/4
Interval length ( N;tAAx) 2 2 4 6 5
Person-time ( (AAg) 18 16 24 30 20
Incidence Rate ( I R};) 1/18 2/16 1/24 1/30 0/20

Survival Proportion for the sub interval = S, = 1 — TRy A= exp(—I R Av)
ezp(—0(5) — (55)(6) — (57)(4) — (3)(2) — (55)(2))
S, = 0.483
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Exponential Formula

Recall: S = (8/9)x(6/8)x(5/6)x(4/5)x(4/4)
S = 0.444
Sy, =0.483
Risk =1 — e—Incz'dence ratex Time
Risk = 1 — e 1BxBu
Riskgeprorm =1 — Sj, = 0.517
Risk. =5/9=0.556=1—5=1-0.444
R=1-8~1—¢ Zi Bl

Risk. = 0.556 = R’I:SkEprO,«m =0.517

21737



Exponential Formula

Assumptions

1. Closed population
2. Event under study is inevitable (no competing risk)

3. Number of events at each event time is a small proportion of the number at risk at that
time (can be forced with fine measurement of time)

Assumptions 1 and 2 are also assumed for the product limit formula.

Product-limit and exponential formulas: Translate incidence-rate estimates from open
populations into incidence-proportion estimates for a closed population of interest !

Lash, Timothy, L. et al. Modern Epidemiology. (4th Edition). 2020. (pg. 68
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Recall Survival probability

e Survival probability at a certain time, S(t), is a conditional probability of surviving
beyond that time, given that an individual has survived just prior to that time.

e Can be estimated as the number of patients who are alive without loss to follow-up at that
time, divided by the number of patients who were alive just prior to that time.

* The Kaplan-Meier estimate of survival probability is the product of these conditional
probabilities up until that time.

¢ Attime O, the survival probability is 1, i.e. S(¢p) = 1

23 /37



Worked example

The survfit function creates survival curves based on a formula.

Let's generate the overall survival curve for the entire Tung cohort from the survival
package.

Create survfit object and assign it to f1, (details about f1 available via names or str).

Often want to know probability of surviving a specific time (e.g. 1 year)use summary ().

Produce survival curve including this information

24 /37


https://github.com/therneau/survival
https://github.com/therneau/survival

Get a Table 1

lung<- survival::lung
tabl<- lung %>%
tb1l_summary ()

Check the package gtsummary for more
information and details on formatting

Characteristic

inst
Unknown
time
status
1
2
age

Sex

Unknown

TusN = 228’
11 (3, 16)
1
256 (167, 399)

63 (28%)
165 (72%)

63 (56, 69)

138 (61%)
90 (39%)

63 (28%)
113 (50%)
50 (22%)
1(0.4%)
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Worked example

fl <- survfit(Surv(time, status) ~ 1, data = lung)

1.00 -

©
\l
o

Survival probability
o o
[\ [6)]
[6)] o

0.00 1

0 6 12 18 24 30
Months
Summary Results

summary (survfit(Surv(time, status) ~ 1, data = lung), times = 365.25)

## Call: survfit(formula = Surv(time, status) ~ 1, data = lung)

##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 365 65 121 0.409 0.0358 0.345 0.486
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What happens if you use a naive estimate ?

121 of the 228 patients died by 1 year so:

- 2V 100 = a7
<_228)X — e

e You get an incorrect estimate of the 1-year probability of survival when you ignore the
fact that 42 patients were censored before 1 year.

e Recall the correct estimate of the 1-year probability of survival was 41%.

e Ignoring censoring leads to an overestimate of the overall survival probability, because
the censored subjects only contribute information for part of the follow-up time, and then
fall out of the risk set, thus pulling down the cumulative probability of survival

27137



Comparing survival times between groups

e We can conduct between-group significance tests using a log-rank test.

* The log-rank test equally weights observations over the entire follow-up time and is the
most common way to compare survival times between groups.

e Other methods weight according to early or late follow-ups (see ?survdi ff for different
test options).

The survdiff function provides the log-rank p-value. For example, we can test whether
there was a difference in survival time according to sex (SAB) in the lung data

survdiff(Surv(time, status) ~ sex, data = lung)

## Call:

## survdiff(formula = Surv(time, status) ~ sex, data = lung)
#H#

## N Observed Expected (O-E)"2/E (O-E)"2/V

## sex=1 138 112 91.6 4,55 10.3

## sex=2 90 53 73.4 5.68 10.3

#H#

## Chisg= 10.3 on 1 degrees of freedom, p= 0.001
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The Cox regression model

We may want to quantify an effect size for a single variable, or include more than one variable
into a regression model to account for the effects of multiple variables.

The Cox regression model is a semi-parametric model that can be used to fit univariable and
multivariable regression models that have survival outcomes.

h(t|X;) = ho(t) exp(B1Xi1 + - - - + BpXip)
h(t): hazard, or the instantaneous rate at which events occur
ho(t): underlying baseline hazard

Some key assumptions of the model:

* Non-informative censoring
e Proportional hazards

* Semi-parametric
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The Cox regression model

We can fit regression models for survival data using the coxph function, which takes a Surv
object on the left hand side and has standard syntax for regression formulas in R on the right

hand side.

coxph(Surv(time, status) ~ sex, data = lung)

##
#H#
##
#H#
##
#H#
##
#H#

Call:
coxph(formula = Surv(time, st

atus) ~ sex, data =

coef exp(coef) se(coef) z p

sex —-0.5310 0.5880 0.167

Likelihood ratio test=10.63
n= 228, number of events= 165

2 -3.176 0.00149

on 1 df, p=0.001111

lung)
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Formatting Cox regression results

We can see a tidy version of the output using the tidy function from the broom package:

broom: :tidy(coxph(Surv(time, status) ~ sex, data = lung), exp = TRUE) %>%

kable ()

term estimate std.error statistic p.value

sex 0.5880028 0.1671786 -3.176385 0.0014912

Or use tbl_regression from the gtsummary package

coxph(Surv(time, status) ~ sex, data = lung) %>%
gtsummary: :tb1l_regression(exp = TRUE)

Characteristic "">HR' ">95% CI' p-value

sex 059 042,082 0.001

"HR = Hazard Ratio, Cl = Confidence Interval

31737



Hazard ratios

e The quantity of interest from a Cox regression model is a hazard ratio (HR). The HR
represents the ratio of hazards between two groups at any particular point in time.

* The HR is interpreted as the instantaneous rate of occurrence of the event of interest in
those who are still at risk for the event. It is not a risk, though it is commonly interpreted
as such.

e If you have a regression parameter 3 (from column estimate in our coxph) then HR =

exp(p).

e AHR <1 indicates reduced hazard of death whereas a HR > 1 indicates an increased
hazard of death.
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Hazard ratios

So our HR = 0.59 implies that around 0.6 times as many females are dying as males, at any

given time.

fit4 <- survfit(Surv(time, status) ~ sex, data = lung)

ggsurvplot(data = lung, fit = fit4, xlab = "Months", xscale = 30.4,
break.x.by = 182.4, fun = "cumhaz", legend.title nn
legend.labs = c("Male", "Female"),
risk.table = TRUE, risk.table.y.text = FALSE)

== Male =+ Female
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Hazard ratios

Are there potential issues with the hazard ratio?
Yes, the average HR ignores the distribution of events during the follow-up.

But a possible solutions of time specific HRs poses another problem

¢ selection bias due to depletion of susceptibles.

Possible solutions
i) report survival curves
ii) accelerated survival models.

Hernadn,The Hazards of Hazard Ratios
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653612/

What are competing risks?

When subjects have multiple possible events in a time-to-event setting (e.g recurrence, death
from disease, death from other causes).

So what's the problem? Why not just use KM approach and treat competing events as censored
events?

Remember basic KM assumption - censored patients have same risk as those remaining under
observation.

Unobserved dependence among event times is the fundamental problem that leads to the
need for special consideration.

Two approaches to analysis in the presence of competing risks.

1. Cause-specific hazards instantaneous rate of occurrence of the given type of eventin
subjects who are currently event-free estimated using Cox regression (coxph function)

2. Subdistribution hazards instantaneous rate of occurrence of the given type of event in
subjects who have not yet experienced an event of that type estimated using Fine-Gray
regression (crr () in cmprsk package)
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Hazard of the Hazards
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QUESTIONS?

COMMENTS?
RECOMMENDATIONS?
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