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Expected competencies:

Knowledge about linear, logistic and binomial regressions.

Knowledge about count data and Poisson distribution.

Objectives

Revise Poisson distribution and model assumptions

Provide tools to estimate Risk Ratios, Risk Difference and Rate Ratios using Poisson

regressions
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Poisson distribution

The Poisson distribution gives the probability mass function (discrete) of all possible numbers

of new cases, from 0 to .

If = # of new cases with  = expected number of cases in a given time period and

then the probability mass function that , is:

for  ... and , where  is both the mean and the variance of ; where  =

expected number of cases in a given time period.

∞

Yi λ

Yi ∼ Poisson(λ)

Y = k

P(Y = k) =
λke−λ

k!

k = 0, 1, 2, λ > 0 λ K λ
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Poisson distribution

This can be also presented as:

where the linear predictor  is the logarithm of the expected value of measurement , or

.

In count-data regressions, each unit  corresponds to a setting (typically a spatial location

or a time interval) in which  events are observed.

Under the Poisson model, ; thus if the model accurately describes the

data, we also have a sense of how much variation we would expect from the fitted curve.

For a Poisson random variable, the variance = mean = E(Y) = 

yi ∼ Poisson(eXiβ)

Xiβ yi
ln(λ)

i
yi

sd(yi) = √E(yi)

λ
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mean(dat$art)

## [1] 1.692896

sd(dat$art); var(dat$art)

## [1] 1.926069

## [1] 3.709742

Poisson distribution

Checking distribution
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Example: Consider binomial distribution

with probability = 0.01. What is the

probability of 6 occurrences in 1200 tries?

# binomial
dbinom(6,1200,0.01)

## [1] 0.02516172

# poisson
dpois(6,1200*0.01) # lambda = n*p

## [1] 0.02548128

To approximate the true (binomial)

results:

To approximate the mean

To approximate the standard deviation.

Poisson considerations

As  increases Poisson distribution approximates to a normal distribution

When  is large and  is very small, Poisson distribution approximates the binomial

distribution.

λ

n p

µ = E(X) = λ = np

σ = sqrt(λ) = sqrt(np)
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Poisson considerations
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Poisson Model Assumptions
Poisson Response: The response variable is a count per unit of time or space.

Independence: The observations must be independent of one another.

Mean = Variance: Conditional means equal the conditional variances.

Linearity: The log of the mean rate, log(λ), must be a linear function of x.

the mean values of  at each level of , , fall on a curve, not a line, although the logs

of the means should follow a line.

Y X λY |X
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Poisson Model

A generalized linear model with a log link and a Poisson distribution,

Used to model count variables

A natural model for rates in data sets with person time (e.g: Mortality).

Under predicts zero counts and over predicts the first set of counts

Assumes same rate of outcome among the individual observations but incorporating

“observed heterogeneity” relax this assumption.

10 / 44



Characteristic 1">N = 915
1

art

    Mean; Median (Q1, Q3) 1.69; 1.00 (0.00, 2.00)

fem

    Men 494 / 915 (54%)

    Women 421 / 915 (46%)

mar

    Married 606 / 915 (66%)

    Single 309 / 915 (34%)

phd

    Mean; Median (Q1, Q3) 3.10; 3.15 (2.26, 3.92)
1
n / N (%)

Characteristic 1">N = 915
1

profage

    Mean; Median (Q1, Q3) 33.2; 33.0 (31.0, 36.0)

kid5

    0 599 / 915 (65%)

    1 195 / 915 (21%)

    2 105 / 915 (11%)

    3 16 / 915 (1.7%)

ment

    Mean; Median (Q1, Q3) 9; 6 (3, 12)
1
n / N (%)

Illustration using the articles and PhD years after graduation
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Illustration using the articles and PhD years after graduation

pois0 <- glm(art ~ 1, family= "poisson", data = dat)

Exponentiated coefficient

##             exp(Est.) 2.5% 97.5% z val. p
## (Intercept)      1.69 1.61  1.78  20.72 0

Summary

## 
## Call:
## glm(formula = art ~ 1, family = "poisson", data = dat)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.52644    0.02541   20.72   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1817.4  on 914  degrees of freedom
## Residual deviance: 1817.4  on 914  degrees of freedom
## AIC: 3487.1
## 
## Number of Fisher Scoring iterations: 5
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Illustration using the articles and PhD years after graduation

Observations 915

Dependent variable art

Type Generalized linear model

Family poisson

Link log

𝛘²(0) -0.00

Pseudo-R² (Cragg-Uhler) 0.00

Pseudo-R² (McFadden) 0.00

AIC 3487.15

BIC 3491.97

exp(Est.) 2.5% 97.5% z val. p

(Intercept) 1.69 1.61 1.78 20.72 0.00

Standard errors: MLE
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Illustration using the articles and PhD years after graduation
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pois1 <- glm(art ~ fem + mar, 
             poisson(link="log"),
             data = dat) 
round(jtools::summ(pois1, confint= T, 
                   exp = T)$"coeftable", 2)

##             exp(Est.) 2.5% 97.5% z val.    p
## (Intercept)      1.89 1.77  2.03  18.19 0.00
## femWomen         0.79 0.71  0.87  -4.49 0.00
## marSingle        0.97 0.87  1.09  -0.50 0.62

Illustration using the articles and PhD years after graduation

If the follow-up time is not specified, the software assumes that person time is one for

everyone, and Poisson regression actually produces the RISK ratio:
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Illustration using the articles and PhD years after graduation

To get the RATE ratio instead of RISK ratio, we need to tell the software where to find the

follow-up time:

dat$logprofage <- log(dat$profage)
#summary(dat$profage)
pois2a <- glm(art ~ fem + mar + offset(logprofage),
             poisson(link="log"), data = dat)

##             exp(Est.) 2.5% 97.5% z val.   p
## (Intercept)      0.06 0.05  0.06 -81.49 0.0
## femWomen         0.79 0.72  0.88  -4.30 0.0
## marSingle        0.97 0.87  1.08  -0.52 0.6

The exponentiated coefficient give then the Rate Ratio.
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Illustration using the articles and PhD years after graduation

comparing "goodness-of-fit" using AIC (Akaike Information Criteria)

##         Empty     Risk     Rate
## [1,] 3487.147 3467.868 3470.165
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Illustration using the articles and PhD years after graduation

pois2b <- glm(art ~ fem + mar + offset(profage),
             poisson(link="log"), data = dat)
round(jtools::summ(pois2b, confint= T, exp = T)$"coeftable", 2)

##             exp(Est.) 2.5% 97.5%  z val.    p
## (Intercept)      0.00 0.00  0.00 -997.79 0.00
## femWomen         1.04 0.94  1.15    0.76 0.45
## marSingle        0.71 0.64  0.79   -6.15 0.00

Using the variable age without the log-transformation changes the estimates and the

likelihood is affected as evidenced by the AIC

comparing "goodness-of-fit" using AIC (Akaike Information Criteria)

##         Empty     Risk     Rate Rate_nolog
## [1,] 3487.147 3467.868 3470.165   14060.01
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Illustration using the articles and PhD years after graduation

Under predicts zero counts and over predicts the first set of counts

Assumes same rate of outcome among the individual observations but incorporating

“observed heterogeneity” relax this assumption.
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Characteristic 1">N = 3,020
1

switch 1,737 (58%)

arsenic

    Median (Q1, Q3) 1.30 (0.82, 2.20)

    Min, Max 0.51, 9.65

dist100

    Median (Q1, Q3) 0.37 (0.21, 0.64)

    Min, Max 0.00, 3.40

assoc 1,277 (42%)
1
n (%)

Poisson Models for Risk Ratios and Risk Differences

Recall our example: Wells in Bangladesh
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Recall our example: Wells in Bangladesh

Model "switching" to a safer well (outcome) as a function of whether the owner belongs
to a community association and As. level.

Model Frequentist Estimates

Linear Model RD= -0.036; RR= N/A

Logit Model (Predicted probs.) RD= -0.033; RR= 0.939

AME (prediction StdGLM) RD= -0.031; RR= 0.948

GLM: Log-Binomial RD= N/A; RR= 0.928

 Single predictor;  Two predictors

1

2

2

2

1 2
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Poisson Model and Risk Ratios

–our example- Wells in Bangladesh

mod.glm.p.rr <- glm(switch ~ assoc + arsenic, data = wells, 
                    family=poisson(link="log"))

#> 
#> Call:
#> glm(formula = switch ~ assoc + arsenic, family = poisson(link = "log"), 
#>     data = wells)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  -0.7489     0.0473  -15.83  < 2e-16 ***
#> assoc        -0.0559     0.0488   -1.14     0.25    
#> arsenic       0.1258     0.0192    6.55  5.6e-11 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for poisson family taken to be 1)
#> 
#>     Null deviance: 1921.5  on 3019  degrees of freedom
#> Residual deviance: 1880.2  on 3017  degrees of freedom
#> AIC: 5360
#> 
#> Number of Fisher Scoring iterations: 5
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Poisson Model and RRs –our example- Wells in Bangladesh

Observations 3020

Dependent variable switch

Type Generalized linear model

Family poisson

Link log

𝛘²(2) 41.25

Pseudo-R² (Cragg-Uhler) 0.02

Pseudo-R² (McFadden) 0.01

AIC 5360.21

BIC 5378.25

exp(Est.) 2.5% 97.5% z val. p

(Intercept) 0.47 0.43 0.52 -15.83 0.00

assoc 0.95 0.86 1.04 -1.14 0.25

arsenic 1.13 1.09 1.18 6.55 0.00

Standard errors: MLE 23 / 44



Poisson Model and Risk Ratios, our example- Wells in
Bangladesh

#>             exp(Est.)  2.5% 97.5% z val.        p
#> (Intercept)     0.473 0.431 0.519 -15.83 1.82e-56
#> assoc           0.946 0.859 1.041  -1.14 2.52e-01
#> arsenic         1.134 1.092 1.178   6.55 5.61e-11

Poisson models provides RISK ratios with biased confidence intervals.

The model assumes a Poisson distribution when in fact the outcomes are binary.

To overcome issues with the variance, we could use a variance estimator that is robust to

the misspecification of the model.
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Poisson Model and RRs (Robust Variance)

–our example- Wells in Bangladesh

jtools::summ(mod.glm.p.rr, confint=T, exp=T, 
             robust= "HC0")$"coeftable"

#>             exp(Est.)  2.5% 97.5% z val.         p
#> (Intercept)     0.473 0.445 0.502 -24.48 2.63e-132
#> assoc           0.946 0.889 1.006  -1.77  7.74e-02
#> arsenic         1.134 1.110 1.159  11.50  1.33e-30

Quasi-Poisson Risk Ratio

mod.glm.qp.rr <- glm(switch ~ assoc + arsenic, data = wells, 
                     family= quasipoisson(link="log"))
jtools::summ(mod.glm.qp.rr, confint=T, exp=T)$"coeftable"

#>             exp(Est.)  2.5% 97.5% t val.         p
#> (Intercept)     0.473 0.445 0.502 -24.31 2.19e-119
#> assoc           0.946 0.888 1.006  -1.76  7.90e-02
#> arsenic         1.134 1.107 1.162  10.06  1.87e-23

*Note: Pseudo-R2 for quasibinomial/quasipoisson families is calculated by refitting the fitted and null models as

binomial/poisson.
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Poisson Model and Risk Differences

–our example- Wells in Bangladesh

mod.glm.p.rd <- glm(switch ~ assoc + arsenic, data = wells, 
                    family=poisson(link="identity"))

#> 
#> Call:
#> glm(formula = switch ~ assoc + arsenic, family = poisson(link = "identity"), 
#>     data = wells)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)   0.4388     0.0278   15.80  < 2e-16 ***
#> assoc        -0.0268     0.0275   -0.97     0.33    
#> arsenic       0.0891     0.0138    6.47  9.8e-11 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for poisson family taken to be 1)
#> 
#>     Null deviance: 1921.5  on 3019  degrees of freedom
#> Residual deviance: 1876.2  on 3017  degrees of freedom
#> AIC: 5356
#> 
#> Number of Fisher Scoring iterations: 5
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Poisson Model and Risk Differences

jtools::summ(mod.glm.p.rd, confint=T)$"coeftable"

#>                Est.    2.5%  97.5% z val.        p
#> (Intercept)  0.4388  0.3844 0.4932 15.800 3.09e-56
#> assoc       -0.0268 -0.0806 0.0271 -0.974 3.30e-01
#> arsenic      0.0891  0.0621 0.1161  6.470 9.83e-11

Quasi-Poisson Risk Difference (Robust Variance)

mod.glm.qp.rd1 <- glm(switch ~ assoc + arsenic, data = wells, 
                      family= quasipoisson(link="identity")) #
jtools::summ(mod.glm.qp.rd1, confint=T)$"coeftable"

#>                Est.    2.5%   97.5% t val.         p
#> (Intercept)  0.4388  0.4033 0.47429  24.23 1.19e-118
#> assoc       -0.0268 -0.0619 0.00837  -1.49  1.36e-01
#> arsenic      0.0891  0.0715 0.10674   9.92  7.54e-23
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Why and When do we use Poisson for Risk Ratios and Risk Differences?

Poisson regression

Used for rare outcomes

When the follow-up has different lengths

Logistic regression: Used with same length of follow-up time

Poisson approximation to Binomial

Cohort studies where all patients have equal follow-up times.

Poisson regression can be used similarly as logistic regression, with a time-at-risk value

specified as 1 for each subject.

If the model adequately fits the data, this provides a correct estimate of the AdjRR

Chen et al.: Comparison of robustness to outliers between robust poisson models and log-binomial models when

estimating relative risks for common binary outcomes: a simulation study. BMC Medical Research Methodology 2014

14:82.
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Comparing Results
Model "switching" to a safer well (outcome) as a function of whether the owner belongs
to a community association and As. level.

Model Frequentist Estimates

Linear Model RD= -0.036; RR= N/A

Logit Model (Predicted probs.) RD= -0.033; RR= 0.939

AME (prediction StdGLM) RD= -0.031; RR= 0.948

GLM: Log-Binomial RD= N/A; RR= 0.928

Poisson Model RD = -0.027; RR= 0.946

 Single predictor;  Two predictors

1

2

2

2

2

1 2
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Why and When do we use Poisson for Risk Ratios and Risk Differences?

For common outcomes, Poisson regression is likely to compute a confidence interval(s)

that is conservative, suggesting less precision than is true.

Poisson regression produces wider confidence intervals (compared with a log-binomial

model and stratified analysis) because Poisson errors are overestimates of binomial errors

when the outcome is common

Poisson errors approximately equal binomial errors when the outcome is rare

Guangyong Zou. A Modified Poisson Regression Approach to Prospective Studies with Binary Data, AJE, Vol 159: 7

(2004).702–706 (https://doi.org/10.1093/aje/kwh090).

Chen et al. Comparison of robustness to outliers between robust poisson models and log-binomial models when

estimating relative risks for common binary outcomes: a simulation study. BMC Med Res Method 2014 14:82.
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Robust Poisson models

The Poisson regression uses a logarithm as the natural link function under the generalized

linear model framework.

The robust Poisson regression model uses the classical sandwich estimator under the

generalized estimation equation (GEE) framework to correct the inflated variance (also

known as over-dispersion) in the standard Poisson regression.

The technique is known as modified Poisson regression or pseudo-likelihood estimation.

This correction can be achieved by using the robust option form jtools in R or the

quasipoisson from glm, also using the REPEATED statement in SAS Proc GENMOD; the

ROBUST option in STATA’s Poisson procedure.
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Robust Poisson models vs. Log-Binomial

In presence of linear confounders, the two models yield comparable relative biases.

With the non-linear confounders, the robust Poisson model outperform the log-binomial

model. Larger differences with rare outcomes.

The robust Poisson models are more robust to outliers compared to the log-binomial

models when estimating relative risks or risk ratios for common binary outcomes.

Chen et al. Comparison of robustness to outliers between robust poisson models and log-binomial models when

estimating relative risks for common binary outcomes: a simulation study. BMC Medical Research Methodology 2014

14:82.
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Log-Binomial vs Robust Poisson?

Of the two methods, the log-binomial method is generally preferred due to the fact that

the MLEs estimated by the log-binomial models are more efficient compared to the

pseudo-likelihood estimators used by the robust Poisson models.

Spiegelman and Hertzmark recommend using the log-binomial models over the robust

Poisson models when convergence is not an issue.

It appears that the gain in efficiency is beneficial to log-binomial models only for samples

of small sizes.

Due to the concern of lack of efficiency for the robust Poisson models for small samples,

log-binomial may still be the choice when the sample size is small.
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… Out of the scope for this
session

Other Count Models

Negative Binomial (Overdispersed Poisson Models)

Zero Inflated Models

Zero Truncated Models
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QUESTIONS?

COMMENTS?

RECOMMENDATIONS?
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Distributions

Vittinghoff E., Glidden D.V., Shiboski S.C., McCulloch C.E. (2012) Generalized Linear Models. In:

Regression Methods in Biostatistics. Statistics for Biology and Health. Springer, Boston, MA

36 / 44



Log-Binomial vs Robust Poisson?

Software utilizes iterative weighted least squares (IWLS*) approach or variations of IWLS to

find MLEs for generalized linear models.

For log-binomial models, the weights used by the IWLS approach contain the term 1/(1-p),

where  with a range from 0 to 1.

The MLE of a log-binomial model is likely to be too sensitive to outliers because a very

large p has a large influence on the weights.

MLE and pseudolikelihood estimators are deteriorated in presence of outliers.

The level of deterioration differed when the relationships between the confounder and the

outcome was not in a simple form

p = exp(XTβ)
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Maximum likelihood estimate of lambda

Take first derivative (notation )

MLE = ℓ(λ; y1, … , yn) =
n

∑
i=1

log f(yi;λ) =
n

∑
i=1

log
λy1exp−λ

y1!

′ =
d(.)

dλ

ℓ′(λ; y1, … , yn) = ∑
n

i=1 log
′

λy1exp−λ

y1!
= ∑

n

i=1 {−λ + yi ⋅ log(λ) − log(yi!)}′

= ∑
n

i=1 {−1 + yi ⋅ }1
λ

= −n + ∑
n

i=1 yi
1
λ
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Maximum likelihood estimate of lambda

The first-order condition for maximizing the log-likelihood sets its derivative to zero

Thus, the maximum likelihood estimator is simply the empirical mean 

ℓ′(λ; y1, … , yn) = 0

−n +
n

∑
i=1

yi = 0
1

λ

n ⋅ λ =
n

∑
i=1

yi

λ =
n

∑
i=1

yi = ȳ
1

n

λ̂ = ȳ
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Poisson distribution (PD)
If instead are given the average rate, r, at which events occur then , andλ = rt

P(k events in interval t) =
rtke−rt

k!
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Poisson distribution (PD)
PD a special case of the binomial, with trials n ->  and P(success in any trial) -> 0

If p is small, binomial P(k successes)  poisson P(k with  = np)

Example: Consider binomial distribution with probability = 0.01. What is the probability of 8

occurences in 1000 tries?

# binomial
dbinom(8,1000,0.01)

#> [1] 0.113

# poisson
dpois(8,1000*.01) # lambda = n*p

#> [1] 0.113

∞
≈ λ
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Offset vs Exposure

In most applications of count-data regression, there is a baseline or exposure, some value such

as the number of person years that the counts occurred over

We can model  as the number of cases in a process with rate  and exposure 

where, as before,  and includes Poisson regression as the special case of φ → ∞

The logarithm of the exposure, , is called the offset in GLM terminology.

The regression coefficients  now reflect the associations between the predictors and  (for

example, the rate of deaths)

Putting the logarithm of the exposure into the model as an offset, is equivalent to including it

as a regression predictor, but with its coefficient fixed to the value 1. Another option is to

include it as a predictor and let its coefficient be estimated from the data.

yi θi μi

yi ∼ negative binomial(μiθi,ϕ)

θi = eXiβ

log(μi)

β θi
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AIC = Akaike information criterion
, where , equivalently

 = number of estimated parameters in the model  = maximum value of the likelihood

function for the model

Given a collection of models for the data, AIC estimates the quality of each model, relative to

each of the other models.

Hence, AIC provides a means for model selection

AIC = −2(log − likelihood) + knpar k = 2

AIC = 2k − 2ln(L̂)

k L̂
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BIC = Bayesian Information Criterion
,

where ,

and  is the number of observations

BIC = −2(log − likelihood) + knpar

k = log(n)

n
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