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Expected competencies:

e Knowledge about linear, logistic and binomial regressions.

* Knowledge about count data and Poisson distribution.

Obijectives

* Revise Poisson distribution and model assumptions

e Provide tools to estimate Risk Ratios, Risk Difference and Rate Ratios using Poisson
regressions
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Poisson distribution

The Poisson distribution gives the probability mass function (discrete) of all possible numbers
of new cases, from 0 to oco.

If Y;= # of new cases with A = expected number of cases in a given time period and

Y; ~ Poisson(\)

then the probability mass function that Y = &, is:

Aee—A

P(Y = k) = ~—

fork =0,1,2,..and XA > 0, where X is both the mean and the variance of K; where \ =
expected number of cases in a given time period.
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Poisson distribution

This can be also presented as:
y; ~ Poisson(eX’)

where the linear predictor X; [ is the logarithm of the expected value of measurement y;, or
In(A).

e In count-data regressions, each unit z corresponds to a setting (typically a spatial location
or a time interval) in which y; events are observed.

e Under the Poisson model, sd(y;) = v E(y;); thus if the model accurately describes the
data, we also have a sense of how much variation we would expect from the fitted curve.

For a Poisson random variable, the variance = mean = E(Y) = )\
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Poisson distribution

Articles in the last 3 years after PhD
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dat$art
Checking distribution
mean (dat$art) sd(datSart); var(dat$art)
## [1] 1.692896 ## [1] 1.926069

## [1] 3.709742
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Poisson considerations

e As )\ increases Poisson distribution approximates to a normal distribution

e When n is large and p is very small, Poisson distribution approximates the binomial
distribution.

Example: Consider binomial distribution To approximate the true (binomial)
with probability = 0.01. What is the results:

probability of 6 occurrences in 1200 tries?
To approximate the mean

# binomial

dbinom(6,1200,0.01) e u=E(X)=\=np
## [1] 0.02516172 To approximate the standard deviation.
# poisson

dpois(6,1200%x0.01) # lambda = n*p * 00— Sqrt()‘) — sqrt(np)

## [1] 0.02548128
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Poisson considerations
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Poisson Model Assumptions

Poisson Response: The response variable is a count per unit of time or space.
Independence: The observations must be independent of one another.
Mean = Variance: Conditional means equal the conditional variances.

Linearity: The log of the mean rate, log(A\), must be a linear function of x.

* the mean values of Y at each level of X, Ay|x, fall on a curve, not a line, although the logs
of the means should follow a line.
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Poisson Model

e A generalized linear model with a log link and a Poisson distribution,
e Used to model count variables

e A natural model for rates in data sets with person time (e.qg: Mortality).

e Under predicts zero counts and over predicts the first set of counts

e Assumes same rate of outcome among the individual observations but incorporating
“observed heterogeneity” relax this assumption.
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lIlustration using the articles and PhD years after graduation

Characteristic TusN = 915

art

Mean; Median (Q1, Q3) 1.69; 1.00 (0.00, 2.00)

fem
Men 494 [ 915 (54%)
Women 421/ 915 (46%)
mar
Married 606 / 915 (66%)
Single 309 /915 (34%)
phd

Mean; Median (Q1, Q3) 3.10; 3.15 (2.26, 3.92)
"n/N (%)

Characteristic

profage

TusN = 915

Mean; Median (Q1, Q3) 33.2; 33.0 (31.0, 36.0)

kid5
0
1
2
3
ment

Mean; Median (Q1, Q3)
"n/N (%)

599 | 915 (65%)
195 / 915 (21%)
105 / 915 (11%)

16 / 915 (1.7%)

9; 6 (3,12)

11744



Illustration using the articles and PhD years after graduation

pois® <- glm(art ~ 1, family= "poisson'", data = dat)

Exponentiated coefficient

#H exp(Est.) 2.5% 97.5% z val. p

## (Intercept) 1.69 1.61 1.78 20.72 0

Summary

H#

## Call:

## glm(formula = art ~ 1, family = "poisson", data = dat)

##

## Coefficients:

#it Estimate Std. Error z value Pr(>|z]|)

## (Intercept) 0.52644 0.02541 20.72 <2e-16 **%

## ——-

## Signif. codes: 0O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 1817.4 on 914 degrees of freedom

## Residual deviance: 1817.4 on 914 degrees of freedom

## AIC: 3487.1

o , . , 12/ 44
## Number of Fisher Scoring iterations: 5



Illustration using the articles and PhD years after graduation

Observations 915
Dependent variable art
Type Generalized linear model
Family poisson
Link log
x(0) -0.00
Pseudo-R? (Cragg-Uhler) 0.00
Pseudo-R? (McFadden) 0.00
AIC 3487.15
BIC 3491.97

exp(Est.) 2.5% 97.5% zval. p

(Intercept) 1.69 1.61 1.78 20.72 0.00
Standard errors; MLE
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Illustration using the articles and PhD years after graduation

# Articles

—=&— QObserved Proportion —=&—— Poisson Prediction
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IIlustration using the articles and PhD years after graduation

If the follow-up time is not specified, the software assumes that person time is one for
everyone, and Poisson regression actually produces the RISK ratio:

poisl <- glm(art ~ fem + mar,
poisson(link="1og"),
data = dat)

round(jtools: :summ(poisl, confint= T,
exp = T)$"coeftable", 2)

## exp(Est.) 2.5% 97.5% z val. p
## (Intercept) 1.89 1.77 2.03 18.19 0.00
## femWomen 0.79 0.71 0.87 -4.49 0.00
## marSingle 0.97 0.87 1.09 -0.50 0.62

T T T T T T T T T
1 2 3 4 5 6 7 8 9
Count

—&— PRM

—=8—— QObserved ——=8—— Poisson Prediction
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lIlustration using the articles and PhD years after graduation

To get the RATE ratio instead of RISK ratio, we need to tell the software where to find the
follow-up time:

dat$logprofage <- log(dat$profage)

#summary (datSprofage)

pois2a <- glm(art ~ fem + mar + offset(logprofage),
poisson(link="1log"), data = dat)

#H# exp(Est.) 2.5% 97.5% z val. p
## (Intercept) 0.06 0.05 0.06 -81.49 0.0
## femWomen 0.79 0.72 0.88 -4.30 0.0
## marSingle 0.97 0.87 1.08 -0.52 0.6

The exponentiated coefficient give then the Rate Ratio.
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lIlustration using the articles and PhD years after graduation

.

1 2 3 4 5 6 7 8 9
# Articles

—&— QObserved ----®---- Univariate Predicton —®— PMR+Exposure

comparing "goodness-of-fit" using AIC (Akaike Information Criteria)

#H Empty Risk Rate
## [1,] 3487.147 3467.868 3470.165
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Illustration using the articles and PhD years after graduation

pois2b <- glm(art ~ fem + mar + offset(profage),
poisson(link="1og"), data = dat)
round(jtools: :summ(pois2b, confint= T, exp = T)$"coeftable", 2)

#H exp(Est.) 2.5% 97.5% z val. p
## (Intercept) 0.00 0.00 0.00 -997.79 0.00
## femWomen 1.04 0.94 1.15 0.76 0.45
## marSingle 0.71 0.64 0.79 -6.15 0.00

Using the variable age without the log-transformation changes the estimates and the
likelihood is affected as evidenced by the AIC

comparing "goodness-of-fit" using AIC (Akaike Information Criteria)

#it Empty Risk Rate Rate_nolog
## [1,] 3487.147 3467.868 3470.165 14060.01

18744



Illustration using the articles and PhD years after graduation

1 2 3 4 5 6 7 8 9
# Articles
—@— QObserved ----®---- Univariate Prediction —®— PMR+Exposure

e Under predicts zero counts and over predicts the first set of counts

e Assumes same rate of outcome among the individual observations but incorporating
“observed heterogeneity” relax this assumption.

19744



Poisson Models for Risk Ratios and Risk Differences

Recall our example: Wells in Bangladesh

Characteristic TisN = 3.020'

switch 1,737 (58%) Household Arsenic levels in Bangladesh
By Switching status

1

: ) As -Level
0 100
1
| 75

arsenic

Median (Q1, Q3) 1.30 (0.82, 2.20)

Switch (0=No; 1=Yes)

—

Min, Max 0.51, 9.65 E , 50
dist100 o ,
11 0.0
Median (Q1, Q3) 0.37 (0.21, 0.64) 00 28 50 e M0
Min, Max 0.00, 3.40
assoc 1,277 (42%)
"n (%)
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Recall our example: Wells in Bangladesh

Model "switching" to a safer well (outcome) as a function of whether the owner belongs
to a community association and As. level.

Model Frequentist Estimates
Linear Model ! RD= -0.036; RR= N/A
Logit Model (Predicted probs.) 2 RD=-0.033; RR=0.939
AME (prediction StdGLM) 2 RD=-0.031; RR= 0.948
GLM: Log-Binomial 2 RD= N/A; RR=0.928

1 Single predictor; ? Two predictors
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Poisson Model and Risk Ratios

—our example- Wells in Bangladesh

mod.glm.p.rr <- glm(switch ~ assoc + arsenic, data = wells,
family=poisson(link="1og"))

#>

#> Call:

#> glm(formula = switch ~ assoc + arsenic, family = poisson(link = "log"),
#> data = wells)

#>

#> Coefficients:

#> Estimate Std. Error z value Pr(>|z|)

#> (Intercept) -0.7489 0.0473 -15.83 < 2e-16 **xx*

#> assoc -0.0559 0.0488 -1.14 0.25

#> arsenic 0.1258 0.0192 6.55 5.6e-11 **x%

> ——-

#> Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> (Dispersion parameter for poisson family taken to be 1)

#>

#> Null deviance: 1921.5 on 3019 degrees of freedom

#> Residual deviance: 1880.2 on 3017 degrees of freedom
#> AIC: 5360

#>

#> Number of Fisher Scoring iterations: 5
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Poisson Model and RRs -our example- Wells in Bangladesh

Observations 3020
Dependent variable switch
Type Generalized linear model
Family poisson
Link log
x(2) 41.25
Pseudo-R? (Cragg-Uhler) 0.02
Pseudo-R? (McFadden) 0.01
AIC 5360.21
BIC 5378.25

exp(Est.) 2.5% 97.5% zval. p
(Intercept) 0.47 0.43 0.52 -15.83 0.00
assoc 095 0.86 1.04 -1.14 0.25

arsenic 1.13 1.09 1.18 6.55 0.00
Standard errors; MLE 23 /44



Poisson Model and Risk Ratios, our example- Wells in
Bangladesh

#>
#>
#>
#>

exp(Est.) 2.5% 97.5% z val. p
(Intercept) 0.473 0.431 0.519 -15.83 1.82e-56
assoc 0.946 0.859 1.041 -1.14 2.52e-01
arsenic 1.134 1.092 1.178 6.55 5.61le-11

e Poisson models provides RISK ratios with biased confidence intervals.
e The model assumes a Poisson distribution when in fact the outcomes are binary.

e To overcome issues with the variance, we could use a variance estimator that is robust to
the misspecification of the model.
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Poisson Model and RRs (Robust Variance)

—our example- Wells in Bangladesh

jtools::summ(mod.glm.p.rr, confint=T, exp=T,
robust= "HCO0")S$"coeftable"

#> exp(Est.) 2.5% 97.5% z val. p
#> (Intercept) 0.473 0.445 0.502 -24.48 2.63e-132
#> assoc 0.946 0.889 1.006 -1.77 7T.74e-02
#> arsenic 1.134 1.110 1.159 11.50 1.33e-30

Quasi-Poisson Risk Ratio

mod.glm.qp.rr <- glm(switch ~ assoc + arsenic, data = wells,
family= quasipoisson(link="1log"))
jtools::summ(mod.glm.qp.rr, confint=T, exp=T)$"coeftable"

#> exp(Est.) 2.5% 97.5% t val. p
#> (Intercept) 0.473 0.445 0.502 -24.31 2.19e-119
#> assoc 0.946 0.888 1.006 -1.76 7.90e-02
#> arsenic 1.134 1.107 1.162 10.06 1.87e-23

*Note: Pseudo-R2 for quasibinomial/quasipoisson families is calculated by refitting the fitted and null models as
binomial/poisson.
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Poisson Model and Risk Differences

—our example- Wells in Bangladesh

mod.glm.p.rd <- glm(switch ~ assoc + arsenic, data = wells,
family=poisson(link="1identity"))

#>

#> Call:

#> glm(formula = switch ~ assoc + arsenic, family = poisson(link = "didentity"),
#> data = wells)

#>

#> Coefficients:

#> Estimate Std. Error z value Pr(>|z|)

#> (Intercept) 0.4388 0.0278 15.80 < 2e-16 **x%

#> assoc -0.0268 0.0275 -0.97 0.33

#> arsenic 0.0891 0.0138 6.47 9.8e-11 **x%

#> —-—-

#> Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> (Dispersion parameter for poisson family taken to be 1)

#>

#> Null deviance: 1921.5 on 3019 degrees of freedom

#> Residual deviance: 1876.2 on 3017 degrees of freedom
#> AIC: 5356

#>

#> Number of Fisher Scoring iterations: 5
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Poisson Model and Risk Differences

jtools::summ(mod.glm.p.rd, confint=T)$"coeftable"

#>
#>
#>
#>

(Intercept)
assoc
arsenic

Est. 2.5%
0.4388 0.3844
-0.0268 -0.0806
0.0891 0.0621

97.5%
0.4932
0.0271
0.1161

z val. p
15.800 3.09e-56
-0.974 3.30e-01
6.470 9.83e-11

Quasi-Poisson Risk Difference (Robust Variance)

mod.glm.qp.rdl <- glm(switch ~ assoc + arsenic, data =

family= quasipoisson(link="1identity")) #

jtools::summ(mod.glm.qp.rdl, confint=T)$"coeftable"

#>
#>
#>
#>

(Intercept)
assoc
arsenic

Est. 2.5%
0.4388 0.4033
-0.0268 -0.0619
0.0891 0.0715

97.5%
0.47429
0.00837
0.10674

t val. p
24.23 1.19e-118
-1.49 1.36e-01

9.92 7.54e-23
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Why and When do we use Poisson for Risk Ratios and Risk Differences?

Poisson regression

e Used for rare outcomes

e When the follow-up has different lengths
Logistic regression: Used with same length of follow-up time

Poisson approximation to Binomial

e Cohort studies where all patients have equal follow-up times.

e Poisson regression can be used similarly as logistic regression, with a time-at-risk value
specified as 1 for each subject.

e If the model adequately fits the data, this provides a correct estimate of the AdjRR

Chen et al.: Comparison of robustness to outliers between robust poisson models and log-binomial models when
estimating relative risks for common binary outcomes: a simulation study. BMC Medical Research Methodology 2014
14:82.
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Comparing Results

Model "switching" to a safer well (outcome) as a function of whether the owner belongs
to a community association and As. level.

Model Frequentist Estimates
Linear Model ! RD=-0.036; RR= N/A
Logit Model (Predicted probs.) > RD=-0.033; RR= 0.939
AME (prediction StdGLM) 2 RD=-0.031; RR= 0.948
GLM: Log-Binomial 2 RD= N/A; RR= 0.928
Poisson Model 2 RD =-0.027; RR= 0.946

1 Single predictor; 2 Two predictors
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Why and When do we use Poisson for Risk Ratios and Risk Differences?

e For common outcomes, Poisson regression is likely to compute a confidence interval(s)
that is conservative, suggesting less precision than is true.

* Poisson regression produces wider confidence intervals (compared with a log-binomial
model and stratified analysis) because Poisson errors are overestimates of binomial errors
when the outcome is common

e Poisson errors approximately equal binomial errors when the outcome is rare

Guangyong Zou. A Modified Poisson Regression Approach to Prospective Studies with Binary Data, AJE, Vol 159: 7
(2004).702-706 (https://doi.org/10.1093/aje/kwh090).

Chen et al. Comparison of robustness to outliers between robust poisson models and log-binomial models when
estimating relative risks for common binary outcomes: a simulation study. BMC Med Res Method 2014 14:82.
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Robust Poisson models

The Poisson regression uses a logarithm as the natural link function under the generalized
linear model framework.

e The robust Poisson regression model uses the classical sandwich estimator under the
generalized estimation equation (GEE) framework to correct the inflated variance (also
known as over-dispersion) in the standard Poisson regression.

* The technique is known as modified Poisson regression or pseudo-likelihood estimation.

e This correction can be achieved by using the robust option form jtools in R or the
quasipoisson from glm, also using the REPEATED statement in SAS Proc GENMOD; the
ROBUST option in STATA's Poisson procedure.
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Robust Poisson models vs. Log-Binomial

e In presence of linear confounders, the two models yield comparable relative biases.

e With the non-linear confounders, the robust Poisson model outperform the log-binomial
model. Larger differences with rare outcomes.

e The robust Poisson models are more robust to outliers compared to the log-binomial
models when estimating relative risks or risk ratios for common binary outcomes.

Chen et al. Comparison of robustness to outliers between robust poisson models and log-binomial models when

estimating relative risks for common binary outcomes: a simulation study. BMC Medical Research Methodology 2014
14:82.
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Log-Binomial vs Robust Poisson?

e Of the two methods, the log-binomial method is generally preferred due to the fact that
the MLEs estimated by the log-binomial models are more efficient compared to the
pseudo-likelihood estimators used by the robust Poisson models.

e Spiegelman and Hertzmark recommend using the log-binomial models over the robust
Poisson models when convergence is not an issue.

e It appears that the gain in efficiency is beneficial to log-binomial models only for samples
of small sizes.

e Due to the concern of lack of efficiency for the robust Poisson models for small samples,
log-binomial may still be the choice when the sample size is small.
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Other Count Models

e Negative Binomial (Overdispersed Poisson Models)
e Zero Inflated Models

e Zero Truncated Models

.. Out of the scope for this
session
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QUESTIONS?

COMMENTS?
RECOMMENDATIONS?
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Distributions

Distribution Variance to Sample situation
mean ¢
Normal Constant o2 Linear regression
Binomial 62 = nu(l — p) Successes out of n trials
OD ? Binomial 02 o nu(1— p) Clustered success data
Poisson a?=pn Count data, variance equals mean
OD Poisson o2 Count data, variance proportional to mean
Negative 62 = H+ ;42/k Count data, variance quadratic in the mean
binomial
Gamma g« Continuous data, standard deviation proportional

to mean

@ Mean is denoted by p and the variance by 62. ? Over-dispersed.

Vittinghoff E., Glidden D.V., Shiboski S.C., McCulloch C.E. (2012) Generalized Linear Models. In:
Regression Methods in Biostatistics. Statistics for Biology and Health. Springer, Boston, MA
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Log-Binomial vs Robust Poisson?

e Software utilizes iterative weighted least squares (IWLS*) approach or variations of IWLS to
find MLEs for generalized linear models.

e For log-binomial models, the weights used by the IWLS approach contain the term 1/(1-p),
where p = exp(XTB) with a range from 0 to 1.

e The MLE of a log-binomial model is likely to be too sensitive to outliers because a very
large p has a large influence on the weights.

* MLE and pseudolikelihood estimators are deteriorated in presence of outliers.

* The level of deterioration differed when the relationships between the confounder and the
outcome was not in a simple form
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Maximum likelihood estimate of lambda

n

Mexp

MLE = {(\y1,. ..y Yn) = Zlogf(yi;)\) = Zlog !
i—1 i=1 '

d(.)

Take first derivative (notation / = —7)

n Miegp ' n
LNy, -5 tn) = 2oy log —5— = Y700 {=A +yi - log(A) — log(u:!)}'

yi! -

DR L R R DU
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Maximum likelihood estimate of lambda

The first-order condition for maximizing the log-likelihood sets its derivative to zero

él()\;yl,,, . 7yn) =0

Thus, the maximum likelihood estimator is simply the empirical mean A= (7]
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Poisson distribution (PD)

If instead are given the average rate, r, at which events occur then A = rt, and

Ttke—rt

k!

P(keventsinintervalt) =
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Poisson distribution (PD)

PD a special case of the binomial, with trials n -> oo and P(success in any trial) -> 0
If p is small, binomial P(k successes) /~ poisson P(k with A = np)

Example: Consider binomial distribution with probability = 0.01. What is the probability of 8
occurences in 1000 tries?

# binomial
dbinom(8,1000,0.01)

4> [1] 0.113

# poisson
dpois(8,1000x.01) # lambda = n+*p

#> [1] 0.113
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Offset vs Exposure

In most applications of count-data regression, there is a baseline or exposure, some value such
as the number of person years that the counts occurred over

We can model y; as the number of cases in a process with rate 6; and exposure p;

y; ~ negative binomial(u;0;, p)
where, as before, §; = X and includes Poisson regression as the special case of ¢ > oo
The logarithm of the exposure, log(u;), is called the offset in GLM terminology.

The regression coefficients 3 now reflect the associations between the predictors and 6; (for
example, the rate of deaths)

Putting the logarithm of the exposure into the model as an offset, is equivalent to including it
as a regression predictor, but with its coefficient fixed to the value 1. Another option is to
include it as a predictor and let its coefficient be estimated from the data.
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AIC = Akaike information criterion

AIC = —2(log — likelihood) + kny,,, where k = 2, equivalently

A

AIC = 2k — 2In(L)

k = number of estimated parameters in the model L = maximum value of the likelihood
function for the model

Given a collection of models for the data, AIC estimates the quality of each model, relative to
each of the other models.

Hence, AIC provides a means for model selection
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BIC = Bayesian Information Criterion

BIC = —2(log — likelihood) + kn;.,

where k = log(n),

and n is the number of observations
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