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Objective: To review core concepts of logistic regression and identify opportunities to estimate

absolute and relative measures of association when the outcome is binary

Outline

1) (mini) Review of concepts (Slides 4-17)

Outcome’s distribution and study designs

Regression adjustment (Why and When)

2) Alternatives to obtain absolute measures when the outcome is binary (Slides 18-85)

Prediction (at the modes, means)

Marginal standardization

Log binomial regression

Extra slides: For own review (86- 95)
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What do we know so far?

SZKLO, M.; NIETO, F. J.Epidemiology. Burlington, Massachusetts: Jones & Bartlett Learning,

2019. V. Fourth edition.(Table 7-15)
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But wait… When and Why?

What do we know so far?

Method Characteristics Outcome Measure

Standardization

Weight-based adjustment; Depends on

the standard pop. selected; No

homogeneity needed

Binary or

categorical
SMR

Mantel- Haenszel

Adjustment

Requires homogeneity; Do not handle

clusters

Binary or

categorical
RD, RR, OR

Regression

Adjustment

Efficient, Useful for prediction, adjust for

several covariates, require assumptions
Any type

RD, RR, OR;

AME/ATE

IPTW 

Regression + Weights: 1/Pr(X=1, covars);

Ensure Exchangeability; Only for

measured Confounders

Any type
Causal RD, RR,

OR; AME/ATE

 More on this later, hopefully with the help of this lecture

1

1

5 / 95



Model Assumptions and Considerations

What is the distribution of the data (for a fixed pattern of covariates)?

Are the model-specific assumptions met?

What function will be used to link the mean of the data to the covariates?

Which covariates should be included in the model?
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Remember this table?

Sample
Risk Among

Exposed
Risk Among Non-

Exposed
Risk

Difference
Risk

Ratio
Odds
Ratio

63 0.25 0.22 0.03 1.12 1.17

63 0.17 0.15 0.02 1.12 1.15

630 0.017 0.015 0.002 1.12 1.15

630 0.25 0.22 0.03 1.12 1.17

But we want meaningful and complementary measures (e.g., RD, RR)!!
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“But my outcome is dichotomous!”
It doesn’t matter!!!

"we are not chained to our output" let's not fell for the "Risk relativism" By Poole

We also have options and a number of tools at our disposal to directly estimate risks, RRs and

RDs
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Different Approaches

Parametric: Data/Outcome dependent ( Assumptions!)

1) Frequentist approach

Deductive 

Uncertainty is given by the 95%Confidence Interval

Maximum likelihood Estimates

Consistent, efficient, asymptotically normal

2) Bayesian approach

Inductive 

MCMC, priors!

Be aware of multiplicative models, sample size and number of parameters!

Data cleaning: variables’ coding and missing data

→ P(Data|H0)

P(θ|Data)
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Simple models for generating absolute & relative estimates

Type Model Estimate

Continuous Linear Regression RD

Binary Logistic Regression, Binomial Regression OR, RR, RD

Counts Poisson, Negative Binomial IR, IRR, RD

Assuming:

Simple random sampling from a target population

Adequate sample size

 More on this on Poisson regression's lecture.

1
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Simulations for the impact of priors in data analysis

Consider several data scenarios, each time assuming that the true parameter values are a

= −2 and b = 0.8 and that the values of  are drawn from a uniform distribution between −1

and 1.

To repeat the same analyses (Bayesian & frequentist) with different sample sizes, we write

a function.

bayes_sim() enables the analysis to be sequentially performed as a both standard

(maximum likelihood, glm) and Bayesian (stan_glm) logistic regression with varying

sample sizes.

library("arm", "rstanarm")   

set.seed(1234)

bayes_sim <- function(n, a = -2, b = 0.8) {

  data <- tibble(x = runif(n, min = -1, max = 1),

      y = if_else(0 < rlogis(n, location = a + b * x, scale = 1), 1, 0))

  fit_glm <- glm(y ~ x, family = binomial(link = "logit"), data = data)

  fit_stan <- stan_glm(y ~ x, family = binomial(link = "logit"),

      data = data, refresh = 0,

      prior = normal(location = 0.5, scale = 0.5)) #<
  arm::display(fit_glm, digits = 1)

  cat("\n")

  print(fit_stan, digits = 1)

}

x
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Simulation study n = 10

Focus on inference about b, which was assigned a value = 0.8 when generating the data

set.seed(1234); bayes_sim(n=10) #small sample size of only 10 obervations

## glm(formula = y ~ x, family = binomial(link = "logit"), data = data)

##             coef.est coef.se

## (Intercept) -2.4      1.2   

## x            1.4      2.8   

## ---

##   n = 10, k = 2

##   residual deviance = 6.2, null deviance = 6.5 (difference = 0.3)

## 

## stan_glm

##  family:       binomial [logit]

##  formula:      y ~ x

##  observations: 10

##  predictors:   2

## ------

##             Median MAD_SD

## (Intercept) -2.1    0.9  

## x            0.5    0.5  

## 

## ------

## * For help interpreting the printed output see ?print.stanreg

## * For info on the priors used see ?prior_summary.stanreg
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Simulation study n = 10 interpretation

With only 10 observations, the maximum likelihood estimate is noisy,and in this simulation,

glm gives a maximum likelihood estimate of 1.4, with a large se = 2.8, confirming that the

likelihood provides little precision (information)

As expected with little data the Bayesian posterior will be influenced the prior.

Inference from stan_glm relies heavily on the prior distribution: the Bayes estimate of the

coefficient = 0.6 is close to the prior mean of 0.5, being pulled away by the data only

slightly.

## Priors for model 'fit_stan' 

## ------

## Intercept (after predictors centered)

##  ~ normal(location = 0, scale = 2.5)

## 

## Coefficients

##  ~ normal(location = 0.5, scale = 0.5)

## ------

## See help('prior_summary.stanreg') for more details

13 / 95



Simulation study n = 100

set.seed(1234); bayes_sim(n=100)

## glm(formula = y ~ x, family = binomial(link = "logit"), data = data)

##             coef.est coef.se

## (Intercept) -1.7      0.3   

## x            0.1      0.5   

## ---

##   n = 100, k = 2

##   residual deviance = 84.5, null deviance = 84.5 (difference = 0.0)

## 

## stan_glm

##  family:       binomial [logit]

##  formula:      y ~ x

##  observations: 100

##  predictors:   2

## ------

##             Median MAD_SD

## (Intercept) -1.7    0.3  

## x            0.3    0.4  

## 

## ------

## * For help interpreting the printed output see ?print.stanreg

## * For info on the priors used see ?prior_summary.stanreg

14 / 95



Simulation study n = 100 interpretation

With 100 observations, the maximum likelihood estimate has now excluded more extreme

values and provides a more precise estimate, and in this simulation, glm gives a MLE = 0.1, with

a smaller se = 0.5 (was 2.4), confirming that the likelihood (data) provides modest precision

(information) and the CI includes the true paramter value (0.8)

As expected with more data the Bayesian posterior will be less influenced the prior.

Nevertheless, the inference from stan_glm, parameter = 0.3 has still seen the data (0.1)

pulled towards the prior (0.5) but less than with the previous smaller sample size
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Simulation study n = 1000

set.seed(1234); bayes_sim(n=1000)

## glm(formula = y ~ x, family = binomial(link = "logit"), data = data)

##             coef.est coef.se

## (Intercept) -2.3      0.1   

## x            0.9      0.2   

## ---

##   n = 1000, k = 2

##   residual deviance = 639.3, null deviance = 663.3 (difference = 23.9)

## 

## stan_glm

##  family:       binomial [logit]

##  formula:      y ~ x

##  observations: 1000

##  predictors:   2

## ------

##             Median MAD_SD

## (Intercept) -2.3    0.1  

## x            0.9    0.2  

## 

## ------

## * For help interpreting the printed output see ?print.stanreg

## * For info on the priors used see ?prior_summary.stanreg

16 / 95



Simulation study n = 1000 interpretation

With 1000 observations, the maximum likelihood estimate now provides an accurate and

precise estimate (0.9, se = 0.2) of the known parameter, 

The Bayes estimate is now also dominated by the data with an almost negligible effect of the

prior.

Once $n $is as large as 1000, a weak or even a modest prior distribution doesn’t really make a

difference and the two approaches produce essentially identical results.

β1 = 0.8
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Building a Bayesian logistic regression model - A public
health example

Wells in Bangladesh
Example from Regression and other Stories - Chapters 13-14
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Background:

Research teams from the US and Bangladesh measured all the wells and labeled them with

their arsenic level as well as a characterization as “safe” (<0.5 micrograms per liter)

People with unsafe wells were encouraged to switch to nearby private or community wells or

to new wells of their own construction. A few years later, the researchers returned to find out

who had switched wells. We shall perform a logistic regression analysis to understand the

factors predictive of well switching among the users of unsafe wells.

Variables: Outcome:  = 1 if household i switched or = 0 if household i continued using its

own well.

Potential independent (predictor) variables are

• distance (in meters) to the closest known safe well

• arsenic level of respondent’s well

• any household members active in community organizations

• education level of the head of household

We shall first fit the model just using distance to the nearest well and then put in arsenic

concentration, organizational membership, and education.

yi
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Read in the data

# Data on arsenic in unsafe wells in Bangladesh
# remotes::install_github("avehtari/ROS-Examples",subdir = "rpackage")
library(rosdata)

data(wells)

file_common <- here::here("_common.R")  # Specific formating and functions
source(file_common) # Run common code
str(wells)

## 'data.frame':    3020 obs. of  7 variables:

##  $ switch : int  1 1 0 1 1 1 1 1 1 1 ...

##  $ arsenic: num  2.36 0.71 2.07 1.15 1.1 3.9 2.97 3.24 3.28 2.52 ...

##  $ dist   : num  16.8 47.3 21 21.5 40.9 ...

##  $ dist100: num  0.168 0.473 0.21 0.215 0.409 ...

##  $ assoc  : int  0 0 0 0 1 1 1 0 1 1 ...

##  $ educ   : int  0 0 10 12 14 9 4 10 0 0 ...

##  $ educ4  : num  0 0 2.5 3 3.5 2.25 1 2.5 0 0 ...
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Data overview

#summary(wells) # details can found with ?wells
wells %>%  tbl_summary()

Characteristic N = 3,020
1

switch 1,737 (58%)

arsenic 1.30 (0.82, 2.20)

dist 37 (21, 64)

dist100 0.37 (0.21, 0.64)

assoc 1,277 (42%)

educ 5 (0, 8)

educ4 1.25 (0.00, 2.00)
1
n (%); Median (Q1, Q3)
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Data overview

How many homes with unsafe wells switched?

wells %>% count(switch) %>% 

  mutate(prop = n / sum(n))

#>   switch    n  prop

#> 1      0 1283 0.425

#> 2      1 1737 0.575
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visualization

A helpful visualization

As expected, the % of households increases with the arsenic level in their well, from about 40%

for wells that are just over the safety threshold to perhaps 80% for very high levels. The sparse

data for high arsenic levels results in a large uncertainty.

What is the blue line?

The blue line is a non-parametric approach to draw a smooth curve through a scatter plot,

known as LOWESS (Locally Weighted Scatterplot Smoothing),or sometimes called LOESS

(locally weighted smoothing)
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Logistic regression with just one predictor

Fit the logistic regression

fit_0 <- stan_glm(switch ~ dist, family=binomial(link="logit"), refresh=0, data=wells, seed=1

print(fit_0, digits = 4)

#> stan_glm

#>  family:       binomial [logit]

#>  formula:      switch ~ dist

#>  observations: 3020

#>  predictors:   2

#> ------

#>             Median  MAD_SD 

#> (Intercept)  0.6073  0.0599

#> dist        -0.0062  0.0009

#> 

#> ------

#> * For help interpreting the printed output see ?print.stanreg

#> * For info on the priors used see ?prior_summary.stanreg

What happens to the  coefficient if we change distance in meters to 100 meter units?β
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Logistic regression with just one predictor

Fit the logistic regression

wells$dist100 <- wells$dist/100 #change distance from meters to 100 meter units
fit_1 <- stan_glm(switch ~ dist100, family=binomial(link="logit"), refresh=0, data=wells, see

print(fit_1, digits = 4)

#> stan_glm

#>  family:       binomial [logit]

#>  formula:      switch ~ dist100

#>  observations: 3020

#>  predictors:   2

#> ------

#>             Median  MAD_SD 

#> (Intercept)  0.6073  0.0599

#> dist100     -0.6234  0.0946

#> 

#> ------

#> * For help interpreting the printed output see ?print.stanreg

#> * For info on the priors used see ?prior_summary.stanreg

If divide (or multiply) units by X then coefficient for X is multiplied (or divided) by X
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Interpreting coefficients - Three different scales

We can interpret the coefficient estimates on 3 different scales

log odds(switch) = logit = 0.61 − 0.62 ∗ dist100
p

1 − p

odds = explogit = exp0.61−0.62∗dist100

Pr (switch) = logit−1(0.61 − 0.62 ∗ dist100) =
1

1 + exp−(0.61−0.62∗dist100)

26 / 95



Interpreting the logistic regression intercept

The constant term (intercept) is value when dist100 = 0
i) log odds (switching) = 0.61

ii) odds (switching) =  = 1.84

iii) P(switching) , by rearranging 

More directly, constant term = probability(switching) when dist100 = 0

 or with R code invlogit(0.61) = 0.65

Thus, model estimates a 65% probability of switching if live right next to an existing safe well

log odds(switch) = logit = 0.61 − 0.62 ∗ dist100
p

1 − p

e0.61

p = = = .65
odds

odds + 1
1.84
2.84

odds =
p

1 − p

logit−1(0.61) = = 0.65
1

1 + e−0.61
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Logistic regression with just one predictor

The probability of switching is about 65% invlogit(.61) for people who live near a safe well,

declining to about 20% for people who live more than 300 meters from any safe well. This

makes sense: the probability of switching is higher for people who live closer to a safe well.
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Interpreting the  regression coefficient

Remember this interpretation can also be made on 3 different scales

i) Change in log odds for unit change in dist100 = -0.62

ii)  odds = exp(-0.62) = 0.54 (< likely to switch for each 100m increase in distance)

iii) Since probability scale is nonlinear, , must choose where to evaluate

the effect of a 1 unit change in the dist100 variable

β1

log odds(switch) = logit = 0.61 − 0.62 ∗ dist100
p

1 − p

Δ

1
1 + e−0.61−0.62∗dist100

29 / 95



Interpreting the  regression coefficient

Often choose predictor mean (steepest part of logistic curve)

mean(wells$dist100) = 0.48

Linear predictor for logit function = 0.61 − 0.62 ∗ 0.48 = 0.31

P(switching) = invlogit(.31) = 0.57 (reverts back to (0,1) probability scale)

Logit linear predictor for a 1 unit increment from the mean value = 0.61 − 0.62 ∗ 1.48 =

-0.31

P(switching) = invlogit(-0.31) = 0.42

Thus, adding 100 meters to the distance to the nearest safe well (from the mean distance),

decreases the probability of switching by about 15% (57%-42%).

β1
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Interpreting the logistic regression intercept

log odds(switch) = logit = 0.61 − 0.62 ∗ dist100
p

1 − p
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Interpreting the  regression coefficient

Divide by 4 rule The slope (1st derivative) of the inverse logistic function = 

(if you forgot how to take derivatives use D(expression(1/(1+exp(x)^-1)), "x")

The logistic curve is steepest at its center, which occurs when the linear predictors  = 0

so that invlogit(0) = 0.5. Substituting x=0 into the 1st derivative equation maximizes the

slope and equals

Thus,  is the maximum  in Pr(y = 1) corresponding to a unit

difference in x.

β1

d(1/(1+exp(x)−1)
dx

ex

(ex + 1)2

α + βx

β =
e0

(e0 + 1)2
β

4

= −0.62/4 = −0.15
β

4
Δ
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Graphing the fitted model with two predictors

Probability switching to new well by distance and arsenic level
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Recall: Linear Regression Model
Review: “The effect of a given change in an independent variable is the same regardless the value of

that variable at the start of it changes and regardless of the level of the other variables in the

model.”

Adapted from: Long, J., & Freese, J. (2006).Regression models for categorical dependent

variables using stata(Second ed.). College Station, Texas: StataCorp LP.

y = α + βx + 𝛅d
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Observations 3020

Dependent
variable

switch

Type
OLS linear

regression

F(1,3018) 42.57

R² 0.01

Adj. R² 0.01

Est. 2.5% 97.5% t val. p

(Intercept) 0.65 0.62 0.68 45.19 0.00

dist100 -0.15 -0.20 -0.11 -6.52 0.00

Standard errors: OLS

Observations 3020

Dependent
variable

switch

Type
OLS linear

regression

F(1,3018) 3.90

R² 0.00

Adj. R² 0.00

Est. 2.5% 97.5% t val. p

(Intercept) 0.59 0.57 0.61 49.88 0.00

assoc -0.04 -0.07 -0.00 -1.97 0.05

Standard errors: OLS

Linear Probability Model for RDs when the outcome is binary:

Remember the divide by 4 rule?  is the maximum difference in Pr(y

= 1) corresponding to a unit difference in x. Would it work here too?

= −0.62/4 = −0.15
β

4
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Advantages:

Very easy to fit

Single uniform estimate

Economists will love you

Disadvantages:

Possible to get impossible estimates

Biostatisticians will hate you

(I) Linear Probability Model for RDs when the outcome is
binary:

Fit an OLS linear regression on the binary outcome variable: 

Note: Homoskedasticity assumption cannot be met, since variance is a function of .

Therefore, use robust variance.

Pr(Y = 1|X = x) = β0 + β1X

p
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Multiplicative Models

Review: “The effect of a change in a variable depends on the values of all variables in the model and

it’s no longer simply equal to one of the parameters in the model”

Adapted from: Long, J., & Freese, J. (2006).Regression models for categorical dependent

variables using Stata (Second ed.). College Station, Texas: StataCorp LP.
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Multiplicative Models - Review

Binary outcomes

Expressed on a transformed scale, it prescribes a linear relationship between the log-odds

of Y and X.

The log odds of the outcome is linearly related to , with intercept coefficient  and slope

coefficient 

i.e., the logistic model is an additive model when expressed on the log odds scale.

P(X = 1) =
exp(α + βx)

1 + exp(α + βx)

x α
β
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Logistic Regression: Log Odds vs Probabilities
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Disadvantages:

Does not give a single uniform estimate

Choose between different formulations

Advantages:

Always fits easily

Can never get impossible estimates

Epidemiologists will love you

(II) Logistic Models for RDs and RRs
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Logistic Models for RDs and RRs

Several approaches:

Transformation of ORs, estimation of RRs/RDs with different models

Simple as:

(1) Fit a logistic regression

(2) Predict probabilities based on the regression parameters (several options to do this!)

(3) Use these probabilities to calculate risk ratios/risk differences
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Next: obtain the predicted probabilities

(1) Fit a standard logistic regression model:

The Frequentist way

mod2a <- glm(switch ~ assoc, data=wells, family = "binomial")

round(summ(mod2a, confint = T)$"coeftable", 2) #;summ(mod2a)

#>              Est.  2.5% 97.5% z val.    p

#> (Intercept)  0.37  0.27  0.46   7.50 0.00

#> assoc       -0.15 -0.29  0.00  -1.97 0.05

The Bayesian way:

mod2b <- stan_glm(switch ~ assoc, family=binomial(link="logit"), data=wells, refresh=0) 

round(mod2b$stan_summary[1:2,1:5-10], 2) #; print(mod2b, digits = 2) #; summary(mod2b)

#>              mean se_mean   sd  2.5% 97.5% n_eff Rhat

#> (Intercept)  0.36       0 0.05  0.27  0.45  3076    1

#> assoc       -0.15       0 0.07 -0.29  0.00  3013    1
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Next: contrast the predicted probabilities

(2) Estimate the probabilities based on/using the regression
parameters and the observed data (i)

p1<- predict(mod2a, newdata = transform(wells, assoc=1), type="response")

summary(p1) # probabilities among "Exposed"

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

#>   0.554   0.554   0.554   0.554   0.554   0.554

p0<- predict(mod2a, newdata = transform(wells, assoc=0), type="response")

summary(p0) # probabilities among "Unexposed"

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

#>    0.59    0.59    0.59    0.59    0.59    0.59
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Then we just obtained our RDs and RRs...

(3) Use these probabilities to calculate average "predictive"
risk ratios/risk and differences

RR<- p1/p0 # Calculate the ratio contrast
#summary(RR)
round(mean(RR), 2)

#> [1] 0.94

RD<- p1-p0 # Calculate the difference contrast
#summary(RD) 
round(mean(RD),2)

#> [1] -0.04

44 / 95



(2) Estimate the probabilities based on/using the regression parameters and the
observed data (ii)

Inverse logit option:

The syntax is simple, using the "linear combination" for each group "Exposed" and

"Unexposed" the functions are inv.logit, invlogit or any other function that estimates

the inverse logit

RR <- inv.logit(Linear Combination for Exposed) inv.logit(Linear Combination Unexposed)

RD <- inv.logit(Linear Combination for Exposed) inv.logit(Linear Combination Unexposed)

logit−1(x) =
1

1 + ex

/

−
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Contrasting the predicted probabilities in a

single step

Using the inv.logit function: The Frequentist way

Risk Ratio

#Using the inv.logit
rr.i<-inv.logit(mod2a$coefficients["(Intercept)"] + mod2a$coefficients["assoc"]) / 

  inv.logit(mod2a$coefficients["(Intercept)"] )

round(rr.i, 2)

#> (Intercept) 

#>        0.94

Risk Difference

rd.i<-inv.logit(mod2a$coefficients["(Intercept)"] + mod2a$coefficients["assoc"]) - 

  inv.logit(mod2a$coefficients["(Intercept)"] )

round(rd.i, 2)

#> (Intercept) 

#>       -0.04
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Risk Ratio

ratio<- invlogit (beta[1] + beta[2]*yes) /

         invlogit (beta[1] + beta[2]*no)

round(mean(ratio), 2)

#> [1] 0.94

Risk Difference

diff <- invlogit (beta[1] + beta[2]yes) -
         invlogit (beta[1] + beta[2]no)
round(mean(diff), 2)

#> [1] -0.04

Using the invlogit function: The Bayesian way

beta <- coef(mod2b) # to extract the beta coefficients from the model
beta

#> (Intercept)       assoc 

#>       0.365      -0.145

yes <- 1 #to assign exposed, assoc= 1
no <- 0 #to assign unexposed, assoc= 0

Contrasting the predicted probabilities in a single step!
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How do I interpret these??
Average predictive ratios and differences effects

Average conditional ratios and differences effects
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Average Marginal Effects

Where/how you fix your covariates has an impact on your estimated probabilities (and your

population of inference). Muller and MacLehose present us three strategies:

Prediction at the modes : conditional predicted probabilities are calculated for each

exposure level with every covariate/confounder fixed at its most common value

Prediction at the means : conditional predicted probabilities are calculated for each

exposure level with every covariate/confounder fixed at its mean value

Marginal standardization : predicted probabilities of the outcome are calculated for every

observed confounder value and then combined as a weighted average separately for each

exposure level

Estimating predicted probabilities from logistic regression: different methods correspond to

different target populations, by Clemma J Muller & Richard F MacLehose
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Margins at the Modes

Assumes everyone had most common values of the confounders:

In the case of a single dichotomous confounder, we’d calculate predicted probabilities of

the outcome only for the most frequently observed value of the confounder (0 or 1) in the

population

As the number of confounders increases, the number of observations in our cells will

decrease (all are set to their modal value)

Could also predict at most common JOINT covariate pattern, but you’re still standardizing

estimates to the population of those w/the modal distribution of Z

Might be okay if the modal population is of interest, but likely misleading if you want to

say something about the full population

Pr(Y = 1|Set[E = e],Z = zm)
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Characteristic N = 3,0201

switch 1,737 (58%)

arsenic

    Median (Q1, Q3) 1.30 (0.82, 2.20)

    Min, Max 0.51, 9.65

dist100

    Median (Q1, Q3) 0.37 (0.21, 0.64)

    Min, Max 0.00, 3.40

assoc 1,277 (42%)
1
n (%)

Arsenic Levels in the Wells

Let's go back to our example of Wells in Bangladesh
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Let's model the "switch" outcome as a function of the As level and whether the owner
belongs to a community association.
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Let's model the "switch" outcome as a function of the As. level and whether the owner
belongs to a community association.

Frequentist

mod3a <- glm(switch ~ assoc + arsenic, data=wells, family = "binomial")

round(summ(mod3a, confint = T)$"coeftable", 2) #;summ(mod3a)

#>              Est.  2.5% 97.5% z val.    p

#> (Intercept) -0.25 -0.40 -0.10  -3.18 0.00

#> assoc       -0.13 -0.28  0.02  -1.72 0.09

#> arsenic      0.38  0.30  0.45   9.80 0.00

Bayesian

mod3b <- stan_glm(switch ~ assoc + arsenic, family=binomial(link="logit"), 

                  data=wells, refresh=0) 

round(mod3b$stan_summary[1:3,1:5-10], 2) #; print(mod3b, digits = 2) #; summary(mod3b)

#>              mean se_mean   sd  2.5% 97.5% n_eff Rhat

#> (Intercept) -0.25       0 0.08 -0.41 -0.10  4109    1

#> assoc       -0.13       0 0.08 -0.28  0.01  3997    1

#> arsenic      0.38       0 0.04  0.31  0.45  3958    1
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Predicted probabilities of "switch" to a safer well by whether the owner is member of a
community organization througout the observed range of As level in the household
wells.

What would be the RD and RR?
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Risk Difference Risk Ratio

Risk Difference

wells$pp.rd <- wells$pp1 - wells$pp0

plot(wells$arsenic, wells$pp.rd, ylab="Risk

Risk Ratio

wells$pp.rr <- wells$pp1 / wells$pp0

plot(wells$arsenic, wells$pp.rr, ylab="Risk

Estimated RR and RD using the probabilities from the logistic model

wells$pp0 <- predict(mod3a, newdata = transform(wells, assoc=0), type="response")

wells$pp1 <- predict(mod3a, newdata = transform(wells, assoc=1), type="response")
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Using the inv.logit function to obtain the "overall" RR and RD

#Using the inv.logit
rr.i2<-inv.logit(mod3a$coefficients["(Intercept)"] + 

                   mod3a$coefficients["arsenic"] + mod3a$coefficients["assoc"]) / 

  inv.logit(mod3a$coefficients["(Intercept)"]+ mod3a$coefficients["arsenic"] )

round(rr.i2, 2)

#> (Intercept) 

#>        0.94

rd.i2<-inv.logit(mod3a$coefficients["(Intercept)"] + 

                   mod3a$coefficients["arsenic"]+  mod3a$coefficients["assoc"]) - 

  inv.logit(mod3a$coefficients["(Intercept)"]+ mod3a$coefficients["arsenic"] )

round(rd.i2, 2)

#> (Intercept) 

#>       -0.03
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Margins at the Means

Assumes everyone in the dataset has the mean value of the confounder(s)

If a confounder is continuous/ordinal, the mean might not reflect any particular individual

in the data

If a confounder is binary, the mean reflects the proportion of subjects with that

confounder, but the mean will (probably) not correspond to any observations in the data -

predictions will not be true for any individual subject

Sometimes wrongly interpreted as the average/marginal probability in the population

Pr(Y = 1|Set[E = e],Z = z)
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Margins at the Means

As per Muller (2014):

“In the presence of binary covariates, prediction at the means yields results that are not meaningful

to any real-world group of individuals.”

It estimates associations at the mean of each confounder in the regression model

No one can be half hypertensive or 10% diabetic

When calculating predicted probabilities, the inverse logit of the averages (prediction at the

means) is not equal to the average of the inverse logits (marginal standardization)

This is why these approaches differ, and it’s why they can diverge significantly in certain

situations

Estimating predicted probabilities from logistic regression: different methods correspond to

different target populations, by Clemma J Muller & Richard F MacLehose
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mean(wells$arsenic); mean(wells$assoc)

#> [1] 1.66

#> [1] 0.423

mar.means<-margins(mod3a, 

          at = list(assoc=mean(wells$assoc)

       type = "response")

mar.means

#>  at(assoc)    assoc arsenic

#>     0.4228 -0.03079 0.08913

margins(mod3a, at = list(assoc= mean(wells$

        arsenic=mean(wells$arsenic)), 

        type = "response")

#>  at(assoc) at(arsenic)    assoc arsenic

#>     0.4228       1.657 -0.03178   0.092

Margins at the Means

R does not have the ‘atmeans’ option (because it is often Meaningless!)

Similarly:
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Marginal Standardization

Prediction at the means involves hypothetical people (with likely impossible covariate

patterns), whereas marginal standardization involves hypothetical populations

Under this approach, you’re comparing two hypothetical populations that are identical

except for exposure status

Since the only difference between these two populations is their exposure status, we can

attribute any differences in the probability of the outcome to the exposure

The resulting estimates are essentially weighted to the distribution of confounders in the

sample = Average Marginal Effect (AME)
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Marginal Standardization

Basic steps for the AME (assuming a binary exposure):

Start at subject #1. Treat that person as though they were exposed (i.e., change exposure

to “1”), but don’t change anything else. Compute this subject’s probability of the outcome.

Now switch the same subject’s exposure status to “0” (unexposed) and repeat the

probability calculation.

Take the individual-level difference in the two probabilities

This is the marginal effect for that subject

Repeat the process for every subject in the sample

Compute the average of all the subject-specific marginal effects.

This gives you the AME of your exposure!.

61 / 95



Marginal Standardization

 will be determined by confounder  pattern:

Assuming a binary exposure, the marginal RR/RD are simply:

(Z drops out of these equations as we’ve predicted probabilities under the same distribution of

Z for both groups)

Sounds familiar? ... We have a name for this...

Pr(Y ) (Z)

RR = Pr(Y = 1|Set[E = 1])/Pr(Y = 1|Set[E = 0])

RD = Pr(Y = 1|Set[E = 1])–Pr(Y = 0|Set[E = 0])
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Marginal Standardization

The steps:

Generate one new variable representing the predicted risk of the outcome if everyone had

been exposed

Generate another new variable representing the predicted risk if everyone had been

unexposed

This will often give you a different quantity than you’d get if you ran the usual postestimation

commands (i.e., run the logistic, predict the probabilities, and calculate the ratio/difference)

This is marginal standardization!
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RD

mar.RD <-mean(wells$exp) - (mean(wells$unex

wells$m.diff <- (wells$exp-wells$unex)

mar.RD

#> [1] -0.0208

round(summary(wells$m.diff), 2)

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

#>   -0.46   -0.10   -0.02   -0.02    0.06    0.43

RR

mar.RR <-mean(wells$exp) /(mean(wells$unex)

wells$m.rr <- (wells$exp/wells$unex)

mar.RR

#> [1] 0.965

round(summary(wells$m.rr), 2)

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

#>    0.50    0.84    0.96    0.98    1.10    1.88

Marginal Standardization (i)

#to obtain the conditional probability
wells$predprob<-predict(mod3a, wells=transform(wells), type="response") 

#to change the exposure statures with the predicted probabilities
wells$unex<- wells$predprob

wells$unex[wells$assoc==1]<- inv.logit(mod3a$coefficients["(Intercept)"]+ 

                            (mod3a$coefficients["arsenic"]*wells$arsenic)) 

wells$exp<-wells$predprob

wells$exp[wells$assoc==0]<- inv.logit(mod3a$coefficients["(Intercept)"] + 

                           (mod3a$coefficients["arsenic"]*wells$arsenic) + 

                            (mod3a$coefficients["assoc"]*wells$assoc)) 

#summary(wells$exp); summary(wells$unex)
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Marginal Standardization (ii)

Using Standardization stdReg package

#install.packages("stdReg")
require(stdReg)

condprob<- stdGlm(fit=mod3a,data = wells, X="assoc", x=c(0:1)); summary(condprob)$est.table #

#>   Estimate Std. Error lower 0.95 upper 0.95

#> 0    0.588     0.0117      0.565      0.611

#> 1    0.557     0.0138      0.530      0.584

summary(condprob, contrast="difference", reference=0)$est.table #std RD

#>   Estimate Std. Error lower 0.95 upper 0.95

#> 0   0.0000     0.0000      0.000    0.00000

#> 1  -0.0308     0.0179     -0.066    0.00434

summary(condprob, contrast="ratio", reference=0)$est.table #std RR; #summary(condprob, transf

#>   Estimate Std. Error lower 0.95 upper 0.95

#> 0    1.000     0.0000      1.000       1.00

#> 1    0.948     0.0298      0.889       1.01

Nice walk through here: SjölanderA. Regression standardization with the R package stdReg.

European journal of epidemiology. 2016 May 14:1-2. 65 / 95
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Marginal Standardization (ii)

Using Margins package

require(margins)

margins_summary(mod3a) #; margins(mod3a, at = list(assoc=1), type = "response")

#>   factor     AME     SE       z      p   lower  upper

#>  arsenic  0.0890 0.0085 10.4179 0.0000  0.0723 0.1058

#>    assoc -0.0308 0.0178 -1.7253 0.0845 -0.0657 0.0042

avdiff<-dydx(wells, mod3a, "assoc", change = "minmax") #; mean(avdiff$dydx_assoc, na.rm = T) 

On the scale of the linear predictor

margins(mod3a, at = list(assoc=1), type = "link"); exp(-0.1305)

#>  at(assoc)   assoc arsenic

#>          1 -0.1305  0.3777

#> [1] 0.878

What's this?
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Comparing results

Model Frequentist Estimates Bayesian Estimates

Linear Model -0.036 -0.035

Logit Model (Predicted probs.) RD= -0.036; RR= 0.939 RD = -0.035; RR= 0.94

Logit Model (Predicted probs.) RD= -0.033; RR= 0.939 RD= -0.031; RR= 0.945

AME (prediction StdGLM) RD= -0.031; RR= 0.948 -

AME (margins at means) RD= -0.031 -

AME (marginal standardization) RD= -0.021 ; RR= 0.965 RD= -0.032 ; RR= 0.946

 Single predictor;  Two predictors

1

1

2

2

2

2

1 2
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Estimated RR and RD using the probabilities from the logistic model

Figure 1. Half of a sigmoid curve depicting calculation of predicted probabilities following

logistic regression using marginal standardization (dashed straight line) and prediction at the

means (solid curved line) in unexposed people from a hypothetical population.

Estimating predicted probabilities from logistic regression: different methods correspond to

different target populations, by Clemma J Muller & Richard F MacLehose
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(III) Other Generalized Linear Models:

Log binomial: The log-link function maps the probability of disease

Attempts to find a MLE if it exists.

Useful for RDs and RRs

Software/packages: SAS’s GENMOD, R’s GLM or STATA’s GLM/binreg.

The MLE can be on the boundary of the parameter space, leading to the difficulty of

finding the MLE.

The log-link function maps the probability of disease onto the negative real line, requiring

the constraint that a linear predictor must be negative.
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Advantages:

Single uniform estimate

Biostatisticians will love you

Disadvantages:

Very difficult to fit

Still possible to get impossible values

Log-Binomial

For RDs, fit a GLM with a binomial variance and an identity link

  Wacholder S.Binomial regression in GLIM: estimating risk ratios and risk differences. 

  Am J Epidemiol 1986. Jan;123(1):174-84.62

  Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. 

  Am J Epidemiol 2005 Aug 1;162(3):199-200. 

g[Pr(Y = 1|X = x)] = β0 + β1X
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Logistic vs Log-Binomial

Both model 

Both assume that the error terms have a binomial distribution.

Different links between the X and the Pr(Y):

Logistic regression, the logit function

Log-binomial model, the log function

In general, the log-binomial model produces an unbiased estimate of the adjusted relative

risk.

Minimal restriction unless adjustment for many confounders is needed.

The CIs for the adjusted RR may be narrower than is true

Pr(Y |X, c)
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Log-Binomial
Let's estimate our RD and RR Using glm or glm2 package

mod4a <- glm(switch ~ assoc + arsenic, data = wells, 

             family=binomial(link="identity"))

summ(mod4a, confint=T)

mod4b <-glm(switch ~ assoc + arsenic,  data = wells, 

            family = binomial(link = "log"))

summ(mod4b, confint=T)

Error!
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To understand convergency issues we need to talk about:

The Likelihood function, defined (in a regression model) as the probability density of the data

given the parameters and predictors.

Maximizing the likelihood requires minimizing the sum of squared residuals;

Hence the least squares estimate can be viewed as a maximum likelihood estimate

under the normal model (OLS).

ROS-Gelman, Hill & Vehtari
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Likelihood for GLM - Logistic Regression
For binary logistic regression with data  0 or 1, the likelihood is:

To find the  that maximizes this expression:

Compute the derivative of the logarithm of the likelihood.

Set this derivative equal to 0, and solve for .

There is no closed-form solution, but the maximum likelihood estimate can be found using an

iterative optimization algorithm that converges to a point of zero derivative and

Thus the vector of coefficients  that maximizes the likelihood, when such a maximum

exists.

ROS-Gelman, Hill & Vehtari

yi =

p(y|β,X) =
n

∏
i=1

(logit−1(Xiβ))yi(1 − logit−1(Xiβ))1−yi

β

β

β

74 / 95

https://users.aalto.fi/~ave/ROS.pdf


Convergency Log-Binomial

Failed convergence occurs whenever the maximizing process fails to find the MLE.

Estimation challenges can be grouped based on the location of the true maximum of the

log-likelihood function, relative to the parameter space.

On the boundary of the parameter space (i.e., where the linear predictor equals 0);

In the limit (i.e., as the linear predictor heads towards −∞);

Inside the parameter space.

These three regions span the entire parameter space and are mutually exclusive.

Williamson, T.Log-binomial models: exploring failed convergence
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Convergency Log-Binomial

Software utilizes iterative weighted least squares (IWLS*) approach or variations of IWLS to

find MLEs for generalized linear models.

For log-binomial models, the weights used by the IWLS approach contain the term

, where  with a range from 0 to 1.

The MLE of a log-binomial model is likely to be too sensitive to outliers because a very

large p has a large influence on the weights.

MLE and pseudolikelihood estimators are deteriorated in presence of outliers.

The level of deterioration differed when the relationships between the confounder and the

outcome was not in a simple form.

Chen et al.: BMC Medical Research Methodology 2014 14:82.

1/(1 − p) p = exp(XTβ)
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Convergence Issues

... Requirement that the linear predictor be constrained to be negative ... when the issue is the

boundary of the parameter space (i.e., where the linear predictor equals 0) the solution resides on

the boundary

wells$assoc1 <- 1- wells$assoc

mod4b <-glm(switch ~ -1 + assoc1 + arsenic,  data = wells, 

            family = binomial(link = "log")) 

round(summ(mod4b, confint=T, exp=T)$"coeftable", 2)

#>         exp(Est.) 2.5% 97.5% z val. p

#> assoc1       0.77 0.74  0.81  -10.2 0

#> arsenic      0.79 0.77  0.81  -21.1 0

Interpretation???, setting intercept to 1; log(1) =0; Pr(Y=1) = 0.5 ??

Williamson, T. Log-binomial models: exploring failed convergence
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library(glm2)

mod4b1 <-glm2(switch ~ assoc + arsenic, 

      data = wells, 

      family = binomial(link = "log"), 

      start = c(-1, -1,-1))

round(summ(mod4b1, confint = T, exp = T)$"c

#>             exp(Est.) 2.5% 97.5% z val.    p

#> (Intercept)      0.42 0.40  0.44 -35.87 0.00

#> assoc            0.92 0.87  0.98  -2.69 0.01

#> arsenic          1.10 1.10  1.11  28.72 0.00

#
mod4b2 <-glm2(switch ~ assoc + arsenic, 

        data = wells, 

        family = binomial(link = "log"), 

        start = c(-0.5, -0.5,-0.5))

round(summ(mod4b2, confint = T, exp = T)$"c

#>             exp(Est.) 2.5% 97.5% z val.    p

#> (Intercept)      0.48 0.46  0.51 -29.35 0.00

#> assoc            0.93 0.88  0.98  -2.57 0.01

#> arsenic          1.09 1.08  1.09  29.35 0.00

Convergence Issues

Requirement that the linear predictor be constrained to be negative (ii)
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Log-Binomial
Using the logbin package

library(logbin)

mod4c<- logbin(switch ~ assoc + arsenic, data = wells)

round(summ(mod4c, confint = T, exp = T)$"coeftable", 2)

mod4d<- logbin(switch ~ assoc + arsenic, data = wells, trace = 1, maxit = 100000)

round(summ(mod4d, confint = T, exp = T)$"coeftable", 2)
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The Bayesian way
Estimating RD

mod5a <- stan_glm(switch ~ assoc + arsenic, data = wells, family="gaussian", refresh=0)

round(mod5a$stan_summary[1:3,1:5-10], 3) #;print(mod5a, digits=3)

#>               mean se_mean    sd   2.5% 97.5% n_eff Rhat

#> (Intercept)  0.453       0 0.018  0.418 0.489  4972    1

#> assoc       -0.031       0 0.018 -0.066 0.003  5077    1

#> arsenic      0.082       0 0.008  0.066 0.098  5004    1

"In Bayesian inference, the uncertainty for each parameter in the model automatically

accounts for the uncertainty in the other parameters. This property of Bayesian inference

is particularly relevant for models with many predictors, and for advanced and

hierarchical models."

ROS-Gelman, Hill & Vehtari 80 / 95
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The Bayesian way
Estimating RR

mod5b <-stan_glm(switch ~ assoc + arsenic, data = wells, 

                 family = binomial(link = "log"), refresh=0)

round(mod5b$stan_summary[1:3,1:5-10], 3)#; print(mod5b, digits=3)

#>               mean se_mean    sd   2.5%  97.5% n_eff Rhat

#> (Intercept) -0.650   0.000 0.022 -0.691 -0.607  2876    1

#> assoc       -0.067   0.001 0.025 -0.121 -0.018  1650    1

#> arsenic      0.071   0.000 0.004  0.062  0.077  1758    1

exp(mod5b$coefficients["assoc"] )

#> assoc 

#> 0.936
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The Bayesian way
If the prior distribution on the parameters is uniform, then the posterior density is

proportional to the likelihood function, and the posterior mode—the vector of coefficients

 that maximizes the posterior density is the same as the maximum likelihood estimate.

The benefit of Bayesian inference with a non-informative prior is that we can use

simulations from the entire posterior distribution

Not just a maximum or any other point estimate—to summarize uncertainty, and we

can also use these simulations to make probabilistic predictions.

ROS-Gelman, Hill & Vehtari

β
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Comparing results

Model Frequentist Estimates Bayesian Estimates

Logit Model (Predicted probs.) RD= -0.033; RR= 0.939 RD= -0.031; RR= 0.945

AME (prediction StdGLM) RD= -0.031; RR= 0.948 -

AME (margins at means) RD= -0.031 -

AME (marginal standardization) RD= -0.021 ; RR= 0.965 RD= -0.032 ; RR= 0.946

GLM: Log-Binomial RD= ?; RR= 0.928 or RRa= 0.773 RD= -0.031; RR= 0.936

 Single predictor;  Two predictors

2

2

2

2

2

1 2
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1) Bootstrap!!!

RR <- function(data,d) {

 dta <- data[d,]

 mod <- glm(switch ~ assoc + arsenic, data=

 pp0 <- predict(mod, newdata=transform(dta,

 pp1 <- predict(mod, newdata=transform(dta,

return(RR=pp1/pp0)

 }

 RD <- function(data,d) {

 dta <- data[d,]

 modd <- glm(switch ~ assoc + arsenic, data

 pp0 <- predict(modd, newdata=transform(dta

 pp1 <- predict(modd, newdata=transform(dta

return(RD=pp1-pp0)

}

library(boot)

boot.RR <- boot(data=wells, statistic=RR, R

boot.RD <- boot(data=wells, statistic=RD, R

RR <- quantile(boot.RR$t, probs=c(0.5,0.025

RD <- quantile(boot.RD$t, probs=c(0.5,0.025

RR

#>   50%  2.5% 97.5% 

#> 0.947 0.878 1.004

RD

#>      50%     2.5%    97.5% 

#> -0.03027 -0.07100  0.00528

--

2) Alternatively, use prudently the margins

or StdReg and other resources

3) Use Bayesian Inference!!!

What about Confidence Intervals??
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A kind message from Dr. Jay Kaufman!

Conclusions:

1) You don’t ever have to report another OR again, (unless you have a cumulative case-control

study with an unknown sampling fraction)

The popularity of the OR was based largely on statistical convenience, but modern

software has largely overcome those early limitations.

2) The interpretation depends on the method and the assumptions required for each

estimation!!!
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QUESTIONS?

COMMENTS?

RECOMMENDATIONS?
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Extra slides

Summary table of What, When and Why

Method Characteristics Outcome Measure

Standardization

Weight-based adjustment; Depends on

the standard pop. selected; No

homogeneity needed

Binary or

categorical
SMR

Mantel- Haenszel

Adjustment

Requires homogeneity; Do not handle

clusters

Binary or

categorical
RD, RR, OR

Regression

Adjustment

Efficient, Useful for prediction, adjust for

several covariates, require assumptions
Any type

RD, RR, OR;

AME/ATE

IPTW 

Regression + Weights: 1/Pr(X=1, covars);

Ensure Exchangeability; Only for

measured Confounders

Any type
Causal RD, RR,

OR; AME/ATE
1
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Standardization & M-H Adjustment

Non-parametric

Adjustment based on weights

Useful of a small number of covariates

Basic arithmetic calculations

Homogeneity assumption for M-H Adjustment

Useful for few categorical covariate, limited for continuous variables
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But it has a cost!

Regression Adjustment

Parametric*

Efficient (could provide measures of association for different covariates)

Adjustment for more than one covariate at a time

Handles different types of covariates (continuous, binary, counts, etc.)

Control/Adjust for confounding

Helpful for prediction
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Outcome’s Distribution

Type Model Estimate

Continuous Linear Regression RD

Binary Logistic Regression OR  RR; RD

Categorical Multinomial /Polytomous Logistic Regression OR ; RD

Ordinal Ordinal Logistic Regression OR; RD

Counts Poisson, Negative Binomial IR, IRR

≅
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logit maps the range (0, 1) to (−∞, ∞) useful

to model binary outcomes

Inverse logit (logistic) maps back to the

probability scale

Graphing functions

Remember invlogit =  how does graph change i) as coefficient of x varies? ii) with

addition of intercept?

If x = 0, invlogit =  as shown on the graph

eβx

1 + eβx

= = 0.5
e0

1 + e0

1
1 + 1
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Inverse logit graphs

Notice maximum slope remains at invlogit = 0.5 or x = 0

As  changes, slope becomes steeper ($\beta{1}$ increases) or shallower ($\beta{1}$ decreases)

but the curve doesn't shift position.

β1
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Inverse logit graphs

Shifts the curves horizontally but slope remains constant and maximum remains at invlogit(x)

= 0.5 or x = - intercept
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R - extension of ‘margins’ and more

Marginal effects of the adjusted estimates

Provides estimates for all covariates

R-margins does not include the “over” option but is replaced by the “at=list” option

Useful resources:

Margins

Margins, blog

Estimating Risk Ratios and Risk Differences Alternatives to Odds Ratios
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