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Objective: To review core concepts of logistic regression and identify opportunities to estimate
absolute and relative measures of association when the outcome is binary

Outline

1) (mini) Review of concepts (Slides 4-17)

e Qutcome’s distribution and study designs

e Regression adjustment (Why and When)

2) Alternatives to obtain absolute measures when the outcome is binary (Slides 18-85)

e Prediction (at the modes, means)
e Marginal standardization

e Log binomial regression

Extra slides: For own review (86- 95)
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What do we know so far?

Type of regression and Interpretations

I T N

Linear y=by+bx;+bxy +- -+ bxg Increase in outcome y mean value
(continuous variable) per unit increase in x;,
adjusted for all other variables in the model

Logistic log (odds) = b, + byx; + byx; +--- + b X, Increase in the log odds of the outcome
per unit increase in x,, adjusted for all other
variables in the model

Cox log (hazard) = b, + bix, + byx; +-- -+ b, X, Increase in the log hazard of the outcome
per unit increase in x;, adjusted for all other
variables in the model

Poisson log (rate) = by + bix; + byx, +---+ byX, Increase in the log rate of the outcome per
unit increase in x,, adjusted for all other
variables in the model

SZKLO, M.; NIETO, F. J. Epidemiology. Burlington, Massachusetts: Jones & Bartlett Learning, 2019. V. Fourth edition.(Table 7-15)

SZKLO, M.; NIETO, F. J.Epidemiology. Burlington, Massachusetts: Jones & Bartlett Learning,
2019. V. Fourth edition.(Table 7-15)
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What do we know so far?

Method
Standardization
Mantel- Haenszel
Adjustment
Regression

Adjustment

IPTW !

Characteristics Outcome
Weight-based adjustment; Dependson _.
Binary or
the standard pop. selected; No :
categorical

homogeneity needed

Requires homogeneity; Do not handle Binary or
clusters categorical

Efficient, Useful for prediction, adjust for

. : . Any type
several covariates, require assumptions

Regression + Weights: 1/Pr(X=1, covars);
Ensure Exchangeability; Only for Any type
measured Confounders

Measure

SMR

RD, RR, OR

RD, RR, OR;
AME/ATE

Causal RD, RR,
OR; AME/ATE

1 More on this later, hopefully with the help of this lecture

But wait... When and Why?
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Model Assumptions and Considerations

What is the distribution of the data (for a fixed pattern of covariates)?

Are the model-specific assumptions met?

What function will be used to link the mean of the data to the covariates?

Which covariates should be included in the model?
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Remember this table?

Sample Risk Among Risk Among Non-
Exposed Exposed

63 0.25 0.22

63 0.17 015

630 0.017 0.015

630 0.25 0.22

Risk
Difference

0.03
0.02
0.002
0.03

Risk
Ratio

1.12
1.12
1.12
1.12

Odds
Ratio

1.17
1.15
1.15
1.17

But we want meaningful and complementary measures (e.g., RD, RR)!
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“But my outcome is dichotomous!”

It doesn't matter!!!
"we are not chained to our output” let's not fell for the "Risk relativism" By Poole

We also have options and a number of tools at our disposal to directly estimate risks, RRs and
RDs
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https://journals.lww.com/epidem/Fulltext/2010/01000/On_the_Origin_of_Risk_Relativism.2.aspx

Different Approaches

Parametric: Data/Outcome dependent ( Assumptions!)

1) Frequentist approach

e Deductive — P(Data|H)

e Uncertainty is given by the 95%Confidence Interval
e Maximum likelihood Estimates

e Consistent, efficient, asymptotically normal

2) Bayesian approach

e Inductive P(6|Data)
e MCMC, priors!

Be aware of multiplicative models, sample size and number of parameters!
Data cleaning: variables’ coding and missing data
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Simple models for generating absolute & relative estimates

Type Model Estimate
Continuous Linear Regression RD
Binary  Logistic Regression, Binomial Regression OR, RR, RD

Counts Poisson, Negative Binomial ! IR, IRR, RD

Assuming:

e Simple random sampling from a target population

e Adequate sample size

1 More on this on Poisson regression's lecture.
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Simulations for the impact of priors in data analysis

e Consider several data scenarios, each time assuming that the true parameter values are a
=-2 and b = 0.8 and that the values of x are drawn from a uniform distribution between -1
and 1.

e To repeat the same analyses (Bayesian & frequentist) with different sample sizes, we write
a function.

e bayes_sim() enables the analysis to be sequentially performed as a both standard
(maximum likelihood, glm) and Bayesian (stan_g1lm) logistic regression with varying
sample sizes.

library("arm", "rstanarm")
set.seed(1234)
bayes_sim <- function(n, a = -2, b = 0.8) {
data <- tibble(x = runif(n, min = -1, max = 1),

y = if_else(0 < rlogis(n, location = a + b *x x, scale = 1), 1, 0))
fit_glm <- glm(y ~ x, family = binomial(link = "logit"), data = data)
fit_stan <- stan_glm(y ~ x, family = binomial(link = "logit"),

data = data, refresh = 0,

prior = normal(location = 0.5, scale = 0.5)) #<
arm: :display(fit_glm, digits = 1)
cat("\n")
print(fit_stan, digits = 1)
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Simulation study n=10

Focus on inference about b, which was assigned a value = 0.8 when generating the data
set.seed(1234); bayes_sim(n=10) #small sample size of only 10 obervations

## glm(formula = y ~ x, family = binomial(link = "logit"), data = data)
## coef.est coef.se

## (Intercept) -2.4 1.2
H# X 1.4 2.8
## ———

# n = 10, k = 2
## residual deviance = 6.2, null deviance = 6.5 (difference = 0.3)
H#

## stan_glm
## family: binomial [logit]
## formula: y ~ X

## observations: 10
## predictors: 2

## —————-—

H Median MAD_SD
## (Intercept) -2.1 0.9
## X 0.5 0.5
H#

## —————-—

## x For help interpreting the printed output see ?print.stanreg
## x For info on the priors used see ?prior_summary.stanreg
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Simulation study n = 10 interpretation

With only 10 observations, the maximum likelihood estimate is noisy,and in this simulation,
glm gives a maximum likelihood estimate of 1.4, with a large se = 2.8, confirming that the
likelihood provides little precision (information)

As expected with little data the Bayesian posterior will be influenced the prior.
e Inference from stan_glm relies heavily on the prior distribution: the Bayes estimate of the

coefficient = 0.6 is close to the prior mean of 0.5, being pulled away by the data only
slightly.

## Priors for model 'fit_stan'

## —————-—

## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##

## Coefficients

## ~ normal(location = 0.5, scale = 0.5)
## —————-—

## See help('prior_summary.stanreg') for more details
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Simulation study n =100

set.seed(1234); bayes_sim(n=100)

## glm(formula = y ~ x, family = binomial(link = "logit"), data = data)
#i coef.est coef.se

## (Intercept) -1.7 0.3

## X 0.1 0.5

## ———

## n = 100, k = 2

## residual deviance = 84.5, null deviance = 84.5 (difference = 0.0)
H#

## stan_glm

## family: binomial [logit]

## formula: y ~ X

## observations: 100
## predictors: 2

## —————-—

## Median MAD_SD
## (Intercept) -1.7 0.3
## X 0.3 0.4
H#

#¢ —————

## *x For help 1interpreting the printed output see ?print.stanreg
## x For info on the priors used see ?prior_summary.stanreg
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Simulation study n =100 interpretation

With 100 observations, the maximum likelihood estimate has now excluded more extreme
values and provides a more precise estimate, and in this simulation, glm gives a MLE = 0.1, with
a smaller se = 0.5 (was 2.4), confirming that the likelihood (data) provides modest precision
(information) and the CI includes the true paramter value (0.8)

As expected with more data the Bayesian posterior will be less influenced the prior.

* Nevertheless, the inference from stan_glm, parameter = 0.3 has still seen the data (0.1)
pulled towards the prior (0.5) but less than with the previous smaller sample size
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Simulation study n=1000

set.seed(1234); bayes_sim(n=1000)

## glm(formula = y ~ x, family = binomial(link = "logit"), data = data)

## coef.est coef.se
## (Intercept) -2.3 0.1

## X 0.9 0.2

## ———

## n = 1000, k = 2
## residual deviance = 639.3, null deviance = 663.3 (difference = 23.9)

##

## stan_glm

## family: binomial [logit]
## formula: y ~ X

## observations: 1000
## predictors: 2

## —————-—

## Median MAD_SD
## (Intercept) -2.3 0.1
## X 0.9 0.2
H#

#¢ —————

## *x For help 1interpreting the printed output see ?print.stanreg
## x For info on the priors used see ?prior_summary.stanreg
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Simulation study n = 1000 interpretation

With 1000 observations, the maximum likelihood estimate now provides an accurate and
precise estimate (0.9, se = 0.2) of the known parameter, 3; = 0.8

The Bayes estimate is now also dominated by the data with an almost negligible effect of the
prior.

Once $n $is as large as 1000, a weak or even a modest prior distribution doesn't really make a
difference and the two approaches produce essentially identical results.
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Building a Bayesian logistic regression model - A public
health example

Wells in Bangladesh
Example from Regression and other Stories - Chapters 13-14

Map of wells in an area of Araihazar, Bangladesh
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Background:

Research teams from the US and Bangladesh measured all the wells and labeled them with
their arsenic level as well as a characterization as “safe” (<0.5 micrograms per liter)

People with unsafe wells were encouraged to switch to nearby private or community wells or
to new wells of their own construction. A few years later, the researchers returned to find out
who had switched wells. We shall perform a logistic regression analysis to understand the
factors predictive of well switching among the users of unsafe wells.

Variables: Outcome: y; = 1 if household i switched or = 0 if household i continued using its
own well.

Potential independent (predictor) variables are

 distance (in meters) to the closest known safe well

» arsenic level of respondent’s well

* any household members active in community organizations

* education level of the head of household

We shall first fit the model just using distance to the nearest well and then put in arsenic
concentration, organizational membership, and education.
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Read in the data

# Data on arsenic in unsafe wells in Bangladesh

# remotes::install_github("avehtari/ROS-Examples',subdir = "rpackage')

library(rosdata)
data(wells)

file_common <- here::here("_common.R")

source(file_common) # Run common code

int
num
num
num
int
int

str(wells)

## 'data.frame':
## S switch

## S arsenic:
## S dist

## S distlo0:
## $ assoc

## $ educ

## $ educ4

num

3020 obs. of 7 variables:

1106061111111

2.36 0.71 2.07 1.15 1.1 3.9 2.97 3.24 3.28 2.52
16.8 47.3 21 21.5 40.9

0.168 0.473 0.21 0.215 0.409

0O O0OO0O0O1I1I1011

O 0 10 12 14 9 4 10 0 O

00 2.533.52.2512.500

# Specific formating and functions
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Data overview

#summary (wells) # details can found with ?wells
wells %>% tbl_summary()

Characteristic N= 3,0201

switch 1,737 (58%)
arsenic 1.30 (0.82, 2.20)
dist 37 (21, 64)
dist100 0.37 (0.21, 0.64)
assoc 1,277 (42%)
educ 5(0, 8)
educd 1.25 (0.00, 2.00)

1n(%ﬁ;Medbn(Q1,Q3)
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Data overview

How many homes with unsafe wells switched?

wells %>% count(switch) %>%
mutate(prop = n / sum(n))

#> switch n prop
#> 1 0 1283 0.425
#> 2 1 1737 0.575

22 /95



visualization

A helpful visualization

Percentage of households who switched to new well by arsenic level
Voilin plots represent density of those do did and did not switch

90% -

80% -
70% =
60% -
50% -

40% =
30% -
20% -

10%-
0%- Uj>|:

' ' ' ' ' ' ' ' ' '
1 2 3 4 5 6 7 8 9 10
Arsenic level

As expected, the % of households increases with the arsenic level in their well, from about 40%
for wells that are just over the safety threshold to perhaps 80% for very high levels. The sparse
data for high arsenic levels results in a large uncertainty.

What is the blue line?

Percentage of households who switched

* The blue line is a non-parametric approach to draw a smooth curve through a scatter plot,
known as LOWESS (Locally Weighted Scatterplot Smoothing),or sometimes called LOESS

(locally weighted smoothing)
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Logistic regression with just one predictor

Fit the logistic regression

fit_0 <- stan_glm(switch ~ dist, family=binomial(link="1logit"), refresh=0, data=wells, seed=
print(fit_0, digits = 4)

#> stan_glm

#> family: binomial [logit]
#> formula: switch ~ dist
#> observations: 3020

#> predictors: 2

#> —————-

#> Median MAD_SD
#> (Intercept) 0.6073 0.0599
#> dist -0.0062 0.0009
#>

#> —————-

#> *x For help 1interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg

What happens to the § coefficient if we change distance in meters to 100 meter units?
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Logistic regression with just one predictor

Fit the logistic regression

wells$distlo0 <- wells$dist/100 #change distance from meters to 100 meter units
fit_1 <- stan_glm(switch ~ dist100, family=binomial(link="1logit"), refresh=0, data=wells, se
print(fit_1, digits = 4)

#> stan_glm

#> family: binomial [logit]
#> formula: switch ~ dist100
#> observations: 3020

#> predictors: 2

#> —————-

#> Median MAD_SD

#> (Intercept) 0.6073 0.0599

#> distl1le0 -0.6234 0.0946

#>

#> —————-

#> *x For help interpreting the printed output see ?print.stanreg
#> x For info on the priors used see ?prior_summary.stanreg

If divide (or multiply) units by X then coefficient for X is multiplied (or divided) by X
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Interpreting coefficients - Three different scales

We can interpret the coefficient estimates on 3 different scales

= 0.61 — 0.62 * dist100

log odds(switch) = logit ; P
— P

logit 0.61—-0.62xdist100

odds = exp®™" = exp

1

: P _ - _
Pr (switch) = logit™"(0.61 — 0.62 x dist100) = 1 + eqp(061-0.62+dist100)
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Interpreting the logistic regression intercept

log odds(switch) = logit ] P 0.61—0.62 % dist100
— P

The constant term (intercept) is value when dist100 =0
i) log odds (switching) = 0.61

i) odds (switching) = €261 = 1.84

dd 1.84
oaas —— = .65, by rearranging odds = P

cee P -t h' - ——--
iii) P(switching) p odds+1 2.84 l1-p

More directly, constant term = probability(switching) when dist100 =0
logit—1(0.61) =

Thus, model estimates a 65% probability of switching if live right next to an existing safe well

1+ o001 = 0.65 or with R code invlogit(0.61) = 0.65
e—0.
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Logistic regression with just one predictor

Probability of household switching to new well by distance
Voilin plots represent density of those do did and did not switch
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The probability of switching is about 65% invlogit(.61) for people who live near a safe well,

declining to about 20% for people who live more than 300 meters from any safe well. This

makes sense: the probability of switching is higher for people who live closer to a safe well.
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Interpreting the (3 regression coefficient

Remember this interpretation can also be made on 3 different scales

= 0.61 — 0.62 * dist100

log odds(switch) = logit -

i) Change in log odds for unit change in dist100 =-0.62

i) A odds = exp (-0.62) =0.54 (< likely to switch for each 100m increase in distance)

1

iii) Since pr ili le is nonlinear, , M h wher valuate
) Since probability scale is nonlinear, [ o 061 062%dist100 ust choose where to eva

the effect of a 1 unit change in the dist100 variable
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Interpreting the 31 regression coefficient

e Often choose predictor mean (steepest part of logistic curve)
mean(wells$Sdist100) =0.48

e Linear predictor for logit function = 0.61 - 0.62 x 0.48 = 0.31
e P(switching) =1invlogit(.31) =0.57 (reverts back to (0,1) probability scale)

* Logit linear predictor for a 1 unit increment from the mean value =0.61 - 0.62 x 1.48 =
-0.31

e P(switching)=-1invlogit(-0.31) =0.42

Thus, adding 100 meters to the distance to the nearest safe well (from the mean distance),
decreases the probability of switching by about 15% (57%-42%).
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Interpreting the logistic regression intercept

log odds(switch) = logit = 0.61 — 0.62 x dist100

l1—p
inviogit (0.61 - 0.62*x) = invlogit(0) = 0.5, when x = - 0.61/0.62 = -0.98

1.00 -

0.75-

0.50-

inviogit(x)

0.25-

0.00-
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Interpreting the 31 regression coefficient

-1
Divide by 4 rule The slope (1st derivative) of the inverse logistic function = d(l/(H;;p(w) )

e.’IZ

(" + 12

(if you forgot how to take derivatives use D (expression(1/(1+exp(x)"=-1)), "x")

The logistic curve is steepest at its center, which occurs when the linear predictors o + Bx =0
so that invlogit(0) = 0.5. Substituting x=0 into the 1st derivative equation maximizes the
slope and equals

e’ 15,
B 2~ 4
(e +1) 4
Thus, g = —0.62/4 = —0.15 is the maximum A in Pr(y = 1) corresponding to a unit

difference in x.
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Graphing the fitted model with two predictors

Probability switching to new well by distance and arsenic level

Probability of household switching to new well by distance
and arsenic level

Voilin plots represent density of those do did and did not switch
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Recall: Linear Regression Model

Review: “The effect of a given change in an independent variable is the same regardless the value of
that variable at the start of it changes and reqardless of the level of the other variables in the

model.”

y=a—+ Bxr+ o6d

Adapted from: Long, J., & Freese, J. (2006).Regression models for categorical dependent
variables using stata(Second ed.). College Station, Texas: StataCorp LP.
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Linear Probability Model for RDs when the outcome is binary:

Observations 3020

Derfendent <witch

variable

Tvoe OLS linear
yp regression

Observations 3020

Dep?endent <witch

variable

Tvoe OLS linear
yp regression

F(1,3018) 42.57
R 0.01
Adj.RZ  0.01

F(1,3018) 3.90
R 0.00
Adj.RZ  0.00

Est. 2.5% 97.5% tval. p
(Intercept) 0.65 0.62 0.68 45.19 0.00
dist100 -0.15 -0.20 -0.11 -6.52 0.00
Standard errors: OLS

Est. 2.5% 97.5% tval. p
(Intercept) 0.59 0.57 0.61 49.88 0.00
assoc -0.04 -0.07 -0.00 -1.97 0.05
Standard errors: OLS

Remember the divide by 4 rule? é = —0.62/4 = —0.15 is the maximum difference in Pr(y

4

= 1) corresponding to a unit difference in x. Would it work here too?
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(1) Linear Probability Model for RDs when the outcome is
binary:

Advantages: Disadvantages:
e Very easy to fit e Possible to get impossible estimates
e Single uniform estimate e Biostatisticians will hate you

e Economists will love you

Fit an OLS linear regression on the binary outcome variable: Pr(Y = 1|X = x) = 0 + f1X

Note: Homoskedasticity assumption cannot be met, since variance is a function of p.
Therefore, use robust variance.
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Multiplicative Models

Review: “The effect of a change in a variable depends on the values of all variables in the model and

it's no longer simply equal to one of the parameters in the model”

E._
/
B

Adapted from: Long, J., & Freese, J. (2006).Regression models for categorical dependent
variables using Stata (Second ed.). College Station, Texas: StataCorp LP.
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Multiplicative Models - Review

* Binary outcomes

e Expressed on a transformed scale, it prescribes a linear relationship between the log-odds
of Y and X.

exp(a + B;)
1+ exp(a+ B;)

P(X=1)=

e The log odds of the outcome is linearly related to x, with intercept coefficient a and slope
coefficient 3

o j.e., the logistic model is an additive model when expressed on the log odds scale.
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Logistic Regression: Log Odds vs Probabilities

A B
1.0 - 5 -
0.8 - =
y h
50.6« 'E-:,
=} = 0
8 04 2
e - =
o D
0.2 - S
0'o_l T LI — T T _57| T T 1 1
X X
P(y I x) —1 | by + b
1+e—(bo+bx) a-py| >

FIGURE 7-7 Two mathematically equivalent formulations of the logistic regression function.
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(Il) Logistic Models for RDs and RRs

Disadvantages: Advantages:
* Does not give a single uniform estimate e Always fits easily
e Choose between different formulations e Can never get impossible estimates

e Epidemiologists will love you
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Logistic Models for RDs and RRs

Several approaches:

e Transformation of ORs, estimation of RRs/RDs with different models
Simple as:
(1) Fit a logistic regression
(2) Predict probabilities based on the regression parameters (several options to do this!)

(3) Use these probabilities to calculate risk ratios/risk differences
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(1) Fit a standard logistic regression model:

The Frequentist way

mod2a <- glm(switch ~ assoc, data=wells, family = "binomial")
round (summ(mod2a, confint = T)$"coeftable", 2) #;summ(mod2a)

#> Est. 2.5% 97.5% z val. p
#> (Intercept) 0.37 0.27 0.46 7.50 0.00
#> assoc -0.15 -0.29 0.00 -1.97 0.05

The Bayesian way:

mod2b <- stan_glm(switch ~ assoc, family=binomial(link="1logit"), data=wells, refresh=0)
round (mod2b$stan_summary[1:2,1:5-10], 2) #; print(mod2b, digits = 2) #; summary(mod2b)

#> mean se_mean sd 2.5% 97.5% n_eff Rhat
#> (Intercept) 0.36 O 0.05 0.27 0.45 3076 1
#> assoc -0.15 0O 0.07 -0.29 0.0600 3013 1

Next: obtain the predicted probabilities
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(2) Estimate the probabilities based on/using the regression
parameters and the observed data (i)

pl<- predict(mod2a, newdata = transform(wells, assoc=1), type="response'")
summary(pl) # probabilities among "Exposed"

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.554 0.554 0.554 0.554 0.554 0.554

pO<- predict(mod2a, newdata = transform(wells, assoc=0), type="response'")
summary(p0) # probabilities among '"Unexposed"

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.59 0.59 0.59 0.59 0.59 0.59

Next: contrast the predicted probabilities
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(3) Use these probabilities to calculate average "predictive”
risk ratios/risk and differences

RR<- pl/p® # Calculate the ratio contrast
#summary (RR)
round (mean(RR), 2)

#> [1] 0.94

RD<- pl-p0® # Calculate the difference contrast
#summary (RD)
round (mean(RD) ,2)

#> [1] -0.04

Then we just obtained our RDs and RRs...
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(2) Estimate the probabilities based on/using the regression parameters and the
observed data (ii)

Inverse logit option:

The syntax is simple, using the "linear combination" for each group "Exposed" and
"Unexposed" the functions are inv.logit, invlogit or any other function that estimates
the inverse logit

1
 1+4e®

logit ! (z)

RR <- inv.logit(Linear Combination for Exposed) / inv.logit(Linear Combination Unexposed)

RD <- inv.logit(Linear Combination for Exposed) — inv.logit(Linear Combination Unexposed)
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Using the inv. logit function: The Frequentist way

Risk Ratio

#Using the 1inv.logit

rr.i<-inv.logit(mod2as$coefficients[" (Intercept)"] + mod2a$coefficients["assoc"]) /
inv.logit(mod2a$coefficients[" (Intercept)"] )

round(rr.i, 2)

#> (Intercept)
#> 0.94

Risk Difference

rd.i<-inv.logit(mod2a$coefficients[" (Intercept)"] + mod2a$coefficients["assoc"]) -
inv.logit(mod2ascoefficients[" (Intercept)"] )
round(rd.i, 2)

#> (Intercept)
#> -0.04

Contrasting the predicted probabilities in a
single step
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Using the invlogit function: The Bayesian way

beta <- coef(mod2b) # to extract the beta coefficients from the model

beta
#> (Intercept) assoc
#> 0.365 -0.145

yes <- 1 #to assign exposed, assoc= 1
no <- 0 #to assign unexposed, assoc= 0

Risk Ratio Risk Difference

ratio<- 1invlogit (beta[l] + beta[2]*yes) / diff <- 1dinvlogit (beta[l] + beta[2]yes) -
invlogit (beta[l] + beta[2]*no) invlogit (beta[l1] + beta[2]no)

round (mean(ratio), 2) round (mean(diff), 2)

#> [1] 0.94 #> [1] -0.04

Contrasting the predicted probabilities in a single step!
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How do | interpret these??

Average predictive ratios and differences effects

Average conditional ratios and differences effects
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Average Marginal Effects

Where/how you fix your covariates has an impact on your estimated probabilities (and your
population of inference). Muller and MacLehose present us three strategies:

e Prediction at the modes : conditional predicted probabilities are calculated for each
exposure level with every covariate/confounder fixed at its most common value

* Prediction at the means : conditional predicted probabilities are calculated for each
exposure level with every covariate/confounder fixed at its mean value

e Marginal standardization : predicted probabilities of the outcome are calculated for every
observed confounder value and then combined as a weighted average separately for each
exposure level

Estimating predicted probabilities from logistic regression: different methods correspond to
different target populations, by Clemma J Muller & Richard F MacLehose
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Margins at the Modes

Assumes everyone had most common values of the confounders:

Pr(Y =1|Set|E =e€|,Z = zm)

e In the case of a single dichotomous confounder, we'd calculate predicted probabilities of
the outcome only for the most frequently observed value of the confounder (0 or 1) in the
population

e As the number of confounders increases, the number of observations in our cells will
decrease (all are set to their modal value)

e Could also predict at most common JOINT covariate pattern, but you're still standardizing
estimates to the population of those w/the modal distribution of Z

e Might be okay if the modal population is of interest, but likely misleading if you want to
say something about the full population
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Let's go back to our example of Wells in Bangladesh

H i — 1 ° °
Characteristic N=3,020 Arsenic Levels in the Wells
switch 1’737 (58%) Switch =0 Switch =1
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Let's model the "switch" outcome as a function of the As level and whether the owner

belongs to a community association.

Household Arsenic levels in Bangladesh

By Switching status
g N\
0 | As -Level
) 11 10.0
£y 1
5 1\I 75
1 1
@ il 50
11
11 25
0 |
11 0.0
11
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Arsenic Level
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Household Arsenic levels in Bangladesh

By pariticiaptionnin a community association
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10.0
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0.0
7.5 10.0

Arsenic Level
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Let's model the "switch" outcome as a function of the As. level and whether the owner
belongs to a community association.

Frequentist

mod3a <- glm(switch ~ assoc + arsenic, data=wells, family = "binomial'")
round (summ(mod3a, confint = T)$"coeftable", 2) #;summ(mod3a)

#> Est. 2.5% 97.5% z val. p
#> (Intercept) -0.25 -0.40 -0.10 -3.18 0.00
#> assoc -0.13 -0.28 0.02 -1.72 0.09
#> arsenic 0.38 0.30 0.45 9.80 0.00
Bayesian

mod3b <- stan_glm(switch ~ assoc + arsenic, family=binomial(link="1logit"),
data=wells, refresh=0)
round (mod3b$stan_summary[1:3,1:5-10], 2) #; print(mod3b, digits = 2) #; summary(mod3b)

#> mean se_mean sd 2.5% 97.5% n_eff Rhat
#> (Intercept) -0.25 O 0.08 -0.41 -0.10 4109 1
#> assoc -0.13 O 0.08 -0.28 0.01 3997 1
#> arsenic 0.38 O 0.04 0.31 0.45 3958 1
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Predicted probabilities of "switch" to a safer well by whether the owner is member of a
community organization througout the observed range of As level in the household

wells.
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What would be the RD and RR?
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Estimated RR and RD using the probabilities from the logistic model

Risk Difference Risk Ratio
] o o ©O
(o] | o
o®

) | d@o © @O@CD
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@ o ® 2 1
g < S 8
a ] _5 o -
5 | r <]
- 3 |
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' T T T T T T T T

2 4 6 8 10 2 4 6 8 10
As. level in the well As. level in the well

wells$pp® <- predict(mod3a, newdata = transform(wells, assoc=0), type="response")
wells$ppl <- predict(mod3a, newdata transform(wells, assoc=1), type='"response'")

Risk Difference Risk Ratio
wellsSpp.rd <- wells$Sppl - wells$Spp0O wellsSpp.rr <- wells$Sppl / wells$Spp0®
plot(wells$arsenic, wells$pp.rd, ylab="Risk plot(wells$arsenic, wellsS$pp.rr, ylab="Risk
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Using the inv. logit function to obtain the "overall” RR and RD

#Using the inv.logit
rr.i2<-inv.logit(mod3as$coefficients[" (Intercept)"] +
mod3as$coefficients["arsenic"] + mod3aS$coefficients["assoc"]) /
inv.logit(mod3ascoefficients[" (Intercept)"]+ mod3as$coefficients["arsenic"] )
round(rr.i2, 2)

#> (Intercept)
#> 0.94

rd.i2<-inv.logit(mod3as$coefficients[" (Intercept)"] +
mod3as$coefficients["arsenic"]+ mod3aScoefficients["assoc"]) -
inv.logit(mod3ascoefficients[" (Intercept)"]+ mod3as$coefficients["arsenic"] )
round(rd.i2, 2)

#> (Intercept)
#> -0.03
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Margins at the Means

Assumes everyone in the dataset has the mean value of the confounder(s)

Pr(Y =1|Set|E = €|, Z = z)

e If a confounder is continuous/ordinal, the mean might not reflect any particular individual
in the data

e If a confounder is binary, the mean reflects the proportion of subjects with that
confounder, but the mean will (probably) not correspond to any observations in the data -
predictions will not be true for any individual subject

e Sometimes wrongly interpreted as the average/marginal probability in the population
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Margins at the Means

As per Muller (2014):

“In the presence of binary covariates, prediction at the means yields results that are not meaningful
to any real-world group of individuals.”

It estimates associations at the mean of each confounder in the regression model

e No one can be half hypertensive or 10% diabetic

e When calculating predicted probabilities, the inverse logit of the averages (prediction at the
means) is not equal to the average of the inverse logits (marginal standardization)

e This is why these approaches differ, and it's why they can diverge significantly in certain
situations

Estimating predicted probabilities from logistic regression: different methods correspond to

different target populations, by Clemma J Muller & Richard F MacLehose c8 /95
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Margins at the Means

R does not have the ‘atmeans’ option (because it is often Meaningless!)

mean(wells$arsenic); mean(wells$assoc)

#> [1] 1.66

#> [1] 0.423

mar .means<-margins(mod3a,
at = list(assoc=mean(wellsS$assoc)
type = "response'")
mar.means

#> at(assoc) assoc arsenic
#> 0.4228 -0.03079 0.08913

Similarly:

margins(mod3a, at = list(assoc= mean(wells$
arsenic=mean(wells$arsenic)),
type = "response'")

#> at(assoc) at(arsenic) assoc arsenic
#> 0.4228 1.657 -0.03178 0.092

!
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Marginal Standardization

* Prediction at the means involves hypothetical people (with likely impossible covariate
patterns), whereas marginal standardization involves hypothetical populations

e Under this approach, you're comparing two hypothetical populations that are identical
except for exposure status

e Since the only difference between these two populations is their exposure status, we can
attribute any differences in the probability of the outcome to the exposure

* The resulting estimates are essentially weighted to the distribution of confounders in the
sample = Average Marginal Effect (AME)
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Marginal Standardization

Basic steps for the AME (assuming a binary exposure):

Start at subject #1. Treat that person as though they were exposed (i.e., change exposure
to “1”), but don't change anything else. Compute this subject’s probability of the outcome.

Now switch the same subject’s exposure status to “0” (unexposed) and repeat the
probability calculation.

Take the individual-level difference in the two probabilities

o This is the marginal effect for that subject
o Repeat the process for every subject in the sample

o Compute the average of all the subject-specific marginal effects.

This gives you the AME of your exposure!.
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Marginal Standardization

Pr(Y) will be determined by confounder (Z) pattern:
Assuming a binary exposure, the marginal RR/RD are simply:
RR = Pr(Y = 1|Set|E =1])/Pr(Y = 1|Set|E = 0])
RD = Pr(Y = 1|Set|E = 1])- Pr(Y = 0|Set|E = 0))

(Z drops out of these equations as we've predicted probabilities under the same distribution of
Z for both groups)

Sounds familiar? ... We have a name for this...
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Marginal Standardization

The steps:

e Generate one new variable representing the predicted risk of the outcome if everyone had
been exposed

e Generate another new variable representing the predicted risk if everyone had been
unexposed

This will often give you a different quantity than you'd get if you ran the usual postestimation
commands (i.e., run the logistic, predict the probabilities, and calculate the ratio/difference)

This is marginal standardization!
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Marginal Standardization (i)

#to obtain the conditional probability

wells$predprob<-predict(mod3a, wells=transform(wells), type="response'")

#to change the exposure statures with the predicted probabilities

wellsSunex<- wellsS$predprob

wellsS$unex[wells$assoc==1]<- inv.logit(mod3as$coefficients[" (Intercept)"]+
(mod3as$coefficients["arsenic"]xwells$arsenic))

wells$exp<-wellsSpredprob

wellsS$exp[wells$Sassoc==0]<- 1inv.logit(mod3as$coefficients[" (Intercept)"] +
(mod3as$coefficients["arsenic"]xwells$arsenic) +
(mod3as$coefficients["assoc"]*xwellsS$Sassoc))

#summary (wellssSexp); summary (wellsSunex)

RD RR

mar .RD <-mean(wellsS$Sexp) - (mean(wellsS$Sunex mar .RR <-mean(wellsS$Sexp) /(mean(wells$unex)
wells$m.diff <- (wells$exp-wellsSunex) wellsSm.rr <- (wells$Sexp/wellsS$Sunex)

mar .RD mar.RR

#> [1] -0.0208 #> [1] 0.965

round (summary (wells$m.diff), 2) round (summary (wells$m.rr), 2)

#> Min. 1st Qu. Median Mean 3rd Qu. Max #> Min. 1st Qu. Median Mean 3rd Qu. 4 /¥ax.
#> -0.46 -0.10 -0.02 -0.02 0.06 0.43> 0.50 0.84 0.96 0.98 1.10 1.88



Marginal Standardization (ii)

Using Standardization stdReg package

#install.packages ("stdReg')
require(stdReg)
condprob<- stdGlm(fit=mod3a,data = wells, X="assoc", x=c(0:1)); summary(condprob)s$est.table

#> Estimate Std. Error lower 0.95 upper 0.95
#> 0 0.588 0.0117 0.565 0.611
#> 1 0.557 0.0138 0.530 0.584

summary (condprob, contrast="difference", reference=0)$est.table #std RD

#> Estimate Std. Error lower 0.95 upper 0.95
#> 0 0.0000 0.0000 0.000 0.00000
#> 1 -0.0308 0.0179 -0.066 0.00434

summary (condprob, contrast="ratio", reference=0)S$est.table #std RR; #summary(condprob, trans

#> Estimate Std. Error lower 0.95 upper 0.95
#> 0 1.000 0.0000 1.000 1.00
#> 1 0.948 0.0298 0.889 1.01

Nice walk through here: SjolanderA. Regression standardization with the R package stdReg.
European journal of epidemiology. 2016 May 14:1-2. 65795
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Marginal Standardization (i

Using Margins package

require(margins)
margins_summary(mod3a) #; margins(mod3a, at = list(assoc=1), type = "response'")

#> factor AME SE z p lower upper
#> arsenic 0.0890 0.0085 10.4179 0.0000 0.0723 0.1058
#> assoc -0.0308 0.0178 -1.7253 0.0845 -0.0657 0.0042

avdiff<-dydx(wells, mod3a, "assoc", change = "minmax") #; mean(avdiffSdydx_assoc, na.rm = T)

* On the scale of the linear predictor
margins(mod3a, at = list(assoc=1), type = "link"); exp(-0.1305)

#> at(assoc) assoc arsenic
#> 1 -0.1305 0.3777

#> [1] 0.878

What's this?
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Comparing results

Model Frequentist Estimates Bayesian Estimates

Linear Model 1 -0.036 -0.035

Logit Model (Predicted probs.)!  RD=-0.036; RR=0.939 RD =-0.035; RR= 0.94

Logit Model (Predicted probs.)2  RD=-0.033; RR=0.939 RD=-0.031; RR= 0.945
AME (prediction StdGLM) 2 RD=-0.031; RR= 0.948

AME (margins at means) 2 RD=-0.031

AME (marginal standardization) 2 RD=-0.021:RR=0.965 RD=-0.032:RR=0.946

1 Single predictor; 2 Two predictors
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Estimated RR and RD using the probabilities from the logistic model

Prediction at the means

Prv(=0],= 2)

Fredicted probability

T I I I T T
0.0 02 0.4 0.6 08 1.0
Female Sex (confounder) Male

Figure 1. Half of a sigmoid curve depicting calculation of predicted probabilities following
logistic regression using marginal standardization (dashed straight line) and prediction at the
means (solid curved line) in unexposed people from a hypothetical population.

Estimating predicted probabilities from logistic regression: different methods correspond to
different target populations, by Clemma J Muller & Richard F MacLehose
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(111) Other Generalized Linear Models:

Log binomial: The log-link function maps the probability of disease

o Attempts to find a MLE if it exists.
e Useful for RDs and RRs
* Software/packages: SAS's GENMOD, R's GLM or STATA's GLM/binreg.

e The MLE can be on the boundary of the parameter space, leading to the difficulty of
finding the MLE.

e The log-link function maps the probability of disease onto the negative real line, requiring
the constraint that a linear predictor must be negative.
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Log-Binomial

Advantages: Disadvantages:
e Single uniform estimate e Very difficult to fit
e Biostatisticians will love you e Still possible to get impossible values

For RDs, fit a GLM with a binomial variance and an identity link

glPr(Y = 11X = 2)] = fo + SiX

Wacholder S.Binomial regression in GLIM: estimating risk ratios and risk differences.
Am J Epidemiol 1986. Jan;123(1):174-84.62

Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences.
Am J Epidemiol 2005 Aug 1;162(3):199-200.
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Logistic vs Log-Binomial

e Both model Pr(Y|X,c)

e Both assume that the error terms have a binomial distribution.
e Different links between the X and the Pr(Y):

o Logistic regression, the /ogit function

o Log-binomial model, the /og function

* In general, the log-binomial model produces an unbiased estimate of the adjusted relative
risk.

e Minimal restriction unless adjustment for many confounders is needed.

e The CIs for the adjusted RR may be narrower than is true
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Log-Binomial

Let's estimate our RD and RR Using glm or glm2 package

mod4a <- glm(switch ~ assoc + arsenic, data = wells,
family=binomial(link="+4dentity"))

summ(mod4a, confint=T)

mod4b <-glm(switch ~ assoc + arsenic, data = wells,
family = binomial(link = "log"))

summ(mod4b, confint=T)

Error!

~

Error: no valid set of coefficients has been found: please supply starting values t Show Traceback

5. stop("no valid set of coefficients has been found: please supply starting values",
call. = FALSE)

4. glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1 1
i, 1,1,1,1,1,1,1,1,1,1,12,1,1,1,1,1,1,1,
1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1,
i, 1,1,1,12,121,1,1,1,1,1,12,1,1,1,1,1,1,1,

3. eval(call(if (is.function(method)) "method" else method, x = X,

y = Y, weights = weights, start = start, etastart = etastart,
mustart = mustart, offset = offset, family = family, control = control,
intercept = attr(mt, "intercept") > OL, singular.ok = singular.ok))

2. eval(call(if (is.function(method)) "method" else method, x = X,

y = Y, weights = weights, start = start, etastart = etastart,
mustart = mustart, offset = offset, family = family, control = control,
intercept = attr(mt, "intercept") > OL, singular.ok = singular.ok))

1. glm(switch ~ assoc + arsenic, data = wells, family = binomial(link = "log"))

11: 3 ’
1 )

PR R
PP
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To understand convergency issues we need to talk about:

The Likelihood function, defined (in a regression model) as the probability density of the data
given the parameters and predictors.

e Maximizing the likelihood requires minimizing the sum of squared residuals;

o Hence the least squares estimate can be viewed as a maximum likelihood estimate
under the normal model (OLS).

(B=1stderm, bx1stder (4, b) and covariance matrix Data and linear fit Data and range of possible linear fits
©

<+ <+

40 42 44 46 48 50 52 40 42 44 46 48 50 52 0 1 2 3 4
a a

likelihood, p(a, b ly)

ROS-Gelman, Hill & Vehtari
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Likelihood for GLM - Logistic Regression

For binary logistic regression with data y; = 0 or 1, the likelihood is:

n

p(y|B, X) = H(logit_l(Xiﬂ))yi(l — log?:t_l(XZ./B))l_yi

i=1
To find the 8 that maximizes this expression:
e Compute the derivative of the logarithm of the likelihood.
 Set this derivative equal to 0, and solve for .

There is no closed-form solution, but the maximum likelihood estimate can be found using an
iterative optimization algorithm that converges to a point of zero derivative and

e Thus the vector of coefficients 8 that maximizes the likelihood, when such a maximum
exists.

ROS-Gelman, Hill & Vehtari
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Convergency Log-Binomial

e Failed convergence occurs whenever the maximizing process fails to find the MLE.

e Estimation challenges can be grouped based on the location of the true maximum of the
log-likelihood function, relative to the parameter space.

o On the boundary of the parameter space (i.e., where the linear predictor equals 0);
o Inthe limit (i.e., as the linear predictor heads towards -oo);

o Inside the parameter space.

These three regions span the entire parameter space and are mutually exclusive.

Williamson, T.Log-binomial models: exploring failed convergence
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Convergency Log-Binomial

e Software utilizes iterative weighted least squares (IWLS*) approach or variations of IWLS to
find MLEs for generalized linear models.

e For log-binomial models, the weights used by the IWLS approach contain the term
1/(1 — p), where p = exp(X T ) with a range from 0 to 1.

e The MLE of a log-binomial model is likely to be too sensitive to outliers because a very
large p has a large influence on the weights.

e MLE and pseudolikelihood estimators are deteriorated in presence of outliers.

e The level of deterioration differed when the relationships between the confounder and the
outcome was not in a simple form.

Chen et al.: BMC Medical Research Methodology 2014 14:82.
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Convergence Issues

... Requirement that the linear predictor be constrained to be neqgative ... when the issue is the
boundary of the parameter space (i.e., where the linear predictor equals 0) the solution resides on
the boundary

wells$assocl <- 1- wellsS$assoc

mod4b <-glm(switch ~ -1 + assocl + arsenic, data = wells,
family = binomial(link = "log"))

round (summ(mod4b, confint=T, exp=T)$'"coeftable", 2)

#> exp(Est.) 2.5% 97.5% z val. p
#> assocl 0.77 0.74 0.81 -10.2 0
#> arsenic 0.79 0.77 ©.81 -21.1 0

Interpretation???, setting intercept to 1; log(1) =0; Pr(Y=1) = 0.5 ??

Williamson, T. Log-binomial models: exploring failed convergence
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Convergence Issues

Requirement that the linear predictor be constrained to be negative (ii)

library(glm2) #
mod4bl <-glm2(switch ~ assoc + arsenic, mod4b2 <-glm2(switch ~ assoc + arsenic,

data = wells, data = wells,

family = binomial(link = "log"), family = binomial(link = "log"),

start = c(-1, -1,-1)) start = ¢c(-0.5, -0.5,-0.5))
round (summ(mod4bl, confint = T, exp = T)S$'"c round (summ(mod4b2, confint = T, exp = T)$'"c
#> exp(Est.) 2.5% 97.5% z val. p #> exp(Est.) 2.5% 97.5% z val. p
#> (Intercept) 0.42 0.40 0.44 -35.87 0.00 #> (Intercept) 0.48 0.46 0.51 -29.35 0.00
#> assoc 0.92 0.87 0.98 -2.69 0.01 #> assoc 0.93 0.88 0.98 -2.57 0.01
#> arsenic 1.10 1.10 1.11 28.72 0.00 #> arsenic 1.09 1.08 1.09 29.35 0.00
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Log-Binomial

Using the logbin package

library(logbin)

mod4c<- logbin(switch ~ assoc + arsenic, data = wells)

round (summ(mod4c, confint = T, exp = T)$"coeftable", 2)

mod4d<- logbin(switch ~ assoc + arsenic, data = wells, trace = 1, maxit = 100000)
round (summ(mod4d, confint = T, exp = T)$"coeftable", 2)

In addition: Warning message:
MLE on boundary of parameter space, cannot use asymptotic covariance matrix
exp(Est.) 2.5% 97.5% z val. )

(Intercept) @.52 NaN NaN NaN NaN
assoc @.96 NaN  NaN NaN NaN
arsenic 1.87 NaN NaN NaN NaN

Warning message:
Something went wrong when calculating the pseudo R-squared. Returning NA instead.
1
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The Bayesian way

Estimating RD

mod5a <- stan_glm(switch ~ assoc + arsenic, data = wells, family="gaussian", refresh=0)
round (mod5a$stan_summary[1:3,1:5-10], 3) #;print(mod5a, digits=3)

#> mean se_mean sd 2.5% 97.5% n_eff Rhat
#> (Intercept) 0.453 0O 0.018 0.418 0.489 4972 1
#> assoc -0.031 O 0.018 -0.066 0.003 5077 1
#> arsenic 0.082 O 0.008 0.066 0.098 5004 1

"In Bayesian inference, the uncertainty for each parameter in the model automatically
accounts for the uncertainty in the other parameters. This property of Bayesian inference
is particularly relevant for models with many predictors, and for advanced and
hierarchical models."

ROS-Gelman, Hill & Vehtari 80/95
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The Bayesian way

Estimating RR

mod5b <-stan_glm(switch ~ assoc + arsenic, data = wells,
family = binomial(link = "log"), refresh=0)
round (mod5b$stan_summary[1:3,1:5-10], 3)#; print(mod5b, digits=3)

#> mean se_mean sd 2.5% 97.5% n_eff Rhat
#> (Intercept) -0.650 0.000 0.022 -0.691 -0.607 2876 1
#> assoc -0.067 0.001 0.025 -0.121 -0.018 1650 1
#> arsenic 0.071 0.000 0.004 0.062 0.077 1758 1

exp (mod5b$coefficients["assoc"] )

#> assoc
#> 0.936
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The Bayesian way

If the prior distribution on the parameters is uniform, then the posterior density is
proportional to the likelihood function, and the posterior mode—the vector of coefficients
B that maximizes the posterior density is the same as the maximum likelihood estimate.

The benefit of Bayesian inference with a non-informative prior is that we can use
simulations from the entire posterior distribution

* Not just a maximum or any other point estimate—to summarize uncertainty, and we
can also use these simulations to make probabilistic predictions.

ROS-Gelman, Hill & Vehtari
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Comparing results

Model Frequentist Estimates Bayesian Estimates
Logit Model (Predicted probs.) 2 RD=-0.033; RR=0.939 RD=-0.031; RR=0.945
AME (prediction StdGLM) 2 RD=-0.031; RR= 0.948 .
AME (margins at means) 2 RD=-0.031 -
AME (marginal standardization) 2 RD=-0.021; RR=0.965 RD=-0.032; RR=0.946
GLM: Log-Binomial 2 RD= 7?7, RR=0.928 or RRa=0.773 RD=-0.031; RR=0.936

1 Single predictor; ? Two predictors
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What about Confidence Intervals??

1) Bootstrap!!!

RR <- function(data,d) {

dta <- datal[d,]

mod <- glm(switch ~ assoc + arsenic, data=
pp0 <- predict(mod, newdata=transform(dta,
ppl <- predict(mod, newdata=transform(dta,
return(RR=ppl/pp0)

}

RD <- function(data,d) {

dta <- datal[d,]

modd <- glm(switch ~ assoc + arsenic, data
ppO <- predict(modd, newdata=transform(dta
ppl <- predict(modd, newdata=transform(dta
return(RD=ppl-pp0)
¥

library(boot)
boot.RR <- boot(data=wells, statistic=RR, R
boot.RD <- boot(data=wells, statistic=RD, R

RR <- quantile(boot.RR$t, probs=c(0.5,0.025
RD <- quantile(boot.RDS$t, probs=c(0.5,0.025

RR

#> 50% 2.5% 97.5%
#> 0.947 0.878 1.004

RD

#> 50% 2.5% 97.5%
#> -0.03027 -0.07100 0.00528

2) Alternatively, use prudently the margins
or StdReg and other resources

3) Use Bayesian Inference!!!
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Conclusions:

1) You don't ever have to report another OR again, (unless you have a cumulative case-control
study with an unknown sampling fraction)

e The popularity of the OR was based largely on statistical convenience, but modern
software has largely overcome those early limitations.

2) The interpretation depends on the method and the assumptions required for each
estimation!!!

3) Take a pledge, join a support group, and kick the
habit.

A kind message from Dr. Jay Kaufman!
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QUESTIONS?

COMMENTS?
RECOMMENDATIONS?
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< @ Andrew Friiights §% ¢ < @ Andrew Friiights {¥ <
@andreWheiSS @andrewheiss

Working on some teaching materials economists be like
for logistic regression and updated orobabiliies
my plot for Showing pro ba bilities’ Can't be modeled linearly; too curvy and bound between 0-1

odds, and log odds. Make your own
with this #rstats code!
gist.github.com/andrewheiss/c9...

Probabilities
Cantbe modeled linearl; 100 curvy and bound between 0-1
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11:10 AM - Oct 11, 2022 - Twitter Web App

37 Retweets 1 Quote Tweet 383 Likes

11:35 AM - Oct 11, 2022 - Twitter for iPhone

5 Retweets 73 Likes
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Extra slides

Summary table of What, When and Why

Method
Standardization
Mantel- Haenszel

Adjustment

Regression
Adjustment

IPTW !

Characteristics

Weight-based adjustment; Depends on
the standard pop. selected; No
homogeneity needed

Requires homogeneity; Do not handle
clusters

Efficient, Useful for prediction, adjust for
several covariates, require assumptions

Regression + Weights: 1/Pr(X=1, covars);
Ensure Exchangeability; Only for
measured Confounders

Outcome

Binary or
categorical

Binary or
categorical

Any type

Any type

Measure

SMR

RD, RR, OR

RD, RR, OR;
AME/ATE

Causal RD, RR,
OR; AME/ATE
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Standardization & M-H Adjustment

* Non-parametric

e Adjustment based on weights

e Useful of a small number of covariates

e Basic arithmetic calculations

e Homogeneity assumption for M-H Adjustment

» Useful for few categorical covariate, limited for continuous variables
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Regression Adjustment

e Parametric*

e Efficient (could provide measures of association for different covariates)
¢ Adjustment for more than one covariate at a time

e Handles different types of covariates (continuous, binary, counts, etc.)

e Control/Adjust for confounding

e Helpful for prediction

But it has a cost!
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Outcome’s Distribution

Type Model Estimate
Continuous Linear Regression RD
Binary Logistic Regression ORZ=RR; RD

Categorical Multinomial /Polytomous Logistic Regression ~ OR; RD
Ordinal Ordinal Logistic Regression OR; RD

Counts Poisson, Negative Binomial IR, IRR
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Graphing functions

logit maps the range (0, 1) to (-oo, o0) useful
to model binary outcomes
logit(p) vs. p

logit(p)

' ' ' ' '
0.00 0.25 0.50 0.75 1.00

Remember invlogit =

addition of intercept?
0 1
, : €
If x =0, invlogit = =
14+e 141

Inverse logit (logistic) maps back to the
probability scale

inverse logit(B1*x) versus x
Intercept =0, B1 =1

1.00-
0.75-

0.50 -

invlogit(x)

0.00-

H—/D’x how does graph change i) as coefficient of x varies? ii) with
e

= 0.5 as shown on the graph
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Inverse logit graphs

Effect of varying B1 coefficient, intercept = 0

inverse logit(B1*x) versus x inverse logit(B1*x) versus x
B1=1 B1=2
< 1.00- < 1.00-
= 075- = 075-
D 0.50- 2 0.50-
2 025- 2 025-
£ 0.00- : y Y £ 0.00- : y y
-5 0 5 -5 0 5
X X
inverse logit(B1*x) versus x inverse logit(B1*x) versus x
B1=3 B1=-1
< 1.00- ~ 1.00-
= 0.75- = 0.75-
D 0.50- D 0.50-
(e} o
= 0.25- [ = 025-
£ 0.00- ] : : £ 0.00- : : ;
-5 0 5 -5 0 5
X X

Notice maximum slope remains at invlogit =0.50or x=0
As (31 changes, slope becomes steeper ($\beta{1}$ increases) or shallower ($\beta{1}$ decreases)

but the curve doesn't shift position.
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Inverse logit graphs

Effect of varying intercept with B1 = 1

inverse logit(B1*x) versus x inverse logit(B1*x) versus x

alpha=0 alpha=.5
= 1.00- >~ 1.00-
= 0.75- = 0.75-
D 0.50- 2 0.50-
(@] o
= 0.25- = 025-
£ 0.00- : y Y £ 0.00- ; y y

-5 0 5 -5 0 5
X X

inverse logit(B1*x) versus x inverse logit(B1*x) versus x

alpha=2 alpha=-2
> 1.00- >~ 1.00-
= 0.75- = 0.75-
D 0.50- O 0.50-
(e} o
S’ (2 / B os- /
£ 0.00- : : : £ 0.00- ] : :

-5 0 5 -5 0 5
X X

Shifts the curves horizontally but slope remains constant and maximum remains at invlogit(x)
= 0.5 or x = - intercept
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R - extension of ‘margins’ and more

e Marginal effects of the adjusted estimates
* Provides estimates for all covariates

e R-margins does not include the “over” option but is replaced by the “at=list” option
Useful resources:
Margins
Margins, blog

Estimating Risk Ratios and Risk Differences Alternatives to Odds Ratios
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https://cran.r-project.org/web/packages/margins/vignettes/Introduction.html
https://www.brodrigues.co/blog/2017-10-26-margins_r/
https://www.medschool.lsuhsc.edu/pulmonary/fellowship/docs/jama_holmberg_2020_gm_200012_1600069989.70491.pdf

