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Expected competencies

Basic knowledge about statistical interaction and Effect Measure Modification (EMM)

Knows when to inclide an interaction (product) term

Knows how to interpret an interaction term

Objectives

Revise the concepts of EMM and Interaction.

Revise the effect of interaction according to additive & multiplicative scales.

Revise the main strategies for assessing and detecting EMM and interaction.
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Effect Measure Modification (EMM) and Interaction

Most researchers seem to prefer a regression based approach to testing for interaction using

the so called "interaction term" e.g. (X*M)

Yet assessing interaction is more than a product term in a regression model:

There is statistical interaction (literally the result of the statistical test for the interaction

term) and

Causal interaction (whether intervening on the variables X and/or M will have a causal

effect on outcome Y).

Often the terms interaction and effect modification are used interchangeably.
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Biologic interaction.

In epidemiological discussions, sufficient-cause interaction is commonly referred to as biologic

interaction (Rothman et al, 1980).

Implying that, in biomedical applications, biological mechanisms could bring two

exposures/treatments to act on each other to "cause" or produce and outcome.

Biological synergism is denoted when the two factors/exposures/treatments are the

sufficient component cause of the outcome.

Both factors work together to produce the outcome. But it could be possible that this

factors do not physically act on each other and thus that they do not interact in any

biological sense.

For the rest of the lecture we will discuss EMM, Statistical and Causal Interaction
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Effect Measure Modification (EMM) and Interaction

When we fit regression models with product terms, we have few possible interpretations:

The coefficient for the product term could be interpreted as EMM .

The coefficient for the product term could be interpreted as a measure of interaction .

The coefficient for the product term could be interpreted as both EMM and interaction .

The coefficient for the product term cannot be interpreted as neither!

On the Distinction Between Interaction and Effect Modification. VanderWeele, Tyler J. (2009)
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Interaction and EMM

Interaction refers to a situation whereby the effects of a exposure (covariate) of interest

(on the outcome) and that of a third factor strengthen (synergism) or weaken each other

(antagonism).

Effect modification refers to the situation where the effect of a exposure (covariate) of

interest differs depending on the presence or absence of a third factor (effect modifier).

The third variable modifies the effect of the risk factor.

Synonyms: (Effect) heterogeneity 

Both can be positive or negative; qualitative or quantitative.

 Side note on heterogeneity Which of These Things Is Not Like the Others?

1

1
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Interaction and EMM

Effect measure modification: examination of whether the effect of the risk factor is

homogeneous or heterogeneous when stratified according to the suspected effect

modifier.

Only interventions on the exposure variable of interest are considered

Interaction: examination of whether the observed joint effect of the two variables of

interest (exposure and third covariate) is the same or different than the expected from

their independent effects.

Interventions on both, the exposure and third variable of interest are considered.

On the Distinction Between Interaction and Effect Modification. VanderWeele, Tyler J. (2009)
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Forms of statistical interaction
According to the regression, the statistical interaction may be additive, multiplicative, or both.

Additive interaction stipulates the summed effect of X and M will be greater than their

individual effects,

In linear regression model, which is on the linear scale, the interaction term represents

additive interaction.

The additive scale is a comparison of difference measures of association across strata

(e.g., attributable risk/risk difference).

Multiplicative interaction stipulates that the product of X and M will be greater than their

individual effects.

In a GLM model (e.g., logistic or Poisson regression), which is on the log scale, the

interaction term represents multiplicative interaction.

The multiplicative scale is a comparison of relative measures of association across

strata (relative risk/odds ratio).
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Additive or Multiplicative Interactions

As absolute measures are more frequently used in in public health practice to demonstrate

how interventions affect an outcome, it may be preferable to report additive interactions.

But, the X*M term in linear regressions only indicate multiplicative interaction.

So, the additive component must be calculated separately, and depends in part on the

parameterization of X and M
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From: Fetal Sex and Race Modify the Predictors of Fetal Growth by Reynolds et al. 2024.
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https://link.springer.com/article/10.1007/s10995-014-1571-3#Tab4


Fetal Sex and Race Modify the Predictors of Fetal Growth
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What is that SI (synergy index)?

Fetal Sex and Race Modify the Predictors of Fetal Growth
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Interaction terms : Example

library(MASS); 

data(birthwt)

birthwt$smoke <- factor(birthwt$smoke, 0:1, c("non-smoker", "smoker"))

birthwt$race <- factor(birthwt$race, 1:3, c("white", "black", "other"))

birthwt$nonwhite <- birthwt$race != "white"

birthwt$nonwhite <- factor(as.numeric(birthwt$nonwhite), 0:1, c("white", "nonwhite"))

#head(birthwt[, c("bwt", "low", "smoke", "nonwhite", "age", "lwt")])

summary(birthwt[, c("bwt", "low", "smoke", "nonwhite", "age", "lwt")])

##       bwt            low                smoke         nonwhite       age       

##  Min.   : 709   Min.   :0.0000   non-smoker:115   white   :96   Min.   :14.00  

##  1st Qu.:2414   1st Qu.:0.0000   smoker    : 74   nonwhite:93   1st Qu.:19.00  

##  Median :2977   Median :0.0000                                  Median :23.00  

##  Mean   :2945   Mean   :0.3122                                  Mean   :23.24  

##  3rd Qu.:3487   3rd Qu.:1.0000                                  3rd Qu.:26.00  

##  Max.   :4990   Max.   :1.0000                                  Max.   :45.00  

##       lwt       

##  Min.   : 80.0  

##  1st Qu.:110.0  

##  Median :121.0  

##  Mean   :129.8  

##  3rd Qu.:140.0  

##  Max.   :250.0
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How do we interpret this regression output?

l13.mod1 <- lm(bwt ~ smoke * nonwhite, data = birthwt)

round(cbind(Beta =coef(l13.mod1), confint(l13.mod1)), 2)

##                                 Beta   2.5 %  97.5 %

## (Intercept)                  3428.75 3226.09 3631.41

## smokesmoker                  -601.90 -877.27 -326.54

## nonwhitenonwhite             -604.24 -862.17 -346.32

## smokesmoker:nonwhitenonwhite  419.49   -8.79  847.77

Which one is correct?

On average a child born to white non-smoker parent weights 3428.75gs.

On average a child born to non-white non-smoker parent weights -604.24g lower than

from white parents who do not smoke.

Non-white parents who do smoke have children with on average −786.65g lower

birthweights than white parents who do not smoke.
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Interpretation of the "interaction term"

(OLS: binary + binary covariates)

Non-smoking, white parents Intercept, reference group, with an average birthweight

given by the intercept: 3428.7g.

Smoking, white parent: White parent who smoke have babies with on average -601.90g

lower birthweights than white parent who do not smoke.

Non-smoking, non-white parent: Non-white parent who do not smoke have babies with

on average -604.2g lower birthweights than white parents who do not smoke.

Smoking, non-white parents: Non-white parents who do smoke have babies with on

average (−601.90) + (−604.24) + 419.49 = −786.65g lower birthweights than white parents

who do not smoke.

Interpretation of Interaction Coefficient: additional difference in means for non-reference

levels of the two categorical variables.
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How do we interpret this regression output?

l13.mod2 <- lm(bwt ~ smoke * age, data = birthwt)

round(cbind(Beta =coef(l13.mod2), confint(l13.mod2)), 2)

##                    Beta   2.5 %  97.5 %

## (Intercept)     2406.06 1829.61 2982.51

## smokesmoker      798.17 -157.37 1753.72

## age               27.73    3.76   51.70

## smokesmoker:age  -46.57  -86.91   -6.23

Which one is correct?

On average a child born to a non-smoker parent weights 2406.06gs.

The average birthweight decreases by 27.7grs per year of age of the parent.

On average birthweight decreases 46.57 grs when the parent is a smoker.

17 / 61



Interpretation of the "interaction term"

(OLS: binary + continuous variable)

Without interaction: we assume that the slope of y over the continuous variable, x is the same

regardless of the category of the variable, m = 0 or m = 1.

Assume parallel regression lines for each group in m.

With an interaction term , we assume that the slope of y over x differs according to m = 0 or

m = 1. Non parallel trend assumption.

The interaction coefficient gives additional change in slope of y over x for the non-

reference level of the nominal variable, m = 1.

The slopes are given by: ; m = 0 : βx m = 1 : βx + βx:m
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Interpretation of the "interaction term"

(OLS: binary + continuous variable)

##                    Beta   2.5 %  97.5 %

## (Intercept)     2406.06 1829.61 2982.51

## smokesmoker      798.17 -157.37 1753.72

## age               27.73    3.76   51.70

## smokesmoker:age  -46.57  -86.91   -6.23

For non-smokers, average birthweight increases by 27.73g per year of age of the parent.

For smokers, the average birthweight actually decreases by -18.84g (27.73 + (-46.57)) per

one year increase in age of the parent.

The mean difference between smokers and non-smokers for age = 0 is 798.17grs ????

--

birthwt$agec <- birthwt$age - median(birthwt$age) #To center variable age, since age 0 does n

l13.mod2c <- lm(bwt ~ smoke * agec, data = birthwt); #round(cbind(Beta =coef(l13.mod2c), conf
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How do we interpret this regression output?

birthwt$lwtc <- birthwt$lwt - median(birthwt$lwt)#To center variable lwc, weight in pounds fo

l13.mod3 <- lm(bwt ~ agec * lwtc, data = birthwt)

round(cbind(Beta =coef(l13.mod3), confint(l13.mod3)), 2)

##                Beta   2.5 %  97.5 %

## (Intercept) 2912.11 2803.82 3020.40

## agec          11.74   -9.59   33.06

## lwtc           4.42    0.94    7.90

## agec:lwtc     -0.30   -0.94    0.34

Which one is correct?

Average birthweight increases by on average 11.74g for every year of the parent’s age.

Average birthweight increases by on average 4.42g for each pound of the parent’s weight.

Increasing age and weight of the parent make these associations slight less pronounced

(-0.3g per year of age and pound).

We expect agec + lwtc = 16.16

We get agec + lwtc + agec:lwtc = 15.86
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Interpretation of the "interaction term"

(OLS: continuous + continuous variable)

Including an interaction term , we assume that the slope of y over the continuous variable 

differs with respect to , and vice versa.

Interpretation: the interaction term gives the change in slope of y over  for each unit of

, and the change in slope of y over  for each unit of . The actual slopes are given by:

Slope over ;

Slope over 

Increasing age and weight of the parent make these associations slight less pronounced (-0.3g per

year of age and pound).

x1
x2

x1
x2 x2 x1

x1 : βx1 + x2βx1:x2

x2 : βx2 + x1βx1:x2
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plot1<- qplot(age, pred, data = nd, 

color = factor(lwt), geom = "line") + 

ylim(2000, 4000)

plot1

Interpretation of the "interaction term"

(OLS: continuous + continuous variable). Not always intuitive and this will change the

calculation of the predicted values:

nd <- expand.grid(agec = seq(15, 35, 5) - 23, lwtc = seq(75, 200, 25) - 121)

nd$pred <- predict(l13.mod3, newdata = nd); 

nd$age <- nd$agec + 23; nd$lwt <- nd$lwtc + 121

plot2<- qplot(lwt, pred, data = nd, 

color = factor(age), geom = "line") + 

  ylim(2000, 4000)

plot2

y = β0 + β1agec(age−23) + β2lwtc(lwt−121) + β3agec ∗ lwtc(age−23)(lwt−121)
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##                              Beta 2.5 % 97.5 %

## (Intercept)                  -2.3  -3.5   -1.4

## smokesmoker                   1.8   0.7    3.1

## nonwhitenonwhite              1.7   0.6    3.0

## smokesmoker:nonwhitenonwhite -1.1  -2.7    0.3

##                               OR 2.5 % 97.5 %

## (Intercept)                  0.1   0.0    0.2

## smokesmoker                  5.8   1.9   21.4

## nonwhitenonwhite             5.4   1.9   19.6

## smokesmoker:nonwhitenonwhite 0.3   0.1    1.4

How do we interpret this regression output?

Logistic regression Outcome is lowbirtweight low, where yes=1 and no=0

l13.mod4 <- glm(low ~ smoke * nonwhite, data = birthwt, family = binomial)

Smokers have 5.8 higher odds of having a low birthweight child compared to non-

smokers.

Non-white parents have a 5.4 higher odds of having low birthweight child compared to

white parents.

Non-white parents who smoke however have a 10 times higher odds of having a child with

low birthweight than white parents who do not smoke.
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Interpretation of the "interaction term"

(Logistic: binary + binary variable)

Including an interaction term, we assume that the OR comparing categories of x differs

according to m, and viceversa.

OR < 1 for the interaction indicates a less strong association than expected when

considering them individually.

OR > 1, association stronger than expected when considering them individually.

Interpretation: The interaction term gives multiplicative effect of non-reference levels of the

two categorical variables. Examined by multiplying the odds ratios.
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Interpretation of the "interaction term"

(Logistic: binary + binary variable)

To see the interaction effect of covariates  and :

, equivalently, adding the coefficients and

exponentiate them:

round(exp(coef(l13.mod4)["smokesmoker"]) * exp(coef(l13.mod4)["nonwhitenonwhite"]) *exp(coef

## smokesmoker 

##          10

round(exp(coef(l13.mod4)["smokesmoker"] + coef(l13.mod4)["nonwhitenonwhite"] + coef(l13.mod4

## smokesmoker 

##          10

5.76*5.43*0.32

## [1] 10.00858

x1 x2
ORx1,x2 = exp(βx1) ∗ exp(βx2) ∗ exp(βx1,x2)
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##                    OR 2.5 % 97.5 %

## (Intercept)      0.33  0.21   0.50

## smokesmoker      2.05  1.09   3.89

## agec             0.92  0.84   1.00

## smokesmoker:agec 1.08  0.95   1.23

The odds of low birth weight child

decreases by a factor of 0.92 per every

year of the parent’s among non-

smokers

How do we interpret this regression output?

The odds of low birthweight child decreases by a factor of 0.99 per every year of the

parent’s if they does smoke (i.g., the additional change in odds of LBW for smokers) is

0.99

The odds of women who smoke AND increase a year of age compared to non-smokers

with average age is 2.03

The OR of low birthweight for women who smoke, among women who increased one

year is 2.2
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Interpretation of the "interaction term"

(Logistic: binary + continuous variable)

The interaction term gives additional change in odds for the non-reference level of the nominal

variable, m = 1.

The ORs are given by: m = 0: m = 1:

The additional change  in odds (for one year increase) of low birthweight for

smokers is 0.99

exp((-0.08288)+0.07308); #0.92*1.08 # this using the OR

## [1] 0.9902479

eβx eβxeβx∗m

eβxeβx∗m
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Interpretation of the "interaction term"

(Logistic: binary + continuous variable)

The odds ratio for women who smoke AND increase a year of age  compared

to the non smokers and average age is 2.03

exp(0.71749+ (-0.08288)+0.07308); #alternatively using the ORs= 2.049*0.9204*1.075

## [1] 2.029298

Note: At least one exposure is <1.!

eβxeβmeβx∗m
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##                    OR 2.5 % 97.5 %

## (Intercept)      0.33  0.21   0.50

## smokesmoker      2.05  1.09   3.89

## agec             0.92  0.84   1.00

## smokesmoker:agec 1.08  0.95   1.23

The OR for women who smoke AND

increase a year of age (jointly exposed)

 compared to the non

smokers and average age is 2.03

The OR on low birthweight for women

who smoke, among women who

increased one year  is 2.2 =

The additional change  in odds

(for one year increase) of low

birthweight for (among) smokers is 0.99

ln(odds) M=0 M=1

X=0

X=1

ln(OR) M=0 M=1

X=0

X=1
-  = 

-  =

OR M=0 M=1

X=0

X=1

(\beta_1) will be either smoking or "whithe vs non-

white" according to model specification.

(Logistic: binary + continuous variable)

eβxeβmeβx∗m

(2.05 ∗ 0.92 ∗ 1.08)

eβxeβx∗m

(2.05 ∗ 1.08)

eβxeβx∗m

(0.92 ∗ 1.08)

logit(Y ) = β0 + β1X + β2M + β3XM

β0 β0 + β2

β0 + β1 β0 + β1 + β2 + β3

(β0 + β1)
β0 β1

(β0 + β1 + β2 + β3)
(β0 + β2)

(β1 + β3)

eβ1 e(β1+β3)
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(Logistic: binary + continuous variable)

Here the  is the reference, derived from the intercept (interpreted as the average

log(odds) or odds ) We can obtain a table with all combinations using the interactionR

Package

table_objectlbw = interactionR(l13.mod5, exposure_names = c("smokesmoker", "agec"), 

          ci.type = "mover", ci.level = 0.95, em = F, recode = F)

kable(table_objectlbw$dframe[1:9,], digits = 2)

Measures Estimates CI.ll CI.ul p

OR00 1.00

OR01 0.92 0.84 1.01 0.07

OR10 2.05 1.09 3.87 0.03

OR11 2.03 1.07 3.86 0.03

OR(agec on outcome [smokesmoker==0] 0.92 0.84 1.01 0.07

OR(agec on outcome [smokesmoker==1] 0.99 0.90 1.09 0.85

OR(smokesmoker on outcome [agec==0] 2.05 1.09 3.87 0.03

OR(smokesmoker on outcome [agec==1] 2.20 1.14 4.25 0.02

Multiplicative scale 1.08 0.95 1.22 0.26

logit(Y ) = β0 + β1X + β2M + β3XM

OR00
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Interaction & EMM in observational settings

Let's think about a randomized experiment

In a randomized trial setting, “interaction” is a joint causal effect, which we obtain by factorial

design.

- We randomized **X** & **M**, and look at their causal effects separately and together.

In a randomized setting, “effect measure modification” is a subgroup analysis.

- We randomize **X**, and look at the effect of **X** where **M=1** and separately where **M=0**.

Epidemiology by design by Daniel Westreich
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What is the effect of Beta-blocker on Y

(Heart attack)?

Assume treatment variation irrelevance.

Assume this DAG is correct (! Big

assumption). Open backdoor paths are:

Consider this DAG

We entirely ignore weight/genes/heart attack pathway right now – it’s not relevant to the

beta-blocker-heart attack relationship.

Controlling for smoking will block open backdoor path.

Epidemiology by design by Daniel Westreich

β− blocker ← Smoking → Heartattack

32 / 61

https://academic.oup.com/book/32358


Interaction and EMM

Controlling for smoking will block open backdoor path. Assume that we can now assess a

causal effect of Beta-blocker on Heart attack.

Can we, from this DAG, obtain an unconfounded effect of weight on heart attack?
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Interaction and EMM
From the present DAG, we can examine effect

measure modification of Beta-blockers on heart

attack by Weight.

Remember, effect measure modification is asking

about impact of Beta-blockers by observed

weight.

If weight is high/low, could just ask: among those

with high weight, what’s the causal effect of beta-

blockers on heart attack. And, among those with

low weight…

Can we, from this DAG, obtain an unconfounded effect of weight on heart attack?
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No: confounding by genes.

If we wanted an INTERACTION of Beta-

blockers and weight, then, we’d need to

control for confounding of the weight-heart

attack relationship by genes.

Different model.

Can we, from this DAG, obtain an unconfounded effect of weight on heart attack?

VanderWeele T. On the distinction between Interaction and Effect Modification. Epidemiology

2009.
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Interaction and EMM in cohorts

Translating concepts from a trial... outcome Y.

Think of your main exposure X as the “randomized” exposure.

You try to control for confounding to make it as close to “randomized” as you can.

There are statistical subtleties here to worry about later (“collapsibility”)

Then think of the second variable M: are you controlling for confounders of the 

relationship?

Yes: then you’re estimating interaction (because now you’re trying to make the second

variable as close as possible to “randomized” – as in a factorial design )

No: then you’re estimating effect measure modification (subgroup analysis)

Epidemiology by design by Daniel Westreich

M → Y
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Interaction vs. effect measure modification
Broadly, both can be assessed in observational settings.

In the same way that interaction in a randomized trial is a factorial trial,

Interaction in an observational study means estimating two causal effects,

and meeting causal identification conditions for BOTH.
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Interaction vs. EMM under conterfactuals

A variable M is a modifier of the effect of X on Y when the average causal effect of X on Y

varies across levels of M.

The concept of EMM refers to the causal effect of X, not to the causal effect of M .

When we say that M modifies the effect of X we are not considering M and X as variables of

equal status, because only X is considered to be a variable on which we could

hypothetically intervene.

EMM involves the counterfactual outcomes , not the counterfactual outcomes .

Interaction between X and M gives equal status to both treatments X and M.

It refers to the joint causal effect of two treatments X and M, and thus involves the

counterfactual outcomes  under a joint intervention.

Y a Y x,m

Y x,m
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Notes on Effect Measure Modification
From: Hernan & Robins book, What if?

and some worked examples.
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H&R What if? 4.2 Stratification to identify EMM

To identify effect modification by M in an ideal experiment with unconditional randomization,

one just needs to conduct a stratified analysis by computing the association measure in each

level of M. (Average causal effects in subsets of the population).

Read the H&R What if? Fine Point 4.1: Effect in the treated (X=1) for additional details on

EMM estimation.
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H&R What if? 4.3 Why care about EMM

The extrapolation of causal effects computed in one population to a second population, i.e.,

transportability of causal inferences across populations.

What factors affect generalizability? (See Fine Point 4.2.)

Evaluating the presence of EMM is helpful to identify the subgroups in the population that

would benefit most from an intervention.

Additive, but not multiplicative, EMM is the appropriate scale to identify the groups that

will benefit most from intervention. Why do we report ratios? H&R What If? propose: The

identification of effect modification may help understand the biological, social, or other

mechanisms leading to the outcome. Koopman JS, Weed DL. Epigenesis theory: a mathematical model

relating causal concepts of pathogenesis in individuals to disease patterns in populations. Am J Epidemiol. 1990

But also refuted, for example by: Thompson WD. Effect modification and the limits of biologic inference from

epidemiologic data. Journal of Clinical Epidemiology 199190033-6/pdf)
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H&R What if?

4.4 Stratification as a form of adjustment

Adjustment for M is typically accomplished by stratifying estimation on categories of M (no

confounding by M within categories).

Standardization is different, because the categories are weighted, but there is no

conditioning.

It is a control method that does not require homogeneity.

Conditional versus marginal estimates are different for non-collapsible measures (OR,

IRR, HR, etc). See Fine Point 4.3.
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Qualitative vs. Quantitative EMM and Interaction

When the association between factor X and outcome Y exists and is of the same direction

in each stratum formed by M, but the strength of the association varies across strata, we

call this quantitative effect measure modification.

Example: M==1  RR = 5.7, 95%CI(4.3, 7.4) & M==0  RR = 1.8, 95%CI(1.1, 2.4)

However, when the effects of X on Y changes in direction (crossover) within levels of third

variable M, we call the qualitative effect measure modification.

Example: M==1  RR = 5.7, 95%CI(4.3, 7.4) & M==0  RR = 0.6, 95%CI(0.3, 0.8)

Qualitative EMM also may be said to occur when the association between X and Y

disappears in some levels of M. It refers to a genuine change in interpretation of the

exposure disease relationship over levels of M.

→ →

→ →
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White strata

l13.lbwwhite<- glm(low ~ smoke, family = bi

                   data = subset(birthwt, n

round(cbind("OR" = exp(coef(l13.lbwwhite)),

##               OR 2.5 % 97.5 %

## (Intercept) 0.10  0.03   0.25

## smokesmoker 5.76  1.94  21.37

Non-white strata

l13.lbwnonwhite<- glm(low ~ smoke, family =

                      data = subset(birthwt

round(cbind("OR" = exp(coef(l13.lbwnonwhite

##               OR 2.5 % 97.5 %

## (Intercept) 0.54  0.33   0.88

## smokesmoker 1.84  0.70   4.90

Low birthweigh example

X = Smoking (can intervene); M = white vs non-white (cannot/ don't want to intervene).

Interaction term regression

##                                OR 2.5 % 97.5 %

## (Intercept)                  0.10  0.03   0.25

## smokesmoker                  5.76  1.94  21.37

## nonwhitenonwhite             5.43  1.91  19.63

## smokesmoker:nonwhitenonwhite 0.32  0.06   1.39
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Coefficients from the regression EMM Plot - M is "White" vs "Non-white"

Low birthweigh example
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Pooled, "adjusted" regression

l13.lbwsmkpooled<- glm(low ~ nonwhite+ smok

round(cbind("OR" = exp(coef(l13.lbwsmkpoole

##                    OR 2.5 % 97.5 %

## (Intercept)      0.16  0.08   0.30

## nonwhitenonwhite 3.01  1.50   6.30

## smokesmoker      3.04  1.51   6.35

Interaction term

l13.mod4 <- glm(low ~ smoke * nonwhite, dat

round(cbind("OR" = exp(coef(l13.mod4)), exp

##                                OR 2.5 % 97.5 %

## (Intercept)                  0.10  0.03   0.25

## smokesmoker                  5.76  1.94  21.37

## nonwhitenonwhite             5.43  1.91  19.63

## smokesmoker:nonwhitenonwhite 0.32  0.06   1.39

Non-Smoker Strata

l13.lbwsmk0<- glm(low ~ nonwhite, family = 

round(cbind("OR" = exp(coef(l13.lbwsmk0)), 

##                    OR 2.5 % 97.5 %

## (Intercept)      0.10  0.03   0.25

## nonwhitenonwhite 5.43  1.91  19.63

Smoker Strata

l13.lbwsmk1<- glm(low ~ nonwhite, family = 

round(cbind("OR" = exp(coef(l13.lbwsmk1)), 

##                    OR 2.5 % 97.5 %

## (Intercept)      0.58  0.32   1.00

## nonwhitenonwhite 1.74  0.63   4.82

Low birthweigh example: X = white vs non-white; M = Smoking: Illustation only or

descriptive analysis -No causal interpretation!

46 / 61



Coefficients from the regression

plot_summs(l13.lbwsmkpooled, l13.lbwsmk0, l

           robust = list(FALSE,FALSE, FALSE

           model.names = c("Pooled","SMK=0"

EMM Plot - M is Smoking

interact_plot(l13.mod4a, pred = nonwhite1, 

              modx = smoke1, 

              interval  = TRUE, 

              plot.points = TRUE)

Low birthweigh example; X = white vs non-white; M = Smoking

How many people do we have here?

189, 15
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Low birthweigh example; smoking & white vs non-white comparisons

Estimated ORs and contrasts.

Measures Estimates CI.ll CI.ul p

OR00 1.00

OR01 5.43 1.74 16.95 0.00

OR10 5.76 1.78 18.60 0.00

OR11 10.00 2.66 37.60 0.00

OR(nonwhitenonwhite on outcome [smokesmoker==0] 5.43 1.74 16.95 0.00

OR(nonwhitenonwhite on outcome [smokesmoker==1] 1.74 0.63 4.76 0.29

OR(smokesmoker on outcome [nonwhitenonwhite==0] 5.76 1.78 18.60 0.00

OR(smokesmoker on outcome [nonwhitenonwhite==1] 1.84 0.70 4.84 0.22

Multiplicative scale 0.32 0.07 1.46 0.14
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When an interaction term is Statisitically significant?

Interaction tests generally have about 25% of the power of main effects tests (Greenland 1983).

Need 4 times the sample size to estimate an interaction that is the same size as the main

effect

To be able to estimate the interaction to the same level of accuracy as the main effect,

we would need four times the sample size.

Need 16 times the sample size to estimate an interaction that is half the size as the

main effect.

Using a higher Type I error criterion, e.g., 0.15 or 0.2 makes it easier to detect real

heterogeneity, but raises the % of times that heterogeneity will be declared erroneously due to

Type I error.

"...interactions can be important; we just need to accept that in many settings we

won’t be able to attain anything like near-certainty regarding the magnitude or

even direction of particular interactions. It is typically not appropriate to aim for

“statistical significance” or 95% intervals that exclude zero, and it often will be

appropriate to use prior information to get more stable and reasonable estimates, and to

accept uncertainty, not acting as if interactions of interest are zero just because their

estimate is not statistically significant". ROS-Gelman, Hill & Vehtari
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H&R What if? 4.6 EMM and adjustment methods

H&R, What if? Heart transplant example computed four causal risk ratios and obtained four

different numbers: 0.8, 2.0, 0.5 and 1.0.

Standardization and IP weighting yield the average causal effect in the entire population =

0.8.

Stratification yields the conditional causal risk ratios 2.0 and 0.5.

Matching, using matched pairs described in the text gives 1.0.

All of these numbers are “correct”.

This example highlights the primary importance of specifying the population, or the

subset of a population, to which the effect measure corresponds.

Technical Point 4.2: Conditional estimation assumes homogeneity across strata (e.g.

regression models, Mantel-Haenszel estimator, etc).
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EMM - Analysis

When dealing with stratum-specific effect measures, one commonly used strategy to reduce

the variability of the estimates is to combine all stratum-specific effect measures into one

pooled stratum-specific effect measure.

If the effect measure is the same in all strata (no EMM), then the pooled effect measure

will be a more precise estimate of the common effect measure.

Several methods (e.g., Mantel-Haenszel) yield a pooled estimate, sometimes by computing

a weighted average of the stratum-specific effect measures with weights chosen to reduce

the variability of the pooled estimate.

Pooled effect measures can also be computed using regression models that include all

possible product terms between all covariates M, but no product terms between

treatment X and covariates M, i.e., models “saturated” with respect to M.

51 / 61



H&R What if? EMM - Analytic considerations

The main goal of pooling is precision of the common stratum-specific effect measure, but

the pooled effect measure is still a conditional effect measure.!

In Hernan’s heart transplant example, the pooled stratum-specific RR by the Mantel- Haenszel

method) was 0.88.

This result is only meaningful if the stratum-specific RR’s 2 and 0.5 are indeed estimates of

the same stratum-specific causal effect.

Additive effect modification is the appropriate scale to identify the groups that will

benefit most from intervention.

In the absence of additive effect modification, learning that there is multiplicative effect

modification may not be very helpful for decision making.
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Interaction and EMM

Interaction is defined in terms of the effects of two (2) interventions while EMM is

defined in terms of the effect of one intervention varying across strata of

a second variable.

EMM can be present with no interaction; interaction can be present with no EMM.

There are settings in which it is possible to assess effect modification but not interaction,

or to assess interaction but not effect modification.
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EFFECT MODIFICATION AND INTERACTION

"In many settings, of course, interaction and effect modification will coincide. The

question thus arises whether we can characterize settings in which

interaction and effect modification do indeed coincide. A

characterization can be given in terms of causal DAGs. It follows from the rules of causal

DAGs (see Rule 2 of Pearl's do-calculus  ) that we will have that interaction and effect

modification will coincide (because E[Deq] = E[De|Q = q]), whenever all paths between D

and Q are blocked by E on a graph obtained by modifying the original graph to remove

the arrows into E and the arrows emerging from Q."

On the Distinction Between Interaction and Effect Modification. VanderWeele, Tyler J. (2009)

8
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EMM or Interaction?

Virgin "Cuba-libre" - The Big Bang Theory
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QUESTIONS?

COMMENTS?

RECOMMENDATIONS?
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EMM , Interactions and DAGs
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H&R What if? 4.2 Stratification to identify EMM

To identify effect modification by M in an ideal experiment with unconditional randomization,

one just needs to conduct a stratified analysis by computing the association measure in each

level of M. (Average causal effects in subsets of the population).

H&R What if? Fine Point 4.1: Effect in the treated (X=1).

1) The ATT is not null if  or, by consistency,

if .

2) There is a causal effect in the treated if the observed risk among the treated individuals does

not equal the counterfactual risk had the treated individuals been untreated.

3) ATT will differ from the average effect in the population if the distribution of individual

causal effects varies between the treated and the untreated.

4) Epidemiologists refer to the ATT ratio (causal risk ratio in the treated) as the “Standardized

Mortality/Morbidity Ratio” (SMR): .

5) Hypothetically, there is an analogous causal effect in the untreated (ATU), but this is

uncommon in both epidemiology and economics (although it is occasionally used in both

fields).

Pr[Y x=1 = 1|X = 1] ≠ Pr[Y x=0 = 1|X = 1]

Pr[Y = 1|X = 1] ≠ Pr[Y x=0 = 1|X = 1]

Pr[Y = 1|X = 1]/Pr[Y x=0 = 1|X = 1]
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H&R What if?

4.4 Stratification as a form of adjustment

Adjustment for M is typically accomplished by stratifying estimation on categories of M (no

confounding by M within categories).

Standardization is different, because the categories are weighted, but there is no

conditioning.

It is a control method that does not require homogeneity.

Conditional versus marginal estimates are different for non-collapsible measures (OR,

IRR, HR, etc). See Fine Point 4.3.

4.5 Matching as another form of adjustment

NB: Matching used for adjustment in cohort studies, but NOT in case-control studies. In

case-control studies it is used to gain efficiency. Matching actually CAUSES confounding in

case-control studies, and therefore, one must adjust for matching factors.

Matching ensures positivity in the matched population because strata with only

treated, or untreated, individuals are excluded from the analysis. Any target

population can be chosen.ATT
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FIGURE 1.: Effect modification by Q of the

effect of E on D without interaction between

the effects of E and Q on D.

FIGURE 2.: Potential interaction between the

effects of E and Q on D without effect

modification by Q of the effect of E on D.

EFFECT MODIFICATION WITH NO INTERACTION AND
INTERACTION WITH NO EFFECT MODIFICATION

On the Distinction Between Interaction and Effect Modification. VanderWeele, Tyler J. (2009)

60 / 61

https://journals.lww.com/epidem/Fulltext/2009/11000/On_the_Distinction_Between_Interaction_and_Effect.16.aspx#A2-16


FIGURE 3.: Identification of effect

modification of the effect of E on D by Q

without identification of the joint effects of E

and D.

FIGURE 4.: Identification of the joint effects

of E and D without identification of effect

modification of the effect of E on D by Q.

EFFECT MODIFICATION WITH NO INTERACTION AND
INTERACTION WITH NO EFFECT MODIFICATION

On the Distinction Between Interaction and Effect Modification. VanderWeele, Tyler J. (2009)
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