
Confounding II
Mabel Carabali

EBOH, McGill University

01-08-2022 Updated: ( 2024-10-01)



The Structure of Confounding

and worked examples !
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Conditions that allow a variable to be a confounder:

📣  Modern Epidemiology 4th, page 268 💡

The developments in causal inference over the past decades, summarized in Chapter 3,

have made clear that this definition [ ...the traditional criteria described from ME3... ] of

a “confounder” is inadequate. It is inadequate because there can be a pre-exposure

variable associated with the exposure and the outcome, the control of which introduces,

rather than eliminates, bias [ME4;p268]
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The Structure of Confounding??
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The Structure of Confounding

This diagram shows two sources of association between treatment and outcome:

1. The path  that represents the causal effect of A on Y , and

2. The path  between A and Y that includes the common cause 

The path  links A and Y through the common cause , is the "backdoor

path"

A← L→ Y

A→ Y

A← L→ Y L

A← L→ Y L

5 / 71



The structure of Confounding

In a causal DAG, a backdoor path is a non-causal path between treatment and outcome

that remains even if all arrows pointing from treatment to other variables (i.e., the

descendants of treatment) are removed.

That is, the path has an arrow pointing into treatment.
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Confounding and exchangeability

The backdoor criterion, does not answer questions regarding the magnitude or direction

of confounding.

It is possible that some unblocked backdoor paths are weak and thus induce little bias, or

that several strong backdoor paths induce bias in opposite directions and thus result in a

weak net bias.

Because unmeasured confounding is not an “all or nothing” issue, in practice, it is

important to consider the expected direction and magnitude of the bias.
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Simulated Example

set.seed(704); N <- 100; 

L <- rbinom(N,1,0.5)

A <- ifelse(L==0,rbinom(N,1,0.25),

            rbinom(N,1,0.75))

Y <- ifelse(L==0,rbinom(N,1,0.20),

            rbinom(N,1,0.8))

#summary(L)

data <- data.frame(N, A, L, Y)

tab <- table(data$A, data$Y)

#tab; tab/margin.table(tab)

l6conf1<-epi.2by2(tab, 

                  method = "cohort.count")

Confounders (  ←  →  )

##              Outcome +    Outcome -      Total                 Inc risk *

## Exposed +           39           13         52     75.00 (61.05 to 85.97)

## Exposed -           14           34         48     29.17 (16.95 to 44.06)

## Total               53           47        100     53.00 (42.76 to 63.06)

*Outcomes per 100 population units

Y L A
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Crude

tabl6conf1 <- data.table::as.data.table(l6c

kable(tabl6conf1, digits = 2) %>% 

  kable_paper()

var est lower upper

Inc risk ratio 2.57 1.61 4.11

Inc odds ratio 7.29 3.01 17.63

Attrib inc risk * 45.83 28.40 63.26

Attrib fraction in exposed (%) 61.11 37.90 75.64

Attrib inc risk in population * 23.83 7.68 39.99

Attrib fraction in population (%) 44.97 21.55 61.40

l6strtab1<- data %>% 

  tbl_summary(by= L,

  label=list(Y ="Outcome",  A ="Exposure"),

#type = all_continuous() ~ "continuous1",

  statistic =  all_categorical() ~ c( "{n} 

  missing = "no") %>% 

  modify_spanning_header(c("stat_1", "stat_

  modify_caption("**Summary of covars distr

l6strtab1

Summary of covars distribution

Characteristic

L=0/L=1

1">0
N = 51

1

1">1
N = 49

1

N

    100 51 / 51 (100%) 49 / 49 (100%)

Exposure 10 / 51 (20%) 38 / 49 (78%)

Outcome 9 / 51 (18%) 38 / 49 (78%)

1
 n / N (%)

Confounders
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L=0

Exposure Outcome; L=0

0 1

0 36 5

1 6 4

L=1

Exposure Outcome; L=1

0 1

0 3 8

1 8 30

Confounders

tab1 <- table(data$A, data$Y, data$L)

#tab1

l6conf2<-epi.2by2(tab1, method = "cohort.count")

tabl6conf2 <- data.table::as.data.table(l6conf2$massoc.summary)
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Confounders
Adjusted

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 2.57 1.61 4.11

Inc risk ratio (M-H) 1.42 0.87 2.30

Inc risk ratio (crude:M-H) 1.81

Inc odds ratio (crude) 7.29 3.01 17.63

Inc odds ratio (M-H) 2.46 0.84 7.21

Inc odds ratio (crude:M-H) 2.96

Attrib inc risk (crude) * 45.83 28.40 63.26

Attrib inc risk (M-H) * 16.69 -16.33 49.71

Attrib inc risk (crude:M-H) 2.75

*Outcomes per 100 population units
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Confounders?
Consider this DAG:

In this case, C is not a confounder because it does not have an independent effect on Y.

But there will be an observed association between C and Y, by virtue of their common

association with E.

But it is not an independent association.

That’s why we should assess this criterion within levels of exposure.

Stratified by E, the association between C and Y is null if there is no direct effect (as shown

in the DAG).

C → E → Y
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set.seed(704)

N <- 100

C <- rbinom(N,1,0.5)

E <- ifelse(C==0,rbinom(N,1,0.8),

            rbinom(N,1,0.5))

Y <- ifelse(E==0,rbinom(N,1,0.2),

            rbinom(N,1,0.5))

#summary(C)

data1 <- data.frame(N, C, E,Y)

tab1C <- table(data1$E, data1$Y, data1$C)

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 1.91 1.36 2.70

Inc risk ratio (M-H) 1.75 1.14 2.69

Inc risk ratio (crude:M-H) 1.09

Inc odds ratio (crude) 5.12 2.02 12.97

Inc odds ratio (M-H) 3.83 1.45 10.09

Inc odds ratio (crude:M-H) 1.34

Attrib inc risk (crude) * 37.15 19.01 55.30

Attrib inc risk (M-H) * 31.20 -6.71 69.12

Attrib inc risk (crude:M-H) 1.19

Confounders ?

C → E → Y
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Confounders ?
Figure 7.4 A version of the famous M-diagram again. No confounding, despite backdoor paths.

Here there are no common causes of treatment A and outcome Y, and therefore there is no

confounding.

The back door path between A ← U2 → L ← U1 → Y is locked because  is a collider on that

path.

L
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No common causes but L is a collider

set.seed(704)

N <- 100

U1 <- rbinom(N,1,0.5)

U2 <- rbinom(N,1,0.5)

L <- ifelse(U1==1, rbinom(N,1,0.6),

     ifelse(U2==1, rbinom(N,1,0.6), 

     rbinom(N,1,0.5))) #L is affected by U1

A <- ifelse(U2==1, rbinom(N,1,0.5), 

     rbinom(N,1,0.5)) #A is affected by U2

Y <- ifelse(A==1, rbinom(N,1,0.6), 

     ifelse( U1==1,  rbinom(N,1,0.6),  

     rbinom(N,1,0.5))) # Y is affected by A

#summary(C)

datanoconf2 <- data.frame(N, U1, U2, L, A,Y

tab.noconf2<- table(datanoconf2$A, 

              datanoconf2$Y, 

              datanoconf2$L)

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 1.73 1.05 2.86

Inc risk ratio (M-H) 1.70 1.04 2.78

Inc risk ratio (crude:M-H) 1.02

Inc odds ratio (crude) 2.53 1.11 5.74

Inc odds ratio (M-H) 2.46 1.08 5.61

Inc odds ratio (crude:M-H) 1.03

Attrib inc risk (crude) * 22.00 3.21 40.79

Attrib inc risk (M-H) * 21.33 0.74 41.92

Attrib inc risk (crude:M-H) 1.03

Confounders

U1 → L← U2
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Confounders

There is an arrow . The presence of this arrow creates an open backdoor path:

A ← L ← U1 → Y, because U1 is a common cause of A and Y, and so confounding exists.

Conditioning on L would block that backdoor path but would simultaneously open a

backdoor path on which L is a collider (A ← U2 → L ← U1 → Y)

The bias is intractable: attempting to block the confounding path opens a selection bias path.

L→ A
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dag <- ggdag::dagify(Y ~ A + U1,

       A ~ L + U2,

       L ~ U1 + U2,

       exposure = "A", outcome = "Y",

       latent = c("U1", "U2"),

       coords = list(x = c(L = 3.2, Y = 3.8

       y = c(U2 = 1, L = 1.3,  A=1.3, Y=1.3

dag_plot <- dag %>% 

  ggdag::tidy_dagitty(layout = "manual", 

  seed = 704) %>% arrange(name) %>% 

  ggplot(aes(x = x, y = y, xend = xend, 

  yend = yend)) + geom_dag_point() +

  geom_dag_edges() +  theme_dag() +

  geom_dag_node(color="darkmagenta") + 

  geom_dag_text(color="white")

Confounding ? Colliders?
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Confounding ? Colliders?

#control_for(dag, var = "L")

#ggdag_paths(dag) +theme_dag()

ggdag_adjust(dag, var = "L", stylized = T, collider_lines = T) + theme_dag()
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R can help ...

g <- dagitty::paths(dag, "A", "Y")

a <- paste0("There are ", length(g$paths), 

" pathways from A to Y")  

b <- paste0("Of these backdoor pathways ", 

            sum(g$open=="TRUE"), " are open")  

c <- paste0("The adjustment sets are ", 

            adjustmentSets(dag, "A", "Y", type = "canonical"))

print(c(a,b,c))

## [1] "There are 3 pathways from A to Y"     

## [2] "Of these backdoor pathways 2 are open"

## [3] "The adjustment sets are "

The bias is intractable: attempting to block the confounding path opens a selection bias path.
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set.seed(704)

N <- 100

U1 <- rbinom(N,1,0.5)

U2 <- rbinom(N,1,0.5)

L <- ifelse(U1==1, rbinom(N,1,0.65), 

     ifelse(U2==1,  rbinom(N,1,0.65), 

     rbinom(N,1,0.15))) #L is affected by U

A <- ifelse(L==1, rbinom(N,1,0.65), 

     ifelse(U2==1, rbinom(N,1,0.65), 

     rbinom(N,1,0.45))) #A is affected by L

Y <- ifelse(A==1,  rbinom(N,1,0.65), 

      ifelse(U1==1, rbinom(N,1,0.6), 

      rbinom(N,1,0.3))) # Y is affected by 

#summary(C)

data2 <- data.frame(N, U1, U2, L, A,Y)

tabL.intract <- table(data2$A, data2$Y, 

                data2$L)

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 1.91 1.16 3.13

Inc risk ratio (M-H) 2.12 1.18 3.80

Inc risk ratio (crude:M-H) 0.90

Inc odds ratio (crude) 3.00 1.31 6.88

Inc odds ratio (M-H) 3.13 1.35 7.28

Inc odds ratio (crude:M-H) 0.96

Attrib inc risk (crude) * 25.97 7.09 44.85

Attrib inc risk (M-H) * 28.01 5.35 50.67

Attrib inc risk (crude:M-H) 0.93

Confounders
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Confounders
Figure 7.7 is another non confounding example in which the traditional criteria lead to

selection bias due to adjustment for L.

The traditional criteria would not have resulted in bias had condition (3) been replaced by

the condition that L is not caused by treatment.

(3) it does not lie on a causal pathway between treatment and outcome.

Replace condition (3) by the condition that “there exist variables A and Y such that

there is conditional exchangeability within their joint levels ". H&R,

Technical Point 7.2

Y a ⊥ A|L,U
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L is not on the "pathway" 

set.seed(704)

N <- 100

U <- rbinom(N,1,0.5)

A <-rbinom(N,1,0.55) #A affects L 

L <- ifelse(U==1, rbinom(N,1,0.65), 

     ifelse(A==1, rbinom(N,1,0.65), 

     rbinom(N,1,0.25))) #L is affected by U

Y <- ifelse(U==1, rbinom(N,1,0.6), 

     rbinom(N,1,0.25)) # Y is affected by U

datanoconf3 <- data.frame(N, U, L, A,Y)

tabL.noconf3 <- table(datanoconf3$A,

               datanoconf3$Y,

               datanoconf3$L)

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 0.98 0.67 1.42

Inc risk ratio (M-H) 0.98 0.61 1.57

Inc risk ratio (crude:M-H) 1.00

Inc odds ratio (crude) 0.96 0.42 2.18

Inc odds ratio (M-H) 0.97 0.42 2.23

Inc odds ratio (crude:M-H) 0.99

Attrib inc risk (crude) * -1.10 -21.55 19.36

Attrib inc risk (M-H) * -0.85 -25.69 23.99

Attrib inc risk (crude:M-H) 1.30

Confounders

A→ Y
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Surrogate confounders (Is L a confounder?)

In Figure 7.8, confounding of A on Y via unmeasured common cause U .

Measured variable L is a proxy or surrogate for U . Adjust for the variable L?

On the one hand, L is not a confounder because it does not lie on a backdoor path

between A and Y .
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Surrogates when L is not highly

correlated with U

set.seed(704)

N <- 100

U <- rbinom(N,1,0.8)

A <- ifelse(U==1, rbinom(N,1,0.65), 

     rbinom(N,1,0.5)) #A is affected by  U

L <- ifelse(U==1, rbinom(N,1,0.65), 

     rbinom(N,1,0.5)) #L is affected by U 

Y <- ifelse(A==1,  rbinom(N,1,0.65),

     ifelse(U==1, rbinom(N,1,0.65), 

     rbinom(N,1,0.15))) # Y is affected by 

dataconf4 <- data.frame(N, U, L, A,Y)

tabL.conf4 <- table(dataconf4$A, 

                    dataconf4$Y,

                    dataconf4$L)

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 1.94 1.22 3.08

Inc risk ratio (M-H) 2.01 1.23 3.30

Inc risk ratio (crude:M-H) 0.97

Inc odds ratio (crude) 3.29 1.39 7.78

Inc odds ratio (M-H) 3.46 1.41 8.50

Inc odds ratio (crude:M-H) 0.95

Attrib inc risk (crude) * 28.52 8.61 48.44

Attrib inc risk (M-H) * 29.58 -5.76 64.92

Attrib inc risk (crude:M-H) 0.96

Confounders
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Surrogate confounders (Is L a confounder?)

On the other hand, adjusting for L, which is associated with U , will indirectly adjust for

some of the confounding caused by U .

In the extreme case that L were perfectly correlated with U then adjusting for L = adjusting

for U.

Therefore we will typically prefer to adjust, rather than not to adjust, for L.
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set.seed(704)

N <- 100

U <- rbinom(N,1,0.8)

A <- ifelse(U==1, rbinom(N,1,0.65), 

rbinom(N,1,0.5)) #A is affected by U

L <- ifelse(U==1, rbinom(N,1,0.95), 

rbinom(N,1,0.5)) #L is affected by U 

Y <- ifelse(A==1,  rbinom(N,1, 0.65),

ifelse(U==1, rbinom(N,1,0.65), 

rbinom(N,1,0.15))) # Y is affected by U and

dataconf5 <- data.frame(N, U, L, A,Y)

tabL.conf5 <- table(dataconf5$A, 

              dataconf5$Y, 

              dataconf5$L)

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 1.94 1.22 3.08

Inc risk ratio (M-H) 1.74 1.06 2.88

Inc risk ratio (crude:M-H) 1.11

Inc odds ratio (crude) 3.29 1.39 7.78

Inc odds ratio (M-H) 2.69 1.11 6.53

Inc odds ratio (crude:M-H) 1.22

Attrib inc risk (crude) * 28.52 8.61 48.44

Attrib inc risk (M-H) * 23.16 -8.90 55.21

Attrib inc risk (crude:M-H) 1.23

Confounders
Surrogates when L and U correlated
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Confounders cannot be descendants of treatment, but can
be in the future of treatment

In Figure 7.11. L is a descendant of treatment A that blocks all backdoor paths from A to Y.

Conditioning on L does not cause selection bias because no collider path is opened.

Since the causal effect of A on Y is only through L, conditioning on L completely blocks this

pathway.

This shows that adjusting for a variable L that blocks all backdoor paths does not eliminate

bias when L is a descendant of A.

Since  implies adjustment for L eliminates all bias, there must not be

conditional exchangeability,

and thus  is not identified.

Y a ⊥⊥ A|L

E[Y a = 1] − E[Y a = 0]
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dag1 <- ggdag::dagify(Y ~ L,

       A ~ U,

       L ~ U + A,

       exposure = "A", outcome = "Y",

       latent = "U",

       coords = list(x = c(L = 2, Y = 2.5, 

       y = c(U = 1.3, L = 1.5,  A=1.5, Y=1.

dag_plot1 <- dag1 %>% 

  ggdag::tidy_dagitty(layout = "manual", 

                    seed = 704) %>%

  arrange(name) %>% 

  ggplot(aes(x = x, y = y, xend = xend, 

   yend = yend)) + geom_dag_point() + 

  geom_dag_edges() + theme_dag() +

  geom_dag_node(color="darkmagenta") +

  geom_dag_text(color="white")

Confounders as descendants?
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Confounders as descendants ? Colliders?

#control_for(dag1, var = "L")

#ggdag_paths(dag1) +theme_dag()

ggdag_adjust(dag1, var = "L", stylized = T, collider_lines = T) +  theme_dag()
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R can help ...

g1 <- dagitty::paths(dag1, "A", "Y")

a1 <- paste0("There are ", length(g$paths), 

" pathways from A to Y")  

b1 <- paste0("Of these backdoor pathways ", 

            sum(g1$open=="TRUE"), " are open")  

c1 <- paste0("The adjustment sets are ", 

            adjustmentSets(dag1, "A", "Y", type = "canonical"))

print(c(a1,b1,c1))

## [1] "There are 3 pathways from A to Y"     

## [2] "Of these backdoor pathways 2 are open"

## [3] "The adjustment sets are "

The bias is and thus (E[Ya=1] − E[Ya=0]) is not identified. attempting to block the

confounding path opens a selection bias path.
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Do we know what a confounder is?

Confounding Variable Joke
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How to adjust for confounding
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How to adjust for confounding

Randomization is the best method.

In conditionally randomized experiments given covariates , the common causes (i.e.,

the covariates L) are measured and thus the adjusted (standardization or IP weighting)

association measure is expected to equal the effect measure.

Subject-matter knowledge to identify adjustment variables is discretionary in "ideal"

randomized experiments.

On the other hand, subject-matter knowledge is key (a must!) in observational studies

in order to identify and measure adjustment variables (e.g., for regression adjustment).

L
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How to adjust for confounding

Causal inference from observational data relies on the uncheckable assumption that we

have used our knowledge to identify and measure a set of variables  that is a sufficient

set for confounding adjustment:

The set of non-descendants of treatment that includes enough variables to block all

backdoor paths.

Under this assumption of no unmeasured confounding or of conditional exchangeability

given , standardization and Inverse Probability (IP) weighting can be used to compute

the average causal effect in the population.

L

L
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Standardization

Why standardize?

To control for confounding

To summarize many estimates into one

Is a weighted average of measures of occurrence across a distribution (say, age).

Can be applied to any measure of occurrence or measure of effect

Weights are chosen based on the population of interest

(ME3, pg. 49)
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Standardized measures of association and effect

Let  represent strata specific incidence rates and

let  represent another schedule of such rates (perhaps based on a different exposure

distribution)

Let  represent person-time at risk in each strata

Then the standardized rate ratio is: 

The standardized rate difference is: 

(ME3, pg. 67)

Ik

I ∗
k

Tk

Is = ( )∑K
k=1 TkIk

∑K
k=1 Tk

I ∗s = ( )∑K
k=1 TkI

∗
k

∑K
k=1 Tk

IRs = Is/I ∗s
IRs = Is − I ∗s =∑Tk(Ik − I ∗

k
)
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Standardized measures of association and
effect

Note that the standardized rate difference is a weighted average of stratum-specific rate

differences

Interpretation of both measures:

Effects of exposure on this population.

For the standardized rate ratio we need to assume that the relative distribution of

person-time would be unaffected by exposure.

– Standardized risk ratios do not require this assumption because the denominators do

not use person-time.

37 / 71



Example: COVID-19 vaccine effectiveness in the UK

UK Health Security Agency "COVID-19 vaccine surveillance report", Week 41

Rates (per 100,000) by vaccination status from week 37 to week 40 2021
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Example: COVID-19 vaccine effectiveness in the UK (2)

Numbers by variant are reported by Public Health England.

From: Table 5. Attendance to emergency care and deaths of sequenced and genotyped Delta

cases in England by vaccination status (1 February 2021 to 12 September 2021) here.)
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Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (1): check the risk difference (RD)

#157400 - 2361 #exposed without outcome

#257357 - 30801 #unexposed without outcome

l6UKdata<-c(2361,155039, 3080, 254277)

l6UKest<- epi.2by2(l6UKdata, method = "cohort.count")

l6UKest

##              Outcome +    Outcome -      Total                 Inc risk *

## Exposed +         2361       155039     157400        1.50 (1.44 to 1.56)

## Exposed -         3080       254277     257357        1.20 (1.16 to 1.24)

## Total             5441       409316     414757        1.31 (1.28 to 1.35)

## 

## Point estimates and 95% CIs:

## -------------------------------------------------------------------

## Inc risk ratio                                 1.25 (1.19, 1.32)

## Inc odds ratio                                 1.26 (1.19, 1.33)

## Attrib risk in the exposed *                   0.30 (0.23, 0.38)

## Attrib fraction in the exposed (%)            20.21 (15.85, 24.35)

## Attrib risk in the population *                0.12 (0.06, 0.17)

## Attrib fraction in the population (%)         8.77 (6.64, 10.86)

## -------------------------------------------------------------------

## Uncorrected chi2 test that OR = 1: chi2(1) = 69.360 Pr>chi2 = <0.001

## Fisher exact test that OR = 1: Pr>chi2 = <0.001

##  Wald confidence limits

##  CI: confidence interval

##  * Outcomes per 100 population units
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Example: COVID-19 vaccine effectiveness in the UK

Missing something?

From: Table 5. Attendance to emergency care and deaths of sequenced and genotyped Delta

cases in England by vaccination status (1 February 2021 to 12 September 2021) here.) Note: The

totals do not exactly sum up to the previous table, as age was missing in a few cases.
41 / 71

file:///Users/mabelcarabali_1/Library/CloudStorage/OneDrive-McGillUniversity/EPIB_704/EPI704_Core_Slides/(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1018547/Technical_Briefing_23_21_09_16.pdf


Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (2) - Standardization

Outcomes among people under 50 years

l6UKdatu50<-c(453,84954, 2416,  246387)

l6UKt1u50<- epi.2by2(l6UKdatu50, method = "cohort.count")

l6UKt1u50$tab

##              Outcome +    Outcome -      Total                 Inc risk *

## Exposed +          453        84954      85407        0.53 (0.48 to 0.58)

## Exposed -         2416       246387     248803        0.97 (0.93 to 1.01)

## Total             2869       331341     334210        0.86 (0.83 to 0.89)

Outcomes among people  50 years

l6UKdatm50<-c(1908 , 70083, 664,   7887)

l6UKt1m50<- epi.2by2(l6UKdatm50, method = "cohort.count")

l6UKt1m50$tab

##              Outcome +    Outcome -      Total                 Inc risk *

## Exposed +         1908        70083      71991        2.65 (2.53 to 2.77)

## Exposed -          664         7887       8551        7.77 (7.21 to 8.35)

## Total             2572        77970      80542        3.19 (3.07 to 3.32)

≥
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Outcomes among people under 50 years

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio 0.55 0.49 0.60

Inc odds ratio 0.54 0.49 0.60

Attrib inc risk * -0.44 -0.50 -0.38

Attrib fraction in exposed (%) -83.08 -102.34 -65.65

Attrib inc risk in population * -0.11 -0.16 -0.06

Attrib fraction in population
(%) -13.12 -14.92 -11.34

Outcomes among people  50 years

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio 0.34 0.31 0.37

Inc odds ratio 0.32 0.30 0.35

Attrib inc risk * -5.11 -5.69 -4.54

Attrib fraction in exposed
(%) -192.99 -219.11 -169.00

Attrib inc risk in population * -4.57 -5.15 -3.99

Attrib fraction in population
(%) -143.17 -159.10 -128.21

Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (3) check the risk differences (RD)

≥
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Example: COVID-19 vaccine effectiveness in the UK

Confounding?

We know that IRL the "L" includes a vector / set of potential covariates that could be

considered as Confounders... this is an illustration only!
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Direct standardization

Suppose we want to estimate .

The conditional exchangeability allows us to say 

According to the law of total expectation:

;

 means sum over all values x that occur in the study population.

 refers to the distribution of x in that population.

E[Y a = 1] − E[Y a = 0] = RD

Y a ⊥⊥ A|L

E[Y a = 1] =∑xE[Y
a = 1|X = x]Pr(x)

E[Y a = 0] =∑
x
E[Y a = 0|X = x]Pr(x)

∑x

Pr(x)

RD =E[Y a = 1] − E[Y a = 0] =

∑
x
E[Y a = 1|X = x]P(x) −∑

x
E[Y a = 0|X = x]P(x)
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Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers - Standardization

Outcomes among people under 50 years

##              Outcome +    Outcome -      Total                 Inc risk *

## Exposed +          453        84954      85407        0.53 (0.48 to 0.58)

## Exposed -         2416       246387     248803        0.97 (0.93 to 1.01)

## Total             2869       331341     334210        0.86 (0.83 to 0.89)

Outcomes among people  50 years

##              Outcome +    Outcome -      Total                 Inc risk *

## Exposed +         1908        70083      71991        2.65 (2.53 to 2.77)

## Exposed -          664         7887       8551        7.77 (7.21 to 8.35)

## Total             2572        77970      80542        3.19 (3.07 to 3.32)

≥
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Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (4) - Standardization

To compute the PO using observed data, we need the consistency assumption

Standardized risk in the vaccinated :

 0.94

Standardized risk in the unvaccinated :

 2.29

Standardized RD = -1.35 from (0.94% − 2.29% = −1.35%)  in the crude estimates.

Standardized RR = 0.41 from (0.0094 / 0.0229)  in the crude estimates.

RD =∑
x
E[Y |A = 1,X = x]P(x) −∑

x
E[Y |A = 0,X = x]Pr(x)

(453/85, 407 × 334, 210/414, 752 + 1, 908/71, 991 × 80, 542/414, 752) ≈ 0.94%

Rvax =

(2, 416/248, 803 × 334, 210/414, 752 + 664/8, 551 × 80, 542/414, 752) ≈ 2.29%

Runvax =

≠ 0.3

≠ 1.25
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Example: COVID-19 vaccine effectiveness in the UK

UK Health Security Agency "COVID-19 vaccine surveillance report", Week 41

Cases presenting to emergency care (within 28 days of a positive test) resulting in overnight

inpatient admission.here.
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What about the Mantel-Haenzel Methods?

Cochran-Mantel-Haenzel methods are useful for associations, when only few covariates are

involved in the calculation.

Takes the effect in each strata of  or  (our third variable),

Combines these measures across  using calculated weights , for example example:

Are expected to work in closed cohorts and assumes homogeneity across strata!!

Limited use in a set of covariates  and in presence of Effect measure modification

and or interaction.

 There are specific formulas for RD, RR and ORs as well

L Z

L 1

RDM−H = ( ) = ( )∑
l
(RDlwl)

∑l wl

RD0w0 +RD1w1

w0 + w1

L

1
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Standardized measures of association and effect

No assumption of homogeneity, "agnostic of the distribution", Model-based direct

standardization  are used when  consists of a large vectors of covariates.

Involves two steps:

Fitting a regression model for the outcome given exposure and covariates

Averaging the exposure effect over the covariate distribution of the standard population.

More on "advanced" techniques to address confounding empirically after we deal with

regressions.

1 L(X,E,A)

1
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Standardized Morbidity Ratio (SMR)

A generalization to standardization when the standard population is the exposed sub-

population.

In this case, the standardized rate ratio becomes:

[Numerator] cases occurring in exposed (Observed)

[Denominator] cases expected to occur in absence of exposure if exposure doesn’t affect

person time at risk

(ME3, pg. 68-69)

Is = ( ) = ( )∑K

k=1 TkIk

∑K

k=1 TkI
∗
k

∑K

k=1Ak

∑K

k=1 TkI
∗
k
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How to adjust for confounding

Standardization and Inverse Probability (IP) weighting are not the only methods.

Often using regression models, assuming the model specification is correct! 😬

IPW removes the arrow from :

IPWz = ( )1
Pr(A = a|L = z)

L→ A
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How to adjust for confounding
Two categories of methods for confounding adjustment:

1) G-methods (including G-formula, IP weighting, and G-estimation). These exploit

conditional exchangeability in subsets defined by L to estimate the causal effect of A on Y in

the entire population or in any subset of the population.

Under the assumption of conditional exchangeability given , g-methods simulate 

associations in the population if backdoor paths involving variables  did not exist;

simulated  associations can then be attributed to the effect of  on .

IP weighting achieves this by creating a pseudo-population in which  is independent of

measured confounders , by “deleting” the arrow from .

L A− Y
L

A− Y A Y

A
L L→ A
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How to adjust for confounding
2) Stratification-based methods (including Stratification, Restriction, Matching).

Methods that exploit conditional exchangeability in subsets defined by L to estimate the

association between A and Y in those subsets only.

Stratification-based methods estimate the association between A and Y in one or more subsets

of the population in which the treated and the untreated are assumed to be exchangeable.

Hence the  association in each subset is entirely attributed to the effect of  on  .

Stratification/restriction do not delete the arrow from , but instead calculate the

association within strata of , since within each level of , there is no  association

to cause confounding.

A→ Y A Y

L→ A
L L L→ A
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How to adjust for confounding
All these methods require conditional exchangeability given the measured covariates  to

identify the effect of treatment  on outcome .

When interested in the effect in the entire population, conditional exchangeability is

required in all strata defined by ;

When interested in the effect in a subset of the population, conditional exchangeability is

required in that subset only.

Achieving conditional exchangeability may be an unrealistic goal in many observational

studies but expert knowledge can be used to get as close as possible to that goal.

At the very least, investigators should generally avoid adjustment for variables affected by

either the treatment or the outcome.

L
A Y

L
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How to adjust for confounding
Thoughtful and knowledgeable investigators could believe that various causal structures,

possibly leading to different conclusions regarding confounding, are equally plausible.

DAGs simply allow us to have that discussion.

Existence of common causes of treatment and outcome does not depend on the

adjustment method (although it does depend on the target population).

Adjustment for measured confounding will generally imply a change in the estimate, but

not necessarily the other way around.

Changes in estimates may occur for reasons other than confounding,

including selection bias when adjusting for non-confounders and the use of non-

collapsible effect measures.

H & R write:

"Attempts to define confounding based on change in estimates have been long

abandoned because of these problems.” This is overstated. When using a DAG and

collapsible measures, the method is a reasonable and practical strategy."
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A note on stratification and non-collapsibility

Comparing crude to adjusted estimates is reliable for RR and RD, but not for OR unless: a) rare

outcome or b) OR ≈ RR due to design (e.g. case-cohort).

Recall the case of 

Measure Estimate 95%CIs

Measure Est. LB UB

Inc risk ratio (crude) 1.91 1.36 2.70

Inc risk ratio (M-H) 1.75 1.14 2.69

Inc risk ratio (crude:M-H) 1.09

Inc odds ratio (crude) 5.12 2.02 12.97

Inc odds ratio (M-H) 3.83 1.45 10.09

Inc odds ratio (crude:M-H) 1.34

Attrib inc risk (crude) * 37.15 19.01 55.30

Attrib inc risk (M-H) * 31.20 -6.71 69.12

Attrib inc risk (crude:M-H) 1.19

C → E → Y
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A note on stratification and non-collapsibility

We can say a measure of the association between A and Y is collapsible across L if the

adjusted association, , is equal to the crude association, , where L is not a

confounder — This means that a crude measure of association will not change if we adjust

for a variable that is not a confounder 

The odds (OR) and incidence density ratios (IDR) fail this property and are considered non

collapsible effect measures

For the OR, the crude measure may be closer to the null than the pooled/adjusted OR,

particularly with a common outcome

Therefore, for some measures, our simple crude vs. adjusted comparison may suggest

confounding when there really isn’t!

RRAY |L RRAY

(L)
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Change in estimate??

Not Really!!!
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Structural confounding, violation of Positivity

High correlations between confounder and exposure: violation of the “positivity assumption”.

When this is “structural” (in the sense of a high correlation that exists because of causal

relations in the source population), Oakes calls this “structural confounding”.

Oakes JM. Advancing neighbourhood-effects research selection, inferential support,

and structural confounding. Int J Epidemiol. 2006 Jun;35(3):643-7.

Messer et al. Effects of Socioeconomic and Racial Residential Segregation on Preterm Birth: 

A Cautionary Tale of Structural Confounding AJE 2010; Mar 15;171(6):664-73.
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Data Generation Process

set.seed(704); n=500

ses1 <- sample(1:12, n, replace = TRUE); 

ses1[ses1>=10]<-0

ses2 <- cut(ses1, breaks = c(0, 5, 10, 15),

        labels = c("0", "1", "2"))

ses2[is.na(ses2 )]<- "2"

exposure<- ifelse(ses2=="1", 

    rbinom(n,1,0.45), 

    ifelse(ses2=="0", rbinom(n,1,0.5),

    ifelse(ses2=="2", rbinom(n,1,0.0001),

    rbinom(n,1,0.2))))

outcome<- ifelse(ses2=="0", rbinom(n,1,0.75

    ifelse(ses2=="1", rbinom(n,1,0.25),

    rbinom(n,1,0.25)))

data.strconf <- data.frame(outcome, exposur

table(exposure, ses2)

##         ses2

## exposure   0   1   2

##        0 101 107 123

##        1 104  65   0

strconf2 <- glm(outcome ~ exposure, 

Regression Results Crude/Unadjusted

exp(Est.) 2.5% 97.5% z val. p

(Intercept) 0.663 0.532 0.827 -3.657 0.000

exposure 1.677 1.154 2.437 2.713 0.007

Adjusted

exp(Est.) 2.5% 97.5% z val. p

(Intercept) 2.461 1.676 3.612 4.598 0.000

exposure 1.011 0.634 1.613 0.046 0.963

as.factor(ses2)1 0.119 0.074 0.190 -8.860 0.000

as.factor(ses2)2 0.168 0.097 0.290 -6.399 0.000

Structural confounding, violation of Positivity
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Which way will the confounding go?

Vander Stoep A, et al. A didactic device for teaching epidemiology

students how to anticipate the effect of a third factor on an exposure-

outcome relation. AJE 1999; 15;150(2):221.
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Which way will the confounding go?

These schematics are just illustrations, it depends on the strength (degree of correlation)

of the covariates!!, simulations works better than "blanket" type of statements
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Positive, negative, and “qualitative”
confounding

Confounding may lead to an overestimation or an underestimation of the true magnitude

of an effect.

Positive confounding: the magnitude of the unadjusted vis-à- vis the adjusted association

is exaggerated.

Negative confounding: the magnitude of the unadjusted vis-à- vis the adjusted

association is underestimated.

Qualitative confounding: An extreme case when confounding results in an inversion of

the direction of the association.
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Magnitude of confounding

The magnitude of confounding will depend on the strength of the confounder-exposure

AND confounder-outcome associations.

Conversely, if there is no association between the confounder - exposure OR no

association between the confounder-outcome then no confounding of the main effect

could be present.

The strength of the confounder-exposure and confounder- outcome associations bounds

the confounding effect

e.g., if RRcrude = 2 and the confounder-outcome relation is 2 (a doubling of risk), then

the confounder would have to be perfectly correlated with the exposure in order to

fully explain the main effect of RR=2
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How strong the the unmeasured confounding should be to explain away my estimated

association?

E values: respond to this question for ratio  measures, how?

- E-value is the minimum value of the association between  and  that will be

capable of attenuating the observed association towards the null.

Example: RR=1.33;  1.99 then, if there was an , it should:

1) double the risk among unexposed and/or exposed (  ), AND

2) be twice as prevalent among exposed than among unexposed (  )

To completely explain away the observed association, but a weaker confounder (given the E-

value), say 1.5 or 1.3, would not.

E values are debatable for some but still a straightforward calculation and useful information

to have. Versions of the E-value exists for ORs and HRs. E-value calculator.

1

E − value = RR+√RR× (RR− 1)

U → A U → Y

1.33 +√1.33 × (1.33 − 1) = U

RRUY = 2

RRAU = 2

1
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Statistical significance?

In general, NO!

But if you MUST use p-values, set the criteria on the high side (e.g. p < 0.30). This way you

adjust for some non-confounders, but you don’t miss many true confounders.

Mickey RM, Greenland S. The impact of confounder selection criteria on

effect estimation. AJE 1989;129(1):125-37.

Residual confounding (unmeasured L’s (U1, U2, etc), categorization, measurement error,

etc):

Kaufman JS, et al. Socioeconomic status and health in blacks and whites:

the problem of residual confounding and the resiliency of race.

Epidemiology 1997; 8(6):621-8. Ogburn EL, Vanderweele TJ. Bias attenuation

results for nondifferentially mismeasured ordinal and coarsened

confounders. Biometrika. 2013;100(1):241- 248. PMID: 24014285
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Residual confounding
Residual confounding occurs when adjustment does not completely remove the confounding

effect of a given variable(s):

1) Misclassification of confounding variables

(e.g., the variable is an imperfect proxy for the characteristic we want to adjust for)

2) Improper modeling of the confounding variable

(e.g., if we are studying air pollution and lung cancer and want to control for smoking, we

should measure smoking in a way that best predicts lung cancer—i.e., pack-years not ever-

never)

3) Other important confounders are not included (also known as unmeasured

confounding or omitted variable bias)
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Validity and Bias:

The epidemiologist’s goal: the most VALID and PRECISE estimate possible of the causal

effect of exposure on disease.

Error comes from sampling variability (lack of precision) and bias (lack of validity).
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Confounded  ?

 We all are!! We will have more on this and empirical examples after we deal with regressions.

1

1
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QUESTIONS?

COMMENTS?

RECOMMENDATIONS?
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