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The Structure of Confounding

and worked examples !
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Conditions that allow a variable to be a confounder:

& Modern Epidemiology 4th, page 268 .

The developments in causal inference over the past decades, summarized in Chapter 3,
have made clear that this definition [ ...the traditional criteria described from ME3... ] of
a “confounder” is inadequate. It is inadequate because there can be a pre-exposure
variable associated with the exposure and the outcome, the control of which introduces,

rather than eliminates, bias [ME4;p268]
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The Structure of Confounding??
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The Structure of Confounding

ALY

This diagram shows two sources of association between treatment and outcome:
1. The path A — Y that represents the causal effect of Aon Y, and

2.The path A < L — Y between A and Y that includes the common cause L

o The path A < L — Y links A and Y through the common cause L, is the "backdoor
pat n
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The structure of Confounding

e In a causal DAG, a backdoor path is a non-causal path between treatment and outcome
that remains even if all arrows pointing from treatment to other variables (i.e., the
descendants of treatment) are removed.

e That s, the path has an arrow pointing into treatment.

—
L > A >Y
Figure 7.1 L > A >Y
f/ o
U L A—>Y
Figure 7.2 f/
U
Figure 7.3
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Confounding and exchangeability

e The backdoor criterion, does not answer questions regarding the magnitude or direction
of confounding.

e Itis possible that some unblocked backdoor paths are weak and thus induce little bias, or
that several strong backdoor paths induce bias in opposite directions and thus result in a
weak net bias.

e Because unmeasured confounding is not an “all or nothing” issue, in practice, it is
important to consider the expected direction and magnitude of the bias.
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Confounders (Y « L = A)

DAG Simple Confounding SimUIated Example

set.seed(704); N <- 100;

L <- rbinom(N,1,0.5)

A <- ifelse(L==0,rbinom(N,1,0.25),
rbinom(N,1,0.75))

Y <- ifelse(L==0,rbinom(N,1,0.20),
rbinom(N,1,0.8))

#summary (L)

data <- data.frame(N, A, L, Y)

tab <- table(data$A, datasy)

#tab; tab/margin.table(tab)

l6confl<-epi.2by2(tab,

method = "cohort.count")
## Outcome + Outcome - Total Inc risk *
## Exposed + 39 13 52 75.00 (61.05 to 85.97)
## Exposed - 14 34 48 29.17 (16.95 to 44.06)
## Total 53 47 100 53.00 (42.76 to 63.06)

*Qutcomes per 100 population units 8/



Confounders

Crude 16strtabl<- data %>%
tbl_summary(by= L,
tabl6confl <- data.table::as.data.table(1l6c label=list(Y ="Outcome", A ="Exposure"),
kable(tabl6confl, digits = 2) %>% #typ? :.all_cont7nuous().~ "continuousl1",
kable_paper () statistic = all_categorical() ~ c( "{n}
missing = "no") %>%

modify_spanning_header (c("stat_1", "stat_
modify_caption("**xSummary of covars distr

var est lower upper T
Inc risk ratio 257 161 4.1
Inc odds ratio 799 301 17.63 Summary of covars distribution
L=0/L=1
Attrib inc risk * 4583 28.40 63.26 100 Tusq
Attrib fraction in exposed (%)  61.11 37.90 75.64 Characteristic N =57 N =49
Attrib inc risk in population * 23.83 7.68 39.99 N
100 51/51(100%) 49 /49 (100%)

Attrib fraction in population (%) 44.97 21.55 61.40

Exposure 10 /51(20%) 38/49 (78%)

Outcome 9/51(18%) 38/49 (78%)

7n/N(%) 9/71



Confounders

L=0 L=1
Exposure Outcome; L=0 Exposure
0 1
0 36 5 0
1 6 4 1

Outcome; L=1
0 1
3 8
8 30

tabl <- table(data$A, data$Y, datas$SL)

#tabl

l6conf2<-epi.2by2(tabl, method = "cohort.count")

tabl6éconf2 <- data.table::as.data.table(l6conf2$massoc.summary)
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Confounders

Adjusted
Measure Estimate 95%Cls
Measure Est. LB UB
Inc risk ratio (crude) 2.57 1.61 4.11
Inc risk ratio (M-H) 1.42 0.87 2.30
Inc risk ratio (crude:M-H) 1.81
Inc odds ratio (crude) 7.29 3.01 17.63
Inc odds ratio (M-H) 2.46 0.84 7.21
Inc odds ratio (crude:M-H) 2.96
Attrib inc risk (crude) * 45.83 28.40 63.26
Attrib inc risk (M-H) * 16.69 -16.33 49.71
Attrib inc risk (crude:M-H) 2.75

11771
*Qutcomes per 100 population units



Confounders?

Consider this DAG:
C -FEF—Y

e In this case, Cis not a confounder because it does not have an independent effect on Y.

o But there will be an observed association between C and Y, by virtue of their common
association with E.

o Butitis not an independent association.

That's why we should assess this criterion within levels of exposure.

e Stratified by E, the association between C and Y is null if there is no direct effect (as shown
in the DAQG).
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Confounders ?

C -FE—Y

set.seed(704)

N <- 100

C <= rbinom(N,1,0.5)

E <- ifelse(C==0,rbinom(N,1,0.8),
rbinom(N,1,0.5))

Y <- ifelse(E==0,rbinom(N,1,0.2),
rbinom(N,1,0.5))

#summary (C)

datal <- data.frame(N, C, E,Y)

tablC <- table(datal$E, datal$Y, datals$C)

Measure
Measure

Inc risk ratio (crude)

Inc risk ratio (M-H)

Inc risk ratio (crude:M-H)
Inc odds ratio (crude)

Inc odds ratio (M-H)

Inc odds ratio (crude:M-H)
Attrib inc risk (crude) *
Attrib inc risk (M-H) *
Attrib inc risk (crude:M-H)

Estimate 95%Cls
Est. LB UB
191 136 270
175 114 269
1.09
512 202 1297
383 145 10.09
1.34
3715 19.01 55.30
3120 -6.71 69.12
1.19
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Confounders ?

Figure 7.4 A version of the famous M-diagram again. No confounding, despite backdoor paths.

P

U,
Figure 7.4

Here there are no common causes of treatment A and outcome Y, and therefore there is no

confounding.

The back door path between A < U2 - L < U1 - Y is locked because L is a collider on that
path.
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Confounders

No common causes but L is a collider
Ul - L+ U2

set.seed(704)

N <- 100

Ul <- rbinom(N,1,0.5)

U2 <- rbinom(N,1,0.5)

L <- ifelse(Ul==1, rbinom(N,1,0.6),
ifelse(U2==1, rbinom(N,1,0.6),
rbinom(N,1,0.5))) #L is affected by UI

A <- ifelse(U2==1, rbinom(N,1,0.5),
rbinom(N,1,0.5)) #A is affected by U2

Y <- ifelse(A==1, rbinom(N,1,0.6),
ifelse( Ul==1, rbinom(N,1,0.6),
rbinom(N,1,0.5))) # Y is affected by A

#summary (C)
datanoconf2 <- data.frame(N, Ul, U2, L, A,Y
tab.noconf2<- table(datanoconf2$A,
datanoconf2s$y,
datanoconf2SL)

Measure
Measure
Inc risk ratio (crude)
Inc risk ratio (M-H)
Inc risk ratio (crude:M-H)
Inc odds ratio (crude)
Inc odds ratio (M-H)
Inc odds ratio (crude:M-H)
Attrib inc risk (crude) *
Attrib inc risk (M-H) *
Attrib inc risk (crude:M-H)

Estimate 95%Cls
Est LB UB
1.73 1.05 2.6
1.70 1.04 278
1.02
253 111 574
246 1.08 5.61
1.03
22.00 321 40.79
2133 0.74 41.92
1.03
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Confounders

P

U,

Figure 7.5

There is an arrow L — A. The presence of this arrow creates an open backdoor path:

e A< L« U1-Y, because U1 isacommon cause of Aand Y, and so confounding exists.

e Conditioning on L would block that backdoor path but would simultaneously open a
backdoor path on which L is a collider (A < U2 > L < U1 >Y)

The bias is intractable: attempting to block the confounding path opens a selection bias path.
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Confounding ? Colliders?

dag <- ggdag::dagify(Y ~ A + U1,
A~ L + U2, @ED
L ~ Ul + U2,
exposure = "A", outcome = "Y",

latent = c("U1", "U2"),
coords = list(x = c(L = 3.2, Y =
y = c(U2 =1, L =1.3, A=1.3, Y=1.
dag_plot <- dag %>% @ —@ —@
ggdag: :tidy_dagitty(layout = "manual",
seed = 704) %>% arrange(name) %>%
ggplot(aes(x = x, y =y, xend = xend,
yend = yend)) + geom_dag_point() +
geom_dag_edges() + theme_dag() +
geom_dag_node(color="darkmagenta") +
geom_dag_text(color="white")
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Confounding ? Colliders?

T) + theme_dag()

var = "L")

#control_for(dag,
#ggdag_paths(dag) +theme_dag()
, stylized = T, collider_1lines

ggdag_adjust(dag, var = "L"

—# adjusted
—# unadjusted

adjusted

. e
. unadjusted

activatad by
= = adjustment
for collider

-
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R can help ...

g <- dagitty::paths(dag, "A", "Y")
a <- paste0("There are ", length(g$paths),
" pathways from A to Y")
b <- pasted("Of these backdoor pathways ",
sum(gSopen=="TRUE"), " are open")
<- paste0@("The adjustment sets are ",
adjustmentSets(dag, "A", "Y", type = '"canonical"))

0

print(c(a,b,c))

## [1] "There are 3 pathways from A to Y"
## [2] "Of these backdoor pathways 2 are open"
## [3] "The adjustment sets are "

The bias is intractable: attempting to block the confounding path opens a selection bias path.
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Confounders

set.seed(704)

N <- 100

Ul <- rbinom(N,1,0.5)

U2 <- rbinom(N,1,0.5)

L <- ifelse(Ul==1, rbinom(N,1,0.65),
ifelse(U2==1, rbinom(N,1,0.65),
rbinom(N,1,0.15))) #L is affected by U

A <- ifelse(L==1, rbinom(N,1,0.65),
ifelse(U2==1, rbinom(N,1,0.65),
rbinom(N,1,0.45))) #A is affected by L

Y <- ifelse(A==1, rbinom(N,1,0.65),

ifelse(Ul==1, rbinom(N,1,0.6),
rbinom(N,1,0.3))) # Y is affected by

#summary (C)

data2 <- data.frame(N, U1, U2, L, A,Y)

tabL.intract <- table(data2$A, data2$y,
data2sL)

Measure
Measure

Inc risk ratio (crude)

Inc risk ratio (M-H)

Inc risk ratio (crude:M-H)
Inc odds ratio (crude)

Inc odds ratio (M-H)

Inc odds ratio (crude:M-H)
Attrib inc risk (crude) *
Attrib inc risk (M-H) *
Attrib inc risk (crude:M-H)

Estimate 95%Cls
Est. LB UB
191 116 3.13
212 118 3.80
0.90
300 131 6.88
313 135 7.28
0.96
2597 7.09 44.85
28.01 535 50.67
0.93
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Confounders

Figure 7.7 is another non confounding example in which the traditional criteria lead to
selection bias due to adjustment for L.

Figure 7.7

e The traditional criteria would not have resulted in bias had condition (3) been replaced by
the condition that L is not caused by treatment.

o (3) it does not lie on a causal pathway between treatment and outcome.

Replace condition (3) by the condition that “there exist variables A and Y such that
there is conditional exchangeability within their joint levels Y* | A|L,U". H&R,
Technical Point 7.2
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Confounders

L is not on the "pathway" A — Y

set.seed(704)

N <- 100

U <= rbinom(N,1,0.5)

A <-rbinom(N,1,0.55) #A affects L

L <- ifelse(U==1, rbinom(N,1,0.65),
ifelse(A==1, rbinom(N,1,0.65),
rbinom(N,1,0.25))) #L is affected by U

Y <- ifelse(U==1, rbinom(N,1,0.6),
rbinom(N,1,0.25)) # Y is affected by U

datanoconf3 <- data.frame(N, U, L, A,Y)

tabL.noconf3 <- table(datanoconf3$A,
datanoconf3s$Y,
datanoconf3s$L)

Measure
Measure

Inc risk ratio (crude)

Inc risk ratio (M-H)

Inc risk ratio (crude:M-H)
Inc odds ratio (crude)

Inc odds ratio (M-H)

Inc odds ratio (crude:M-H)
Attrib inc risk (crude) *
Attrib inc risk (M-H) *
Attrib inc risk (crude:M-H)

Estimate 95%Cls
Est. LB UB
098 067 142
098 061 1.57
1.00
096 042 218
097 042 223
0.99

110 -21.55 19.36
-0.85 -25.69 23.99
1.30
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Surrogate confounders (Is L a confounder?)

In Figure 7.8, confounding of A on Y via unmeasured common cause U .

L A—>Y

Figure 7.8

e Measured variable L is a proxy or surrogate for U . Adjust for the variable L?

e On the one hand, L is not a confounder because it does not lie on a backdoor path
between Aand Y.
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Confounders

Surrogates when L is not highly
correlated with U

set.seed(704)
N <- 100
U <= rbinom(N,1,0.8)
A <- +ifelse(U==1, rbinom(N,1,0.65),
rbinom(N,1,0.5)) #A is affected by U
L <- 1ifelse(U==1, rbinom(N,1,0.65),
rbinom(N,1,0.5)) #L is affected by U
Y <- 1ifelse(A==1, rbinom(N,1,0.65),
ifelse(U==1, rbinom(N,1,0.65),
rbinom(N,1,0.15))) # Y is affected by
dataconf4 <- data.frame(N, U, L, A,Y)
tabL.conf4 <- table(dataconf4$A,
dataconf4s$y,
dataconf4sL)

Measure
Measure

Inc risk ratio (crude)

Inc risk ratio (M-H)

Inc risk ratio (crude:M-H)
Inc odds ratio (crude)

Inc odds ratio (M-H)

Inc odds ratio (crude:M-H)
Attrib inc risk (crude) *
Attrib inc risk (M-H) *
Attrib inc risk (crude:M-H)

Estimate 95%Cls
Est LB UB
194 122 3.08
201 123 330
0.97
329 139 778
346 141 850
0.95
28.52 8.61 4844
2958 -5.76 64.92
0.96
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Surrogate confounders (Is L a confounder?)

e On the other hand, adjusting for L, which is associated with U, will indirectly adjust for
some of the confounding caused by U .

Figure 7.8

e In the extreme case that L were perfectly correlated with U then adjusting for L = adjusting
for U.

e Therefore we will typically prefer to adjust, rather than not to adjust, for L.
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Confounders

Surrogates when L and U correlated

set.seed(704)

N <- 100

U <= rbinom(N,1,0.8)

A <- ifelse(U==1, rbinom(N,1,0.65),
rbinom(N,1,0.5)) #A is affected by U

L <- ifelse(U==1, rbinom(N,1,0.95),
rbinom(N,1,0.5)) #L is affected by U

Y <- ifelse(A==1, rbinom(N,1, 0.65),
ifelse(U==1, rbinom(N,1,0.65),
rbinom(N,1,0.15))) # Y is affected by U ana

dataconf5 <- data.frame(N, U, L, A,Y)

tabL.conf5 <- table(dataconf5$%A,
dataconf5s$Y,
dataconf5SL)

Measure
Measure

Inc risk ratio (crude)

Inc risk ratio (M-H)

Inc risk ratio (crude:M-H)
Inc odds ratio (crude)

Inc odds ratio (M-H)

Inc odds ratio (crude:M-H)
Attrib inc risk (crude) *
Attrib inc risk (M-H) *
Attrib inc risk (crude:M-H)

Estimate 95%Cls
Est LB UB
194 122 3.08
1.74 106 2.88
1.11
329 139 778
269 111 6.53
1.22
28.52 8.61 4844
2316 -8.90 55.21
1.23
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Confounders cannot be descendants of treatment, but can
be in the future of treatment

In Figure 7.11. L is a descendant of treatment A that blocks all backdoor paths from Ato Y.
A > L >Y

L

U

Figure 7.11

e Conditioning on L does not cause selection bias because no collider path is opened.

e Since the causal effect of A on Y is only through L, conditioning on L completely blocks this
pathway.

* This shows that adjusting for a variable L that blocks all backdoor paths does not eliminate
bias when L is a descendant of A.

e Since Y® 1l A|L implies adjustment for L eliminates all bias, there must not be
conditional exchangeability,

e and thus E[Ya = 1] — E[Ya = 0] is not identified. 27/ 71



Confounders as descendants?

dagl <- ggdag::dagify(Y ~ L,
A~ U, @ '@ —@
L ~U + A,
exposure = "A", outcome = "Y",
latent = "U",
coords = list(x = c(L = 2, VY
y = c(U =1.3, L =1.5, A=1.
dag_plotl <- dagl %>%
ggdag: :tidy_dagitty(layout = "manual",
seed = 704) %>%
arrange(name) %>%
ggplot(aes(x = x, y = vy, xend = xend,
yend = yend)) + geom_dag_point() +
geom_dag_edges() + theme_dag() +
geom_dag_node(color="darkmagenta") +
geom_dag_text(color="white")
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Confounders as descendants ? Colliders?

#control_for(dagl, var = "L")

#ggdag_paths (dagl) +theme_dag()
ggdag_adjust(dagl, var = "L", stylized = T, collider_1lines = T) + theme_dag()

A
= : |
..‘ - _.‘/-

r

—# adjusted

—# unadjusted

adjusted

adjusted

unadjusted

activatad by
= = adjustment
for collider

29/ 71



R can help ...

gl <- dagitty::paths(dagl, "A", "Y")

al <- paste@("There are ", length(g$paths),
" pathways from A to Y")

bl <- paste@("Of these backdoor pathways ",
sum(gl$open=="TRUE"), " are open'")

cl <- paste0("The adjustment sets are ",
adjustmentSets(dagl, "A", "Y", type = "canonical))

print(c(al,bl,cl))

## [1] "There are 3 pathways from A to Y"
## [2] "Of these backdoor pathways 2 are open"
## [3] "The adjustment sets are "

The bias is and thus (E[Ya=1] - E[Ya=0]) is not identified. attempting to block the
confounding path opens a selection bias path.
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Do we know what a confounder is?

| mean, you wouldn't know
a confounding varable

Confounding Variable Joke
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http://www.bazinganomics.com/bazinganomics//confounding-variable-joke

How to adjust for confounding

7. Strategies to control for confounding include restriction,
stratification plus adjustment, matching, and regression.

(0 point)
6%
- ® True
® False
® Don't know
® It depends

94%
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How to adjust for confounding

* Randomization is the best method.
o In conditionally randomized experiments given covariates L, the common causes (i.e.,
the covariates L) are measured and thus the adjusted (standardization or IP weighting)

association measure is expected to equal the effect measure.

e Subject-matter knowledge to identify adjustment variables is discretionary in "ideal"
randomized experiments.

e On the other hand, subject-matter knowledge is key (a must!) in observational studies
in order to identify and measure adjustment variables (e.qg., for regression adjustment).
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How to adjust for confounding

e Causal inference from observational data relies on the uncheckable assumption that we
have used our knowledge to identify and measure a set of variables L that is a sufficient
set for confounding adjustment:

o The set of non-descendants of treatment that includes enough variables to block all
backdoor paths.

e Under this assumption of no unmeasured confounding or of conditional exchangeability
given L, standardization and Inverse Probability (IP) weighting can be used to compute
the average causal effect in the population.
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Standardization

Why standardize?

To control for confounding

e To summarize many estimates into one

Is a weighted average of measures of occurrence across a distribution (say, age).

Can be applied to any measure of occurrence or measure of effect

Weights are chosen based on the population of interest

(ME3, pg. 49)
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Standardized measures of association and effect

e Let I} represent strata specific incidence rates and

e |et I,;k represent another schedule of such rates (perhaps based on a different exposure
distribution)

e Let Tk represent person-time at risk in each strata

7 — St Tl
s = K
Zkzl Tk

o (S
’ Zf:l T
e Then the standardized rate ratiois: IR, = I, /I
e The standardized rate differenceis: IR, = I, — I = Y T},(I — I}})

(ME3, pg. 67)
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Standardized measures of association and
effect

e Note that the standardized rate difference is a weighted average of stratum-specific rate
differences

Interpretation of both measures:

o Effects of exposure on this population.

o For the standardized rate ratio we need to assume that the relative distribution of
person-time would be unaffected by exposure.

— Standardized risk ratios do not require this assumption because the denominators do
not use person-time.
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Example: COVID-19 vaccine effectiveness in the UK

UK Health Security Agency "COVID-19 vaccine surveillance report", Week 41

Figure 2. Rates (per 100,000) by vaccination status from week 37 to week 40 2021
(a) COVID-19 cases

3,000.0 ~
2,500.0 -
2,000.0 ~

1,5000 4

' IHIHIHIHIL'LIEL

Under 18 18-29 30-39 40-49 50-59 60-69 70-79 80+

Rate per 100,000

e
g
o
=]

Age group

B \Vaccinated with at least 2 doses O Unvaccinated

Rates (per 100,000) by vaccination status from week 37 to week 40 2021
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https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1025358/Vaccine-surveillance-report-week-41.pdf

Example: COVID-19 vaccine effectiveness in the UK (2)

Numbers by variant are reported by Public Health England.

Table 5. Attendance to emergency care and deaths of sequenced and genotyped Delta cases in England by vaccination status
(1 February 2021 to 12 September 2021)

Variant Age group | Total Cases with | Unlinked | <21 days | 221 days | 214 days | Un-
(years)** specimen post post post vaccinated
date in past dose 1 dose 1 dose 2
28 days
Delta cases <50 497,105 119,611 49,527 30,359 83,009 85,407 248,803
250 95,587 35,596 7,602 314 7,129 71,991 8,551
All cases 593,572 155,252 58,003 30,674 90,138 | 157,400 257,357
Cases with an emergency care | <50 16,709 N/A 167 1,051 2,494 2,518 10,479
visit§ (exclusiont) 250 5,445 NIA 21 30 448 3,747 1,199
All cases 22,162 N/A 196 1,081 2,942 6,265 11,678
Cases with an emergency care | <50 22,719 N/A 273 1,364 3,060 3,162 14,860
visit§ (inclusioni#) 250 10,102 N/A 50 64 755 6,532 2,701
All cases 32,834 N/A 336 1,428 3,815 9,694 17,561
Cases where presentation to <50 3,490 N/A 95 174 352 453 2,416
smemsncicaeesulisdln g, 2,784 N/A 10 18 184 1,908 664
overnight inpatient admission§
((exclusiont) All cases 6,280 N/A 111 192 536 2,361 3,080
Cases where presentation to <50 6,230 N/A 144 283 565 721 4,517
emergency care resulted in 250 6,167 N/A 33 42 393 3,913 1,786
overnight inpatient admission§
(inclusion#) All cases 12,407 N/A 187 325 958 4,634 6,303

From: Table 5. Attendance to emergency care and deaths of sequenced and genotyped Delta
cases in England by vaccination status (1 February 2021 to 12 September 2021) here.)
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https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1018547/Technical_Briefing_23_21_09_16.pdf
file:///Users/mabelcarabali_1/Library/CloudStorage/OneDrive-McGillUniversity/EPIB_704/EPI704_Core_Slides/(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1018547/Technical_Briefing_23_21_09_16.pdf

Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (1): check the risk difference (RD)

#157400 - 2361 #exposed without outcome

#257357 - 30801 #unexposed without outcome
16UKdata<-c(2361,155039, 3080, 254277)

1l6UKest<- epi.2by2(leUKdata, method = "cohort.count")

1l6UKest

H# Outcome + Outcome - Total Inc risk x
## Exposed + 2361 155039 157400 1.50 (1.44 to 1.56)
## Exposed - 3080 254277 257357 1.20 (1.16 to 1.24)
## Total 5441 409316 414757 1.31 (1.28 to 1.35)
H

## Point estimates and 95% Cls:

## - —-—--—-——————"""-"""-"—-""—-"—-""—-"—"\"—-"""\¥—"""\—"—"\—"\—"— ==

## Inc risk ratio 1.25 (1.19, 1.32)

## Inc odds ratio 1.26 (1.19, 1.33)

## Attrib risk in the exposed * 0.30 (0.23, 0.38)

## Attrib fraction in the exposed (%) 20.21 (15.85, 24.35)

## Attrib risk in the population * 0.12 (0.06, 0.17)

## Attrib fraction 1in the population (%) 8.77 (6.64, 10.86)

## --—-———""————-———

## Uncorrected chi2 test that OR = 1: chi2(1) = 69.360 Pr>chi2 = <0.001

## Fisher exact test that OR = 1: Pr>chi2 = <0.001

## Wald confidence limits

## CI: confidence interval

## *x Outcomes per 100 population units
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Example: COVID-19 vaccine effectiveness in the UK

* Missing something?

Variant Age group | Total Cases with | Unlinked | <21 days | 221 days | 214 days | Un-
(years)** specimen post post post vaccinated
date in past dose 1 dose 1 dose 2
28 days
Delta cases <50 497,105 119,611 49,527 30,359 83,009 85,407 248,803
250 95,587 35,596 7,602 314 7,129 71,991 8,551
All cases 593,572 155,252 58,003 30,674 90,138 | 157,400 257,357
Cases with an emergency care | <50 16,709 N/A 167 1,051 2,494 2,518 10,479
visit§ (exclusiont) 250 5,445 N/A 21 30 448 3,747 1,199
All cases 22,162 N/A 196 1,081 2,942 6,265 11,678
Cases with an emergency care | <50 22,719 N/A 273 1,364 3,060 3,162 14,860
visit§ (inclusion#) 250 10,102 N/A 50 64 755| 6,532 2701
All cases 32,834 N/A 336 1,428 3,815 9,694 17,561
Cases where presentation to <50 3,490 N/A 95 174 352 453 2,416
otficlgcieicanlivaliodin | Sep 2,784 N/A 10 18 184| 1,908 664
overnight inpatient admission§
((exclusiont) All cases 6,280 N/A 111 192 536 2,361 3,080
Cases where presentation to <50 6,230 N/A 144 283 565 721 4517
emergency care resuftedin 55 6,167 N/A 33 42 393| 3,913 1,786
overnight inpatient admission§
(inclusion#) All cases 12,407 N/A 187 325 958 4,634 6,303

From: Table 5. Attendance to emergency care and deaths of sequenced and genotyped Delta
cases in England by vaccination status (1 February 2021 to 12 September 2021) here.) Note: The

totals do not exactly sum up to the previous table, as age was missing in a few cases. 41/ 71
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Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (2) - Standardization

Outcomes among people under 50 years

16UKdatu50<-c(453,84954, 2416, 246387)
16UKt1u50<- epi.2by2(l6UKdatu50, method = "cohort.count")
16UKt1u50$tab

## Outcome + Outcome - Total Inc risk x
## Exposed + 453 84954 85407 0.53 (0.48 to 0.58)
## Exposed - 2416 246387 248803 0.97 (0.93 to 1.01)
## Total 2869 331341 334210 0.86 (0.83 to 0.89)

Outcomes among people > 50 years

16UKdatm50<-c (1908 , 70083, 664,  7887)
16UKt1m50<- epi.2by2(l6UKdatm50, method = "cohort.count")
16UKt1m50$tab

## Outcome + Outcome - Total Inc risk x*
## Exposed + 1908 70083 71991 2.65 (2.53 to 2.77)
## Exposed - 664 7887 8551 7.77 (7.21 to 8.35)
## Total 2572 77970 80542 3.19 (3.07 to 3.32)

42 /71



Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (3) check the risk differences (RD)

Outcomes among people under 50 years Outcomes among people > 50 years
Measure Estimate 95%Cls Measure Estimate 95%Cls
Measure Est. LB UB Measure Est. LB UB
Inc risk ratio 055 049 0.60 Inc risk ratio 034  0.31 0.37
Inc odds ratio 054 049 0.60 Inc odds ratio 032 030 035
Attrib inc risk * -044 -050 -0.38 Attrib inc risk * 511 569 454
Attrib fraction in exposed (%) -83.08 -102.34 -65.65 Attrib fraction in exposed

(%) -192.99 -219.11 -169.00

Attrib inc risk in population *  -4.57  -5.15  -3.99

Attrib inc risk in population * 011 -0.16 -0.06

Attrib fraction in population
(%) L et Attrib fraction in population

(%) -143.17 -159.10 -128.21
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Example: COVID-19 vaccine effectiveness in the UK

Confounding?

DAG of Age, Vaccines and COVID-19 Hospitalization Confounding

jospitalization | Y

We know that IRL the "L" includes a vector / set of potential covariates that could be
considered as Confounders... this is an illustration only!
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Direct standardization

Suppose we want to estimate E[Y* = 1| — E|Y* = 0] = RD.
The conditional exchangeability allows us to say Y* Il A|L
According to the law of total expectation:

EY*=1]=) _E|Y*=1|X =z|Pr(z);

EY*=0]=) _E[Y*=0X = z|Pr(x)

. Zm means sum over all values x that occur in the study population.

e Pr(z) refers to the distribution of x in that population.
RD=E[Y®=1] - E[Y® = 0] =
> EY*=1X=2|P(z) - ) _FE[Y?=0|X = z|P(x)
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Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers - Standardization

Outcomes among people under 50 years

## Outcome + Outcome -
## Exposed + 453 84954
## Exposed - 2416 246387
## Total 2869 331341

Outcomes among people > 50 years

H# Outcome + Outcome -
## Exposed + 1908 70083
## Exposed - 664 7887
## Total 2572 77970

Total
85407
248803
334210

Total
71991

8551
80542
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.19
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Inc risk *
48 to 0.58)
93 to 1.01)
83 to 0.89)

Inc risk x*
53 to 2.77)
21 to 8.35)
07 to 3.32)
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Example: COVID-19 vaccine effectiveness in the UK

Let's play with the numbers (4) - Standardization
To compute the PO using observed data, we need the consistency assumption
RD=Y E[Y|A=1,X =z]P(z) - Y., E[Y|A=0,X = z|Pr(z)

Standardized risk in the vaccinated :
(453/85, 407 x 334, 210/414, 752 4 1, 908/71, 991 x 80, 542/414, 752) ~ 0.94%

Rfuax — 094

Standardized risk in the unvaccinated :
(2,416/248, 803 x 334, 210/414, 752 + 664/8, 551 x 80, 542/414, 752) ~ 2.29%

Runvax — 2.29

Standardized RD =-1.35 from (0.94% - 2.29% = -1.35%) # 0.3 in the crude estimates.

Standardized RR = 0.41 from (0.0094 / 0.0229) # 1.25 in the crude estimates.
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Example: COVID-19 vaccine effectiveness in the UK

UK Health Security Agency "COVID-19 vaccine surveillance report", Week 41

(b) Cases presenting to emergency care (within 28 days of a positive test) resulting in overnight
inpatient admission
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Figure 2. Rates (per 100,000) by vaccination status from week 37 to week 40 2021
(a) COVID-19 cases
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Cases presenting to emergency care (within 28 days of a positive test) resulting in overnight

inpatient admission.here.

48 /71


https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1025358/Vaccine-surveillance-report-week-41.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1025358/Vaccine-surveillance-report-week-41.pdf

What about the Mantel-Haenzel Methods?

Cochran-Mantel-Haenzel methods are useful for associations, when only few covariates are
involved in the calculation.

Takes the effect in each strata of L or Z (our third variable),

Combines these measures across L using calculated weights !, for example example:

>_(RDywy) ) (RDo’wo + RDyw; )

RDy_pg = (

e Are expected to work in closed cohorts and assumes homogeneity across strata!!

o Limited use in a set of covariates L and in presence of Effect measure modification
and or interaction.

1 There are specific formulas for RD, RR and ORs as well
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Standardized measures of association and effect

* No assumption of homogeneity, "agnostic of the distribution", Model-based direct
standardization ! are used when L(X, E, A) consists of a large vectors of covariates.

Involves two steps:

* Fitting a regression model for the outcome given exposure and covariates

* Averaging the exposure effect over the covariate distribution of the standard population.

1 More on "advanced" techniques to address confounding empirically after we deal with
regressions.

50/ 71



Standardized Morbidity Ratio (SMR)

e A generalization to standardization when the standard population is the exposed sub-
population.

¢ In this case, the standardized rate ratio becomes:

K K
I — (Zkl TIJk) o ( Zkzl Ak )
s K « | K «
Zkzl Tka Zk:l Tka

[Numerator] cases occurring in exposed (Observed)

[Denominator] cases expected to occur in absence of exposure if exposure doesn't affect
person time at risk

(ME3, pg. 68-69)
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How to adjust for confounding

Standardization and Inverse Probability (IP) weighting are not the only methods.

IPW, = (pr(A zla\L = z) )

Often using regression models, assuming the model specification is correct! &

IPW removes the arrow from L — A:

DAG - effect of IPW on Confounding
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How to adjust for confounding

Two categories of methods for confounding adjustment:

1) G-methods (including G-formula, IP weighting, and G-estimation). These exploit
conditional exchangeability in subsets defined by L to estimate the causal effect of Aon Y in
the entire population or in any subset of the population.

e Under the assumption of conditional exchangeability given L, g-methods simulate A — Y
associations in the population if backdoor paths involving variables L did not exist;
simulated A — Y associations can then be attributed to the effectof AonY.

 IP weighting achieves this by creating a pseudo-population in which A is independent of
measured confounders L, by “deleting” the arrow from L — A.
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How to adjust for confounding

2) Stratification-based methods (including Stratification, Restriction, Matching).

Methods that exploit conditional exchangeability in subsets defined by L to estimate the
association between A and Y in those subsets only.

Stratification-based methods estimate the association between A and Y in one or more subsets
of the population in which the treated and the untreated are assumed to be exchangeable.

e Hencethe A — Y association in each subset is entirely attributed to the effectof AonY .

e Stratification/restriction do not delete the arrow from L. — A, but instead calculate the
association within strata of L, since within each level of L, there is no L — A association
to cause confounding.
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How to adjust for confounding

All these methods require conditional exchangeability given the measured covariates L to
identify the effect of treatment A on outcome Y.

* When interested in the effect in the entire population, conditional exchangeability is
required in all strata defined by L;

* When interested in the effect in a subset of the population, conditional exchangeability is
required in that subset only.

* Achieving conditional exchangeability may be an unrealistic goal in many observational
studies but expert knowledge can be used to get as close as possible to that goal.

e At the very least, investigators should generally avoid adjustment for variables affected by
either the treatment or the outcome.
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How to adjust for confounding

Thoughtful and knowledgeable investigators could believe that various causal structures,
possibly leading to different conclusions regarding confounding, are equally plausible.

* DAGs simply allow us to have that discussion.

e Existence of common causes of treatment and outcome does not depend on the
adjustment method (although it does depend on the target population).

e Adjustment for measured confounding will generally imply a change in the estimate, but
not necessarily the other way around.

e Changes in estimates may occur for reasons other than confounding,

o including selection bias when adjusting for non-confounders and the use of non-
collapsible effect measures.

H & R write:

"Attempts to define confounding based on change in estimates have been long
abandoned because of these problems.” This is overstated. When using a DAG and

collapsible measures, the method is a reasonable and practical strategy."
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A note on stratification and non-collapsibility

Comparing crude to adjusted estimates is reliable for RR and RD, but not for OR unless: a) rare
outcome or b) OR = RR due to design (e.g. case-cohort).

Recall thecaseof C — F — Y

Measure Estimate 95%Cls

Measure Est. LB UB
Inc risk ratio (crude) 1.91 1.36 2.70
Inc risk ratio (M-H) 1.75 1.14 2.69
Inc risk ratio (crude:M-H) 1.09

Inc odds ratio (crude) 5.12 2.02 12.97
Inc odds ratio (M-H) 3.83 1.45 10.09
Inc odds ratio (crude:M-H) 1.34

Attrib inc risk (crude) * 37.15 19.01 53.30
Attrib inc risk (M-H) * 31.20 -6.71 69.12
Attrib inc risk (crude:M-H) 1.19
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A note on stratification and non-collapsibility

e We can say a measure of the association between A and Y is collapsible across L if the
adjusted association, RR 4y |L, is equal to the crude association, RR 4y, where L is not a

confounder — This means that a crude measure of association will not change if we adjust
for a variable that is not a confounder (L)

e The odds (OR) and incidence density ratios (IDR) fail this property and are considered non
collapsible effect measures

e For the OR, the crude measure may be closer to the null than the pooled/adjusted OR,
particularly with a common outcome

* Therefore, for some measures, our simple crude vs. adjusted comparison may suggest
confounding when there really isn’t!
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Change in estimate??

Not Really!!!

8. The presence of confounding is suspected when the siz
e of the association of interest changes meaningfully aft

er adjustment by one of these methods. (0 point)

13%
6% f ® True
® False

® Don't know

® It depends

81%
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Structural confounding, violation of Positivity

7

High correlations between confounder and exposure: violation of the “positivity assumption”.
When this is “structural” (in the sense of a high correlation that exists because of causal
relations in the source population), Oakes calls this “structural confounding”.

Table 3. Distribution of Racial Segregation (Number of Census
Tracts per Cell®) According to Level of Neighborhood Deprivation in
Wake and Durham Counties, North Carolina, 1999-2001°

County and Quartile Quartile of NDI
of Percent Black NDH (Low) NDI2 NDI3  NDI4 (High)

Durham County
(n = 58 tracts)

%BL1 (low) 10 2 1 1
%BL2 4 6 3 0
%BL3 0 5 4 4
%BL4 (high) 0 0 5 8
Wake County
(n = 105 tracts)
%BL1 (low) 23 4 0 0
%BL2 3 12 10 1
%BL3 1 8 12 5
%BL4 (high) 0 2 4 20

Abbreviations: %BL, percent black; NDI, neighborhood deprivation
index.

2 Cells are defined as the intersection between quartile of NDI and
quartile of percent black.

b Cells with italicized numbers represent those with too few con-
texts (<1 tract per cell) for meaningful comparisons.

Oakes JIM. Advancing neighbourhood-effects research selection, inferential support,

and structural confounding. Int J Epidemiol. 2006 Jun;35(3):643-7.

Messer et al. Effects of Socioeconomic and Racial Residential Segregation on Preterm Birth:
A Cautionary Tale of Structural Confounding AJE 2010; Mar 15;171(6):664-73.

60/ 71



Structural confounding, violation of Positivity

Data Generation Process

set.seed(704); n=500

sesl <- sample(1l:12, n, replace = TRUE);

sesl[sesl>=10]<-0

ses2 <- cut(sesl, breaks = c(0, 5, 10, 15),

labels = C(HOH, "l", nzn))

ses2[is.na(ses2 )]<- "2"

exposure<- ifelse(ses2=="1",
rbinom(n,1,0.45),
ifelse(ses2=="0", rbinom(n,1,0.5),
ifelse(ses2=="2", rbinom(n,1,0.0001),
rbinom(n,1,0.2))))

outcome<- 1ifelse(ses2=="0", rbinom(n,1,0.75
ifelse(ses2=="1", rbinom(n,1,0.25),
rbinom(n,1,0.25)))

data.strconf <- data.frame(outcome, exposur

table(exposure, ses2)

## ses2

## exposure 0 1 2
## 0 101 107 123
## 1 104 65 0

strconf2 <- glm(outcome ~ exposure,

Regression Results Crude/Unadjusted

exp(Est.) 2.5% 97.5% zval. p

(Intercept) 0.663 0.532 0.827 -3.657 0.000

exposure 1677 1154 2437 2.713 0.007
Adjusted

exp(Est.) 2.5% 97.5% zval. p
(Intercept) 2461 1.676 3.612 4.598 0.000
exposure 1.011 0.634 1.613 0.046 0.963
as.factor(ses2)1 0.119 0.074 0.190 -8.860 0.000
as.factor(ses2)2 0.168 0.097 0.290 -6.399 0.000
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Which way will the confounding go?

DAGs if exposure & outcome are positively associated

Positive confounding: Negative confounding:
unadjusted > adjusted unadjusted < adjusted
Confounder Confounder
(+) (+) (+) (-)
+) (+
Exposure =—> Outcome Exposure = Outcome
Confounder Confounder
(-) (-) (-) (+)
LY () (+
Xposure —> Outcome Exposure —> Outcome ¢

Vander Stoep A, et al. A didactic device for teaching epidemiology
students how to anticipate the effect of a third factor on an exposure-
outcome relation. AJE 1999; 15;150(2):221.
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Which way will the confounding go?

DAGs if exposure & outcome are negatively associated

Negative confounding:
unadjusted > adjusted

Positive confounding:
unadjusted < adjusted

Confounder
(+) (+)

Exposure _—> Outcome
Confounder
(-) (-)
(-)

Exposure —> Outcome

Confounder
(+) (-)

Exposure =—> Outcome

Confounder

(-) (+)
(-)

Exposure —> Outcome -

These schematics are just illustrations, it depends on the strength (degree of correlation)
of the covariates!!, simulations works better than "blanket" type of statements
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Positive, negative, and “qualitative”
confounding

e Confounding may lead to an overestimation or an underestimation of the true magnitude
of an effect.

* Positive confounding: the magnitude of the unadjusted vis-a- vis the adjusted association
is exaggerated.

* Negative confounding: the magnitude of the unadjusted vis-a- vis the adjusted
association is underestimated.

* Qualitative confounding: An extreme case when confounding results in an inversion of
the direction of the association.
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Magnitude of confounding

e The magnitude of confounding will depend on the strength of the confounder-exposure
AND confounder-outcome associations.

* Conversely, if there is no association between the confounder - exposure OR no
association between the confounder-outcome then no confounding of the main effect
could be present.

e The strength of the confounder-exposure and confounder- outcome associations bounds
the confounding effect

o e.g., if RRcrude = 2 and the confounder-outcome relation is 2 (a doubling of risk), then

the confounder would have to be perfectly correlated with the exposure in order to
fully explain the main effect of RR=2
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How strong the the unmeasured confounding should be to explain away my estimated
association?

E values: respond to this question for ratio ! measures, how?

E — value = RR + \/RRX (RR—-1)

- E-value is the minimum value of the association between U — A and U — Y that will be
capable of attenuating the observed association towards the null.

e Example: RR=1.33; 1.33 + 1/1.33 x (1.33 — 1) = 1.99 then, if there was an U, it should:

1) double the risk among unexposed and/or exposed ( RRyy = 2), AND
2) be twice as prevalent among exposed than among unexposed ( RR gy = 2)

To completely explain away the observed association, but a weaker confounder (given the E-
value), say 1.5 or 1.3, would not.

1 E values are debatable for some but still a straightforward calculation and useful information
to have. Versions of the E-value exists for ORs and HRs. E-value calculator.
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https://www.evalue-calculator.com/

Statistical significance?

In general, NO!

e But if you MUST use p-values, set the criteria on the high side (e.g. p < 0.30). This way you
adjust for some non-confounders, but you don't miss many true confounders.

Mickey RM, Greenland S. The impact of confounder selection criteria on
effect estimation. AJE 1989;129(1):125-37.

e Residual confounding (unmeasured L's (U1, U2, etc), categorization, measurement error,
etc):

Kaufman JS, et al. Socioeconomic status and health in blacks and whites:
the problem of residual confounding and the resiliency of race.
Epidemiology 1997; 8(6):621-8. Ogburn EL, Vanderweele TJ. Bias attenuation
results for nondifferentially mismeasured ordinal and coarsened
confounders. Biometrika. 2013;100(1):241- 248. PMID: 24014285
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Residual confounding

Residual confounding occurs when adjustment does not completely remove the confounding
effect of a given variable(s):

1) Misclassification of confounding variables

* (e.g., thevariable is an imperfect proxy for the characteristic we want to adjust for)

2) Improper modeling of the confounding variable

* (e.q., if we are studying air pollution and lung cancer and want to control for smoking, we
should measure smoking in a way that best predicts lung cancer—i.e., pack-years not ever-
never)

3) Other important confounders are not included (also known as unmeasured
confounding or omitted variable bias)
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Validity and Bias:

* The epidemiologist’'s goal: the most VALID and PRECISE estimate possible of the causal
effect of exposure on disease.

e Error comes from sampling variability (lack of precision) and bias (lack of validity).

Studies with results
close to the truth

\

Bias Study results
Truth

Frequency

Average of results

69 /71



Confounded ! ?

confused, bewildered, perplexed,

what are other baffled, befuddled,
words for disconcerted, blasted,
confounded? nonplussed, bemused, lost

N

-
)8

1 We all are!! We will have more on this and empirical examples after we deal with regressions.

Wl Thesaurus.plus
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QUESTIONS?

COMMENTS?
RECOMMENDATIONS?

YARA



