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"Regression is the most common way in which
we fit a line to explain variation"
The Effect by Nick Huntington-Klein
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Expected competencies

Knows how/when to use linear regression (LR) models.

Can describe the LR model, assumptions, and implications.

Can explain why its called OLS and the estimates least squares estimates.

Can define regression line, fitted value, residual, and influence.

Can state the relationships between:

Correlation and regression coefficients.

The two-sample t-test and a regression model with one binary predictor.

ANOVA and a regression model with categorical predictors.

Knows how statistical packages estimate the parameters & make diagnostic plots.

Can interpret regression model outputs (even transformed).
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Objectives

1. Revise basic OLS a.k.a. Liner regression concepts

2. Learn how to formulate, code and interpret LR models

3. Identify opportunities to use advanced LR models
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Recap! (1)

Continuous Outcomes, Variables and Line Fitting

Conditional distributions

Conditional means

Line Fitting Regression

"the normal linear model, assuming that the mean of the response depends on the

explanatory variables via a linear function"

Ordinary Least Square (OLS)

Intercepts, Slopes

Conditional conditional means a.k.a. "Control" or "Adjustment"

→
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Recap! (2)

What's the Normal linear regression model?

Normal probability distribution (i.e., Gaussian distribution)

Relationship between an outcome variable (Y) , assumed to be normally distributed, and

one or more explanatory variables (X) about which no distributional assumptions are made.

Referred to as ‘the general linear model’ (GLM).

Simple linear regression: assumes a linear relationship between the response (outcome)

and explanatory variables.

The linear model states that the response  is generated as a linear combination of the

 plus a random error, :

 (s) are assumed to be normally distributed and independent with mean 0 and a

common variance .

The model is a model for the conditional distribution of  given .

Y
Xs ϵi

yi = β0 + β1x1i + ϵi

ϵi
σ2

Y X
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What would be the correlation between Age and Blood
Pressure?
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Does this help?
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Methods for correlation analyses

Pearson correlation (r) - measures a linear dependence between two variables (x and y)

when both are from normal distribution, to determine normality:

i) shapiro.test()

ii) normality plot (ggpubr::ggqqplot()))

Kendall tau and Spearman rho are rank-based correlation coefficients (non-parametric test)
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Pearson correlation formula

where  and  are the means of  and  variables

p-value of the correlation determined from the t value

where  = number of observation in  and  variables

The correlation  -1 < r < 1, no correlation  = 0

r =
∑ (x−mx)(y−my)

√∑ (x−mx)2∑ (y−my)2

mx my x y

t = r√ with df = n− 2
n− 2
1 − r2

n x y

r→ r
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Overall
(N=337)

height
Mean (SD) 173 (6.36)
Median [Min, Max] 173 [152, 191]

weight
Mean (SD) 72.5 (10.7)
Median [Min, Max] 72.8 [46.7, 106]

bmi
Mean (SD) 24.1 (3.19)
Median [Min, Max] 24.1 [15.9, 33.3]

fat
Mean (SD) 12.7 (2.37)
Median [Min, Max] 12.6 [7.26, 21.6]

fibre
Mean (SD) 1.72 (0.562)
Median [Min, Max] 1.67 [0.605, 5.35]
Missing 4 (1.2%)

bp1
Mean (SD) 129 (1.08)
Median [Min, Max] 129 [126, 132]

energy
Mean (SD) 28.3 (4.42)
Median [Min, Max] 28.0 [17.5, 44.0]

factor(chd)
0 291 (86.4%)
1 46 (13.6%)

df1<-df %>% select(height, weight, 
bmi, fat, fibre , bp1, energy, chd )
GGally::ggpairs(df1)

Analytical solution using R
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pcor <- cor.test(df$ageye, df$bp1, 
        method = "pearson")
pcor

## 
##     Pearson's product-moment correlation
## 
## data:  df$ageye and df$bp1
## t = 6.5624, df = 335, p-value = 2.013e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2392982 0.4288759
## sample estimates:
##       cor 
## 0.3375049

# confirm t value with hand calculation
tval <- pcor$estimate*sqrt(335/(1-pcor$esti
names(tval) <- c(""); 
tval

##          
## 6.562412

ggpubr::ggscatter(df, x = "ageye", y = "bp1
add = "reg.line", conf.int = TRUE, 
add.params = list(color = "#008B8B", fill =
cor.coef = TRUE, cor.method = "pearson",
xlab = "Age (years) at entry", ylab = "Bloo
theme_bw()

Analytical solution using R
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temp1 <- cor.test(df$ageye, df$bp1, 
         method = "kendall"); 
temp1

## 
##     Kendall's rank correlation tau
## 
## data:  df$ageye and df$bp1
## z = 5.9674, p-value = 2.41e-09
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##       tau 
## 0.2178494

temp2 <- cor.test(df$ageye, df$bp1, 
        method = "spearman")
temp2

## 
##     Spearman's rank correlation rho
## 
## data:  df$ageye and df$bp1
## S = 4369150, p-value = 3.355e-09
## alternative hypothesis: true rho is not equal to
## sample estimates:
##       rho 
## 0.3150446

Analytical solution using R
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Data visualization as a tool

Consider 4 separate datasets:

which given the same LR results... Would you assume the data sets are the same?
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md0<-lm(y1 ~ x1, data=anscombe)
round(summ(md0, confint = T)$"coeftable", 2

##             Est. 2.5% 97.5% t val.    p
## (Intercept)  3.0 0.46  5.54   2.67 0.03
## x1           0.5 0.23  0.77   4.24 0.00

md1<-lm(y2 ~ x2, data=anscombe)
round(summ(md0, confint = T)$"coeftable", 2

##             Est. 2.5% 97.5% t val.    p
## (Intercept)  3.0 0.46  5.54   2.67 0.03
## x1           0.5 0.23  0.77   4.24 0.00

md2<-lm(y3 ~ x3, data=anscombe)
round(summ(md0, confint = T)$"coeftable", 2

##             Est. 2.5% 97.5% t val.    p
## (Intercept)  3.0 0.46  5.54   2.67 0.03
## x1           0.5 0.23  0.77   4.24 0.00

md3<-lm(y4 ~ x4, data=anscombe)
round(summ(md0, confint = T)$"coeftable", 2

##             Est. 2.5% 97.5% t val.    p
## (Intercept)  3.0 0.46  5.54   2.67 0.03
## x1           0.5 0.23  0.77   4.24 0.00

which given the same LR results Would you assume the data sets are the same?

Use ??anscombe to know about the datases
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Line Fitting
The deterministic relationship between  and , but IRL phenomena are stochastic or

probabilistic

"Showing the mean of  among local values of  is valuable, and can produce a highly

detailed picture of the relationship between  and . "

Explore estimates of the mean  conditional on values of , with an assumed shape,

often a straight line.

The most common way of address this is witht the REGRESSION

X Y

Y X
X Y

Y X
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Regression with R
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mod0<- lm(bp1~ ageye, data = df)
round(summ(mod0, confint = T)$"coeftable", 

##               Est.   2.5%  97.5% t val. p
## (Intercept) 126.38 125.60 127.16 320.35 0
## ageye         0.05   0.04   0.07   6.56 0

Line Fitting (Example)

Y = β0 + β1X

Y = 126.4 + 0.05X
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The mean of  conditional on, 

is:

= 127.9

The mean of  conditional on a given

value of  would be 0.05 higher if you

instead made it conditional on a value

of one unit higher.

Line Fitting (Example)

Y = β0 + β1X

Y X = 30

Y = 126.4 + 0.05(30)

Y
X
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The statistical properties of OLS
Ordinary Least Squares (OLS) is the most well-known application of line-fitting.

OLS picks the line that gives the lowest sum of squared residuals.

Residual: difference between an observation’s actual value and the conditional mean

assigned by the line.

We determined that the conditional mean of  when  is  = 127.9 ,

but what if we observe  =30 and Y = 130.5?

OLS  squared the difference of the observed and assigned/expected  and adds all the

prediction in the data.

Selects values on  and  in the line  that makes that sum of squared

residuals as small as possible.

Y X = 30 126.4 + 0.05(30)
X

→ Y

β0 β1 Y = β0 + β1X
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What we know about the OLS/LR

Uses  to explain or predict 

OLS/LR gives the "best linear approximation" of the relationship between  and 

Pro: Efficient use of variation

Pro: Straightforward explanation

Con: We may lose some important variation

Con: If we choose the wrong shape for the relationship, results aren't valid

In an univariate/bivariate regression, the  a.k.a. slope is the covariance of  divided

by the variance of .

round((cov(df$ageye, df$bp1))/var(df$ageye),2)

## [1] 0.05

X Y

X Y

β1 X,Y
X
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Assumptions ordinary linear regression

1. A linear relationship between the independent and dependent variable

2. Independent errors

3. Normal distribution of errors

4. Homoscedasticity

The only thing that changes with Bayesian linear regression, is that instead of using MLE

to find point estimates for the parameters, we treat them as random variables, assign

priors for them, and use Bayes theorem to derive the posterior distribution.

So Bayesian model inherits these same assumptions, since it"s all about the likelihood

Basically, we are assuming that the likelihood function we've chosen is a reasonable

representation of the data
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Basic regression model assumptions (Mathematical)

Developing a probabilistic model for linear regression with additive Gaussian errors

Note, (linear relationship)

Here the  are assumed iid (independent errors, normally distributed)

Note, (variance assumed constant - homoscedasticity)

Likelihood equivalent model specification is that the  are independent 

Least squares is an estimation tool

Yi = β0 + β1Xi + ϵi

E[Yi | Xi = xi] = μi = β0 + β1xi

ϵi N(0,σ2)

V ar(Yi | Xi = xi) = σ2

Yi N(μi,σ2)
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The error term

There’s going to be a difference between the line that we fit and the observation we get.

Hence, 

Residual: difference between the prediction we make with our fitted line and the actual

value.

Error: difference between the true best fit-line and the actual value.

The error effectively contains everything that causes  that is not included in the

model.

Y = β0 + β1X→ Y = β0 + β1X + ϵi

Y
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Sampling variation
If we want to say that our OLS estimates of  will, on average, give us the population , then

it must be the case that  is uncorrelated with 

Regression coefficients are estimates, and even though there’s a true population model out

there, the estimate we get varies from sample to sample due to sampling variation.

What is that normal distribution that the OLS coefficients follow?

In , the coefficient 

= nb of observations;

= is the SD of ;

and the variance of  is 

β1 β1
X ϵ

Y = β0 + β1X + ϵi β1 ∼ N(β1,√σ/(var(X)n))

n

σ ϵ

X var(X)
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Standard Error

How to reduce an OLS estimate’s sampling variation?

(1) Shrink the SD of the error term , i.e., make the model predict  more accurately.

(2) Pick an  with large variation

an  that changes a lot makes it easier to check for whether  is changing in the same

way.

(3) Use a big sample so  gets big.

How do we call this standard deviation of the error?

σ Y

X

X Y

n
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Likelihood

so that the twice the negative log (base e) likelihood is

Discussion

Maximizing the likelihood is the same as minimizing -2 log likelihood

The least squares estimate for  is exactly the maximum likelihood estimate

(regardless of )

L(β,σ) =
n

∏
i=1

{(2πσ2)−1/2 exp(− (yi − μi)2)}1
2σ2

−2 log{L(β,σ)} =
n

∑
i=1

(yi − μi)2 + n log(σ2)
1
σ2

μi = β0 + β1xi
σ
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Interpreting the intercept

 is the expected value of the response when the predictor is 0

Note, this isn't always of interest, for example when  is impossible or far outside of

the range of data. (X is blood pressure, or height etc.)

Consider that

So, shifting you  values by value  changes the intercept, but not the slope.

Often  is set to  so that the intercept is interpreted as the expected response at the

average  value.

β0

E[Y |X = 0] = β0 + β1 × 0 = β0

X = 0

Yi = β0 + β1Xi + ϵi = β0 + aβ1 + β1(Xi − a) + ϵi =
~
β0 + β1(Xi − a) + ϵi

X a

a X̄
X
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Interpreting the slope

 is the expected change in response for a 1 unit change in the predictor

Consider the impact of changing the units of .

Therefore, multiplication of  by a factor  results in dividing the coefficient by a factor of

.

Example:  is height in  and  is weight in . Then  is .

Converting  to  implies multiplying  by . To get  in the right units, we

have to divide by  to get it to have the right units.

β1

E[Y  | X = x+ 1] − E[Y  | X = x] = β0 + β1(x+ 1) − (β0 + β1x) = β1

X

Yi = β0 + β1Xi + ϵi = β0 + (Xia) + ϵi = β0 +
~
β1(Xia) + ϵi

β1

a

X a
a

X m Y kg β1 kg/m

X cm X 100cm/m β1
100cm/m

Xm× = (100X)cm  and  β1 × = ( )100cm
m

kg

m
1m

100cm
β1
100

kg

cm
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Interpretation
## MODEL INFO:
## Observations: 337
## Dependent Variable: bp1
## Type: OLS linear regression 
## 
## MODEL FIT:
## F(1,335) = 43.07, p = 0.00
## R² = 0.11
## Adj. R² = 0.11 
## 
## Standard errors:OLS
## ------------------------------------------------------------
##                       Est.     2.5%    97.5%   t val.      p
## ----------------- -------- -------- -------- -------- ------
## (Intercept)         126.38   125.60   127.16   320.35   0.00
## ageye                 0.05     0.04     0.07     6.56   0.00
## ------------------------------------------------------------
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What's the relationship between slope in LR and Pearson's r?

ML estimates of  and  are the least squares estimates

# standardize x & y, can do manually or easier with scale function 
# perform LR with standardized data
df_std <- df %>% mutate(across(where(is.numeric), scale))
mod1 <- lm( bp1~ageye, df_std); #tidy(mod1)
round(summ(mod1)$"coeftable", 2)

##             Est. S.E. t val. p
## (Intercept) 0.00 0.05   0.00 1
## ageye       0.34 0.05   6.56 0

Once data is standardized then r = slope

E[Y  | X = x] = β0 + β1x

V ar(Y  | X = x) = σ2

β0 β1

β̂1 = Cor(Y ,X)    β̂0 = Ȳ − β̂1X̄
Sd(Y )
Sd(X)
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Generate some fake data & calculate the

mean and std error

set.seed(12345)
n_0 <- 40
y_0 <- rnorm(n_0, 2.0, 5.0)  
fake_0 <- data.frame(y_0)  
mean(fake_0$y_0)

## [1] 3.200926

sd(fake_0$y_0)/sqrt(n_0)

## [1] 0.8209468

Regression on a constant term

fit_0 <- lm(y_0 ~ 1, data=fake_0); 
print(fit_0)

## 
## Call:
## lm(formula = y_0 ~ 1, data = fake_0)
## 
## Coefficients:
## (Intercept)  
##       3.201

Simple regression models and Difference in Means

Estimating the mean is the same as regressing on a constant term
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Add new group: 50 observations from N(8.0,

5.0) Calculate the mean difference & std

error

set.seed(12345)
n_1 <- 50;  y_1 <- rnorm(n_1, 8.0, 5.0) 
diff <- base::mean(y_1) - base::mean(y_0)
se_0 <- sd(y_0)/sqrt(n_0)  
se_1 <- sd(y_1)/sqrt(n_1); 
se <- sqrt(se_0^2 + se_1^2)  
print(c(diff, se))

## [1] 5.696905 1.129249

5.7 for the difference and 1.13 for its std

error, consistent with the simulation with

expected true population difference = 6.0

Regression with indicator variable

n <- n_0 + n_1; y <- c(y_0, y_1);  
x <- c(rep(0, n_0), rep(1, n_1))  
fake <- data.frame(x, y)  
fit <- lm(y ~ x, data=fake); print(fit)

## 
## Call:
## lm(formula = y ~ x, data = fake)
## 
## Coefficients:
## (Intercept)            x  
##       3.201        5.697

The estimate of the slope, 5.7, is identical to

the difference in means,  and the

intercept (3.2) = 

Estimating a difference Equivalent to regressing on an indicator variable

ȳ1 − ȳ0
ȳ0
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Visual equivalence

For binary indicator, slope is the average difference in the outcome between the two group

For continuous variable estimated slope is a weighted average of slopes for every possible

pair of 2 points
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SBP & BMI, what is your interpretation?

Increase age in BMI, increase Systolic Blood Pressure?
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Linear Regression / OLS outputs

fit1 <- lm(bp1 ~ bmi, data= df)
summary(fit1)

## 
## Call:
## lm(formula = bp1 ~ bmi, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2488 -0.7917  0.0489  0.7104  3.1221 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 127.84876    0.44371 288.133   <2e-16 ***
## bmi           0.04541    0.01824   2.489   0.0133 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.067 on 335 degrees of freedom
## Multiple R-squared:  0.01816,    Adjusted R-squared:  0.01523 
## F-statistic: 6.198 on 1 and 335 DF,  p-value: 0.01328
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Linear Regression / OLS: Getting a more interpretable
intercept

fit2<- lm(bp1 ~I(bmi -mean(bmi)), data=df); summary(fit2)

## 
## Call:
## lm(formula = bp1 ~ I(bmi - mean(bmi)), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2488 -0.7917  0.0489  0.7104  3.1221 
## 
## Coefficients:
##                     Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)        128.94386    0.05812 2218.636   <2e-16 ***
## I(bmi - mean(bmi))   0.04541    0.01824    2.489   0.0133 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.067 on 335 degrees of freedom
## Multiple R-squared:  0.01816,    Adjusted R-squared:  0.01523 
## F-statistic: 6.198 on 1 and 335 DF,  p-value: 0.01328

The intercept is now the average SBP at the average BMI. The slope is unchanged and

represents how much the SBP changes for a 1 unit increase in BMI.
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Interpreting regression results

summ(fit2, confint = T)

## MODEL INFO:
## Observations: 337
## Dependent Variable: bp1
## Type: OLS linear regression 
## 
## MODEL FIT:
## F(1,335) = 6.20, p = 0.01
## R² = 0.02
## Adj. R² = 0.02 
## 
## Standard errors:OLS
## --------------------------------------------------------------------
##                              Est.     2.5%    97.5%    t val.      p
## ------------------------ -------- -------- -------- --------- ------
## (Intercept)                128.94   128.83   129.06   2218.64   0.00
## I(bmi - mean(bmi))           0.05     0.01     0.08      2.49   0.01
## --------------------------------------------------------------------
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R-squared

(var(df$bp1) - summary(fit2)$sigma^2)/var(df$bp1)

## [1] 0.01523312

cor(df$bp1, df$bmi)^2

## [1] 0.01816397

Bluntly speaking, the R-squared is comparing a meaningful measure (residual variation)

to a meaningless one (the total variation), and therefore it becomes meaningless, and so

should be avoided.

t-statistic (coefficient divided by the standard error); t-distribution with n - 2 degrees of

freedom. NHT,  :  = 0

F-statistic: A statistic for NHT,  = all the coefficents in the model (except the

intercept/constant) = 0, at once, and tests how unlikely results are given that null.

H0 β1

H0
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Standardized variables

fit3 <- lm(bp1 ~ bmi + ageye + fat + fibre, data= df)
#summary(fit3)
round(summ(fit3)$"coeftable", 3)

##                Est.  S.E.  t val.     p
## (Intercept) 125.376 0.640 195.841 0.000
## bmi           0.058 0.018   3.224 0.001
## ageye         0.052 0.008   6.546 0.000
## fat          -0.012 0.025  -0.472 0.637
## fibre        -0.155 0.109  -1.429 0.154

How to make regression coefficients comparable?

"Scale" coefficients by the (study) population standard deviation (  )

Effects interpretable as effects per population standard deviation, i.e., the change in  per

1 population standard deviation.

X/sd(X)

Y
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There is no guarantee that the relative sizes

of the population sd's of variables are

constant across populations. Hence,

comparisons of standardized effects do not

apply to other study populations.

Standardized variables

fit3a <- lm(bp1 ~ bmi + I(ageye/ sd(ageye) ) + I(fat/sd(fat, na.rm=T)) + 
              I(fibre/sd(fibre, na.rm=T)), data= df)
#summary(fit3a)
round(summ(fit3a)$"coeftable", 3)

##                                  Est.  S.E.  t val.     p
## (Intercept)                   125.376 0.640 195.841 0.000
## bmi                             0.058 0.018   3.224 0.001
## I(ageye/sd(ageye))              0.365 0.056   6.546 0.000
## I(fat/sd(fat, na.rm = T))      -0.028 0.060  -0.472 0.637
## I(fibre/sd(fibre, na.rm = T))  -0.087 0.061  -1.429 0.154

Note that T-statistics and p-values remain the same, only (re)scaled the coefficients
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Predictions from the normal regression model

If we would like to guess the outcome at a particular value of the predictor, say , the

regression model guesses

Note that at the observed value of s, we obtain the predictions

Remember that least squares minimizes

for  expressed as points on a line

X

β̂0 + β̂1X

X

μ̂i = Ŷ i = β̂0 + β̂1Xi

n

∑
i=1

(Yi − μi)

μi
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newx <- c(20, 30, 35)
#predict by substituting into the equation
coef(fit1)[1] + coef(fit1)[2] * newx

## [1] 128.7569 129.2110 129.4381

# predict using the predict function
predict(fit1, 
        newdata = data.frame(bmi = newx))

##        1        2        3 
## 128.7569 129.2110 129.4381

Predicting some SBP as a function of BMI

Numerical predictions

1. Select the values of  to predict values of 

2. Use the OLS regression results to estimate the prediction

Substituting into the equation

Using the predict function in R

X Y
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Predicting some SBP as a function of BMI: Graphical display Some R code

new_df <- data.frame(bmi= newx, bp1 = predict(fit1, newdata = data.frame(bmi = newx)))

gg_reg_mean + geom_point() +
  geom_point(data=new_df, aes(x=bmi, y=bp1), color="red", size=4) +
  geom_segment(aes(x = 20, y = 125, xend = 20, yend = 128.76), colour = "red") +
  geom_segment(aes(x = 30, y = 125, xend = 30, yend = 129.2), colour = "red") +
  geom_segment(aes(x = 35, y = 125, xend = 35, yend = 129.44), colour = "red")
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Categorical explanatory variables
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Categorical explanatory variables

Using the categorical status

fit4 <- lm(bp1 ~ as.factor(bmicat), data= df)
#summary(fit4)
summ(fit4)

## MODEL INFO:
## Observations: 337
## Dependent Variable: bp1
## Type: OLS linear regression 
## 
## MODEL FIT:
## F(3,333) = 4.16, p = 0.01
## R² = 0.04
## Adj. R² = 0.03 
## 
## Standard errors:OLS
## ---------------------------------------------------------
##                              Est.   S.E.    t val.      p
## ------------------------ -------- ------ --------- ------
## (Intercept)                128.82   0.08   1687.86   0.00
## as.factor(bmicat)1           0.58   0.33      1.76   0.08
## as.factor(bmicat)2           0.19   0.12      1.56   0.12
## as.factor(bmicat)3           0.92   0.30      3.02   0.00
## ---------------------------------------------------------
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Categorical explanatory variables

Using the categorical status and removing the intercept

fit4a <- lm(bp1 ~0 + as.factor(bmicat), data= df)
#summary(fit4a)
summ(fit4a)

## MODEL INFO:
## Observations: 337
## Dependent Variable: bp1
## Type: OLS linear regression 
## 
## MODEL FIT:
## F(4,333) = 1245985.42, p = 0.00
## R² = 1.00
## Adj. R² = 1.00 
## 
## Standard errors:OLS
## ---------------------------------------------------------
##                              Est.   S.E.    t val.      p
## ------------------------ -------- ------ --------- ------
## as.factor(bmicat)0         128.82   0.08   1687.86   0.00
## as.factor(bmicat)1         129.40   0.32    404.76   0.00
## as.factor(bmicat)2         129.01   0.10   1332.90   0.00
## as.factor(bmicat)3         129.74   0.29    441.18   0.00
## ---------------------------------------------------------
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fit5 <- lm(bp1 ~ bmi + ageye + fat + 
             energy, data= df)
round(summ(fit5)$"coeftable", 3)

##                Est.  S.E.  t val.     p
## (Intercept) 125.666 0.668 188.107 0.000
## bmi           0.056 0.018   3.202 0.001
## ageye         0.051 0.008   6.424 0.000
## fat           0.028 0.042   0.675 0.500
## energy       -0.033 0.023  -1.487 0.138

round(summ(fit5, confint = T)$"coeftable", 

##                Est.    2.5%   97.5%  t val.     p
## (Intercept) 125.666 124.352 126.981 188.107 0.000
## bmi           0.056   0.022   0.091   3.202 0.001
## ageye         0.051   0.035   0.066   6.424 0.000
## fat           0.028  -0.054   0.110   0.675 0.500
## energy       -0.033  -0.078   0.011  -1.487 0.138

df2<-df %>% select(bp1, weight, bmi, 
                   fat, energy)
GGally::ggpairs(df2)

Collinearity
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Collinearity

fit5a <- lm(bp1 ~ bmi + ageye + energy, data= df)
round(summ(fit5a, confint = T)$"coeftable", 3)

##                Est.    2.5%   97.5%  t val.     p
## (Intercept) 125.641 124.330 126.952 188.516 0.000
## bmi           0.057   0.022   0.091   3.251 0.001
## ageye         0.051   0.035   0.066   6.471 0.000
## energy       -0.021  -0.046   0.004  -1.640 0.102

fit5b <- lm(bp1 ~ bmi + ageye + fat, data= df)
round(summ(fit5b, confint = T)$"coeftable", 3)

##                Est.    2.5%   97.5%  t val.     p
## (Intercept) 125.343 124.098 126.588 198.064 0.000
## bmi           0.054   0.020   0.089   3.097 0.002
## ageye         0.052   0.037   0.068   6.649 0.000
## fat          -0.023  -0.070   0.024  -0.962 0.337
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Interpreting coefficients on transformed variables

fit6 <- lm(bp1 ~ bmi + ageye +energy + log(weight), data= df)
round(summ(fit6, confint = T)$"coeftable", 3)

##                Est.    2.5%   97.5% t val.     p
## (Intercept) 121.374 116.436 126.312 48.351 0.000
## bmi           0.005  -0.062   0.072  0.158 0.874
## ageye         0.052   0.037   0.068  6.632 0.000
## energy       -0.024  -0.050   0.001 -1.898 0.059
## log(weight)   1.297  -0.150   2.745  1.763 0.079

SBP increases 1.3 mmHg for a 10% increase in weight

Transforming explanatory variables will produce absolute effects of the response variable

for a relative change of the explanatory variable.

The size of the relative change reflected in the parameter estimate is determined by the

base of the logarithm used.
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Constructing a Regression Equation From The Effect
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https://theeffectbook.net/ch-StatisticalAdjustment.html#turning-a-causal-diagram-into-a-regression


fit7 <- lm(bp1 ~ as.factor(bmicat) + ageye 
round(summ(fit7)$"coeftable", 3)

##                       Est.  S.E. t val.     p
## (Intercept)        119.856 2.473 48.470 0.000
## as.factor(bmicat)1   0.646 0.343  1.883 0.061
## as.factor(bmicat)2  -0.076 0.155 -0.488 0.626
## as.factor(bmicat)3   0.268 0.346  0.774 0.439
## ageye                0.050 0.008  6.387 0.000
## energy              -0.022 0.013 -1.690 0.092
## log(weight)          1.687 0.588  2.871 0.004

Plot Residuals vs fitted and Q-Q plots

plot(fit7, which=1:2)

Diagnostic Plots

Consider this:
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Summary

Regression is a mathematical tool for making predictions and comparisons

Regression coefficients can always be interpreted as average comparisons

Regression coefficients can always be used for predictions

But, regression coefficients can only sometimes be interpreted as effects, depending on

your causal model
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QUESTIONS?

COMMENTS?

RECOMMENDATIONS?
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Extra slide:
Code for the cloud figure (slide 45):

gg1 <- ggplot(df, aes(x = bmicat1, y = bp1)) + ## add half-violin from {ggdist} package
  ggdist::stat_halfeye(## custom bandwidth
    adjust = .5, ## adjust height
    width = .6, ## move geom to the right
    justification = -.2, ## remove slab interval
    .width = 0, 
    point_colour = NA
  ) + 
  geom_boxplot(
    width = .12, ## remove outliers
    outlier.color = NA ## `outlier.shape = NA` works as well
  ) + ## add dot plots from {ggdist} package
  ggdist::stat_dots(## orientation to the left
    side = "left", ## move geom to the left
    justification = 1.1, ## adjust grouping (binning) of observations 
    binwidth = .05) + ## remove white space on the left
  coord_cartesian(xlim = c(1.2, NA)) +
  geom_hline(yintercept=130, color = "red", size=2)+ theme_classic()
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Bayesian Linear Regression
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Four key steps for Bayesian modeling

Guide for the fundamentals of both single-level and hierarchical linear regression modeling

Can use Stan and front end rstanarm package (brms is good alternative)

Detailed vignettes can be found here

Step 1 Specify the data model and prior - Prior likelihood posterior

-*Step 2 Estimate the model parameters - Bayes theorem typically involves using a

numerical algorithm to draw a representative sample from the posterior distribution

Step 3 Check sampling quality and model fit - Graphical and numerical checks are

necessary, if fails go back to Step 1

Step 4 Summarize, interpret results - Make posterior predictions

For some simple models, analytical (closed-form ) solutions are possible

Almost all non-trivial models the full posterior has to be approximated numerically by sampling

(simulating draws) based on Markov Chain Monte Carlo algorithms

If you have 1 hour check out this video to really understand MCMC

∝
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http://mc-stan.org/rstanarm/articles/
https://www.publichealth.columbia.edu/research/population-health-methods/markov-chain-monte-carlo
https://www.youtube.com/watch?v=Qqz5AJjyugM


Linear regression (Bayesian)

Can also use brms package as the font end and get the same results

library(brms)
fit_1b <- stan_glm(bp1 ~ bmi, data=df, seed=123, refresh = 0)
print(fit_1b, digits=2)

## stan_glm
##  family:       gaussian [identity]
##  formula:      bp1 ~ bmi
##  observations: 337
##  predictors:   2
## ------
##             Median MAD_SD
## (Intercept) 127.84   0.45
## bmi           0.05   0.02
## 
## Auxiliary parameter(s):
##       Median MAD_SD
## sigma 1.07   0.04  
## 
## ------
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
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Default priors

stan_glm uses default weakly informative priors seen with prior_summary(model)

prior_summary(fit_1b)

## Priors for model 'fit_1b' 
## ------
## Intercept (after predictors centered)
##   Specified prior:
##     ~ normal(location = 129, scale = 2.5)
##   Adjusted prior:
##     ~ normal(location = 129, scale = 2.7)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = 0, scale = 2.5)
##   Adjusted prior:
##     ~ normal(location = 0, scale = 0.84)
## 
## Auxiliary (sigma)
##   Specified prior:
##     ~ exponential(rate = 1)
##   Adjusted prior:
##     ~ exponential(rate = 0.93)
## ------
## See help('prior_summary.stanreg') for more details
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Priors

Priors are often viewed as the Achilles' heel of Bayesian analyses.

Personally, they can be a strength as they allow the incorporation of prior knowledge, are

entirely transparent and are updated by the current data following the uncontested laws of

probability.

Bayesian analyses are sometimes done using flat or non-informative priors to allow final

results to be completely dominated by the data.

This is rarely a good idea

For example, using the prior  = N(0,  = 500) produces some strange beliefsθ σ
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Non-informative priors are rarely a good idea

Consider one such non-informative prior N(0,500)

## [1] "Pr(-250 < theta < 250) = 0.38"

How could this represent anyone's serious prior beliefs

Some prior information usually available. Even if nothing to suggest a priori that a coefficient

will be + or -, almost always can suggest that different orders of magnitude are not equally

likely.

vague rather than non-informative priors are the default priors in most packages and should

be used unless specific informative priors are available
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Same results with OLS

Since there are 1,000 data points the priors probably contribute very little.

Therefore may expect to get the same numerical results with standard linear regression using

lm function

fit_2 <- lm(bp1 ~ bmi, data=df)
print(fit_2, digits=2)

## 
## Call:
## lm(formula = bp1 ~ bmi, data = df)
## 
## Coefficients:
## (Intercept)          bmi  
##     127.849        0.045

Same results as with the Bayesian approach
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