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"Regression is the most common way in which
we fit a line to explain variation”

The Effect by Nick Huntington-Klein
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https://theeffectbook.net/

Expected competencies

e Knows how/when to use linear regression (LR) models.
e Can describe the LR model, assumptions, and implications.
e Can explain why its called OLS and the estimates least squares estimates.
e Can define regression line, fitted value, residual, and influence.
e (Can state the relationships between:
o Correlation and regression coefficients.
o The two-sample t-test and a regression model with one binary predictor.
o ANOVA and a regression model with categorical predictors.
e Knows how statistical packages estimate the parameters & make diagnostic plots.

e Caninterpret regression model outputs (even transformed).
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Objectives

1. Revise basic OLS a.k.a. Liner regression concepts
2. Learn how to formulate, code and interpret LR models

3. Identify opportunities to use advanced LR models
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Recap! (1)

Continuous Outcomes, Variables and Line Fitting

Conditional distributions

Conditional means

Line Fitting — Regression

o "the normal linear model, assuming that the mean of the response depends on the
explanatory variables via a linear function"

o Ordinary Least Square (OLS)

Intercepts, Slopes

Conditional conditional means a.k.a. "Control" or "Adjustment"”
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Recap! (2)

What's the Normal linear regression model?

e Normal probability distribution (i.e., Gaussian distribution)

e Relationship between an outcome variable (Y) , assumed to be normally distributed, and
one or more explanatory variables (X) about which no distributional assumptions are made.
Referred to as ‘the general linear model’ (GLM).

e Simple linear regression: assumes a linear relationship between the response (outcome)
and explanatory variables.

e The linear model states that the response Y is generated as a linear combination of the
X s plus a random error, €;:

Yi = Po + Bixii + €

* ¢; (s)are assumed to be normally distributed and independent with mean 0 and a

common variance 02.

e The model is a model for the conditional distribution of Y given X.
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What would be the correlation between Age and Blood

Pressure?

Blood Pressure
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Age (years) at entry
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Does this help?
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Methods for correlation analyses

e Pearson correlation (r) - measures a linear dependence between two variables (x and y)
when both are from normal distribution, to determine normality:

i) shapiro.test()

i) normality plot (ggpubr: :gggqplot()))

e Kendall tau and Spearman rho are rank-based correlation coefficients (non-parametric test)
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Pearson correlation formula

2. (& —mg)(y —my)

r —
V2 (@ —mg)? 30 (y — my)?
where m, and m, are the means of x and y variables

p-value of the correlation determined from the t value

n—2

1 swith df =n —2
—r

where n = number of observation in « and y variables

The correlationr — -1 <r <1, no correlationr =0
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Analytical solution using R

Overall
(N=337)

height

Mean (SD) 173 (6.36)

Median [Min, Max] 173 [152, 191]
weight

Mean (SD) 72.5(10.7)

Median [Min, Max] 72.8 [46.7, 106]
bmi

Mean (SD) 24.1 (3.19)

Median [Min, Max]  24.1[15.9, 33.3]
fat

Mean (SD) 12.7 (2.37)

Median [Min, Max] 12.6 [7.26, 21.6]
fibre

Mean (SD) 1.72 (0.562)

Median [Min, Max]  1.67 [0.605, 5.35]

Missing 4 (1.2%)
bp1

Mean (SD) 129 (1.08)

Median [Min, Max] 129 [126, 132]
energy

Mean (SD) 28.3 (4.42)

Median [Min, Max]  28.0 [17.5, 44.0]
factor(chd)

0 291 (86.4%)

1 46 (13.6%)

dfi<-df %>
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Analytical solution using R

pcor <- cor.test(df$ageye, dfS$Sbpl, ggpubr::ggscatter(df, x = "ageye", y = "bpl
method = "pearson") add = "reg.line", conf.int = TRUE,

pcor add.params = list(color = "#008B8B", fill =

cor.coef = TRUE, cor.method = "pearson",

4 xlab = "Age (years) at entry", ylab = "Bloo

#i Pearson's product-moment correlation theme_bw()

##

## data: df$ageye and df$bpl .

## t = 6.5624, df = 335, p-value = 2.013e-10 1 R 3 .

## alternative hypothesis: true correlation is not eql
## 95 percent confidence 1interval:

## 0.2392982 0.4288759

## sample estimates: o
## cor
## 0.3375049

Blood Pressure

# confirm t value with hand calculation 128
tval <- pcorSestimate*xsqrt(335/(1l-pcor$esti
names (tval) <- c("");

tval

## .
## 6 . 562412 h Agetyears]-;entry

B0
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Analytical solution using R

templ <- cor.test(dfSageye, df$bpl, temp2 <- cor.test(dfSageye, df$bpil,
method = "kendall"); method = "spearman")

templ temp2

H# H#

#i Kendall's rank correlation tau #i Spearman's rank correlation rho

H# H#

## data: dfS$Sageye and df$bpl ## data: dfSageye and df$bpl

## z = 5.9674, p-value = 2.41e-09 ## S = 4369150, p-value = 3.355e-09

## alternative hypothesis: true tau 1is not equal #d# @lternative hypothesis: true rho is not equal t

## sample estimates: ## sample estimates:

## tau ## rho

## 0.2178494 ## 0.3150446
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Data visualization as a tool

Consider 4 separate datasets:

Anscombe's Quartet
dataset 1 dataset 2

0oz 4 B & 1 12 14 b2 4 B & 10 1z 14 18 18
x3 34

which given the same LR results... Would you assume the data sets are the same?
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which given the same LR results Would you assume the data sets are the same?

mdO<-lm(yl ~ x1, data=anscombe) md2<-1m(y3 ~ x3, data=anscombe)

round (summ(md®, confint = T)$"coeftable", 2 round (summ(md®, confint = T)$"coeftable", 2
## Est. 2.5% 97.5% t val. p ## Est. 2.5% 97.5% t val. p
## (Intercept) 3.0 0.46 5.54 2.67 0.03 ## (Intercept) 3.0 0.46 5.54 2.67 0.03
## x1 0.5 0.23 0.77 4.24 0.00 ## x1 0.5 0.23 0.77 4.24 0.00
md1l<-1lm(y2 ~ x2, data=anscombe) md3<-1lm(y4 ~ x4, data=anscombe)

round (summ(md®, confint = T)$"coeftable", 2 round (summ(md®, confint = T)$'"coeftable", 2
#it Est. 2.5% 97.5% t val. p ## Est. 2.5% 97.5% t val. p
## (Intercept) 3.0 0.46 5.54 2.67 0.03 ## (Intercept) 3.0 0.46 5.54 2.67 0.03
## x1 0.5 0.23 0.77 4.24 0.00 ## x1 0.5 0.23 0.77 4,24 0.00

Use ? 7anscombe to know about the datases

15762



Line Fitting

The deterministic relationship between X and Y, but IRL phenomena are stochastic or
probabilistic

e "Showing the mean of Y among local values of X is valuable, and can produce a highly
detailed picture of the relationship between X and Y. "

e Explore estimates of the mean Y conditional on values of X, with an assumed shape,

often a straight line.

The most common way of address this is witht the REGRESSION
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Regression with R

linear model syntax

Model formula;
response ~ predictor(s)

mod <- Im(tc2009 ~ low, data = crime)

The same syntax is used for all R models (Poisson, logistic, Cox, etc).
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Line Fitting (Example)

Y =60+ /X

mod@<- 1lm(bpl~ ageye, data = df) | Re03.p=2010 .
round (summ(mod®, confint = T)$"coeftable", * . .
#H Est. 2.5% 97.5% t val. p

## (Intercept) 126.38 125.60 127.16 320.35 0

## ageye 0.05 0.04 0.07 6.56 0

Blood Pressure

Y =126.4+ 0.06X

30 40 50 &0
Age (years) at entry
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Line Fitting (Example)

R=0.34,p=2e10

e Y =75+ X

e The mean of Y conditional on, X = 30
is:

Blood Pressure
i T

Y = 126.4 + 0.05(30)

=127.9

e The mean of Y conditional on a given
value of X would be 0.05 higher if you
instead made it conditional on a value
of one unit higher.

50
Age (years) at entry
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The statistical properties of OLS

Ordinary Least Squares (OLS) is the most well-known application of line-fitting.

e OLS picks the line that gives the lowest sum of squared residuals.

o Residual: difference between an observation’s actual value and the conditional mean
assigned by the line.

We determined that the conditional mean of Y when X = 30is 126.4 + 0.05(30) = 127.9,
but what if we observe X =30 and Y = 130.5?

e OLS — squared the difference of the observed and assigned/expected Y and adds all the
prediction in the data.

e Selects values on By and 31 inthe lineY = By + 81X that makes that sum of squared
residuals as small as possible.
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What we know about the OLS/LR

e Uses X to explain or predict Y
e OLS/LR gives the "best linear approximation" of the relationship between X and Y

e Pro: Efficient use of variation
* Pro: Straightforward explanation
e Con: We may lose some important variation

* Con: If we choose the wrong shape for the relationship, results aren't valid

 In an univariate/bivariate regression, the 81 a.k.a. slope is the covariance of X, Y divided
by the variance of X.

round ((cov(dfsageye, dfs$bpl))/var(df$ageye),2)

## [1] 0.05
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Assumptions ordinary linear regression

1. Alinear relationship between the independent and dependent variable
2. Independent errors
3. Normal distribution of errors

4. Homoscedasticity

The only thing that changes with Bayesian linear regression, is that instead of using MLE
to find point estimates for the parameters, we treat them as random variables, assign
priors for them, and use Bayes theorem to derive the posterior distribution.

So Bayesian model inherits these same assumptions, since it"s all about the likelihood

Basically, we are assuming that the likelihood function we've chosen is a reasonable
representation of the data
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Basic regression model assumptions (Mathematical)

* Developing a probabilistic model for linear regression with additive Gaussian errors
Y, = 5o+ b Xi + €

e Note, EY; | X; = z;] = u; = Bo + Piz; (linear relationship)
 Here the ¢; are assumed iid IV (0, 02) (independent errors, normally distributed)
e Note, Var(Y; | X; = x;) = o2 (variance assumed constant - homoscedasticity)

e Likelihood equivalent model specification is that the Y; are independent N (u;, o)

e Least squares is an estimation tool
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The error term

e There's going to be a difference between the line that we fit and the observation we get.

Hence,Yzﬁo+51X—>Y:BO+51X+ei

* Residual: difference between the prediction we make with our fitted line and the actual
value.

e Error: difference between the true best fit-line and the actual value.

o The error effectively contains everything that causes Y that is not included in the
model.
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Sampling variation

If we want to say that our OLS estimates of 37 will, on average, give us the population 31, then
it must be the case that X is uncorrelated with €

* Regression coefficients are estimates, and even though there’s a true population model out
there, the estimate we get varies from sample to sample due to sampling variation.

What is that normal distribution that the OLS coefficients follow?

InY = By + 51X + ¢, the coefficient 81 ~ N(B1, 1/0/(var(X)n))

n= nb of observations;

o=is the SD of ¢;

and the variance of X is var(X)
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How to reduce an OLS estimate’s sampling variation?

(1) Shrink the SD of the error term o, i.e., make the model predict Y more accurately.

(2) Pick an X with large variation

e an X that changes a lot makes it easier to check for whether Y is changing in the same
way.

(3) Use a big sample so n gets big.

How do we call this standard deviation of the error?

Standard Error
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Likelihood

so that the twice the negative log (base e) likelihood is

—2log{L(B,0)} = — Z )* + nlog(c?)

Discussion

e Maximizing the likelihood is the same as minimizing -2 log likelihood

e The least squares estimate for u; = By + B1x; is exactly the maximum likelihood estimate
(regardless of o)
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Interpreting the intercept

By is the expected value of the response when the predictor is 0

ElY|X =0] =8+ p1 x 0=

Note, this isn't always of interest, for example when X = 0 is impossible or far outside of
the range of data. (X is blood pressure, or height etc.)

Consider that
Yi=060+BiXi+e =0+ ab+Bi(X; —a) +e =By + Bu(Xi —a) +e

So, shifting you X values by value a changes the intercept, but not the slope.

Often a is set to X so that the intercept is interpreted as the expected response at the
average X value.
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Interpreting the slope

B is the expected change in response for a 1 unit change in the predictor

EY | X=2+1-EY | X=z|=8+Bi(z+1) — (Bo+ Biz) = b

Consider the impact of changing the units of X.

Y= Bot BiXi+ e = o+ L (Xia) e = o+ By(Xia) + e

Therefore, multiplication of X by a factor a results in dividing the coefficient by a factor of
a.

Example: X is height in m and Y is weight in kg. Then 1 is kg/m.

Converting X to cm implies multiplying X by 100cm /m. To get B; in the right units, we
have to divide by 100cm /m to get it to have the right units.

Xm x 2™ _ (100X)em and Bl% X —Am_ (ﬂ) kg

m 100em 100 cm
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Interpretation

##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#

MODEL INFO:
Observations: 337

Dependent Variable: bpl
Type: OLS linear regression
MODEL FIT:
F(1,335) = 43.07, p = 0.00
R? = 0.11
Adj. R? = 0.11
Standard errors:0OLS
Est 2.5% 97.5% t val p
(Intercept) 126.38 125.60 127.16 320.35 0.00
ageye 0.05 0.04 0.07 6.56 0.00
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What's the relationship between slope in LR and Pearson's r?
o E[Y|X:£B] = By + Bix

e Var(Y | X = z) = o?

e ML estimates of ﬂo and (1 are the least squares estimates
51—00 (Y X) 50 Y - 51

# standardize x & y, can do manually or easier with scale function
# perform LR with standardized data

df_std <- df %>% mutate(across(where(is.numeric), scale))

modl <- lm( bpl~ageye, df_std); #tidy(modl)

round (summ(modl) $"coeftable", 2)

#i Est. S.E. t val. p
## (Intercept) 0.00 0.05 0.00 1
## ageye 0.34 0.05 6.56 0

Once data is standardized then r = slope
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Simple regression models and Difference in Means

Estimating the mean is the same as regressing on a constant term

Generate some fake data & calculate the
mean and std error

set.seed(12345)

n_o0 <- 40

y_0 <= rnorm(n_0, 2.0, 5.0)
fake_0 <- data.frame(y_0)
mean (fake_03$y_0)

## [1] 3.200926

sd(fake_038y_0)/sqrt(n_0)

## [1] 0.8209468

Regression on a constant term

fit_0 <- lm(y_0 ~ 1, data=fake_0);
print(fit_0)

#H#
#H#
#H#
#H#
#H#
#H#
#H#

Call:
Im(formula =

Coefficients:
(Intercept)
3.201

y_0 ~ 1, data

fake_0)
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Estimating a difference Equivalent to regressing on an indicator variable

Add new group: 50 observations from N(8.0, Regression with indicator variable
5.0) Calculate the mean difference & std
error N <-n_0+n_1l;y <-c(y_0, y_1);

X <= c(rep(0®, n_0), rep(l, n_1))
fake <- data.frame(x, y)

set.seed(12345) fit <- Ilm(y ~ x, data=fake); print(fit)
n_l <- 50; y_1 <- rnorm(n_1, 8.0, 5.0)

diff <- base::mean(y_1l) - base::mean(y_0)

se_0 <- sd(y_0)/sqrt(n_0) i
se_1 <- sd(y_1)/sqrt(n_1); ## Call:
se <- sqrt(se_072 + se_1/2) ## Im(formula = y ~ x, data = fake)
print(c(diff, se)) #i

## Coefficients:

## (Intercept) X
## [1] 5.696905 1.129249 i 3 201 5 697
5.7 for the difference and 1.13 for its std The estimate of the slope, 5.7, is identical to
error, consistent with the simulation with the difference in means, 7; — 9o and the
expected true population difference = 6.0 intercept (3.2) = ¥
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Visual equivalence

Regression on an indicator is the same
as computing a difference in means

[
o -
L ]
[ ]
. :
[ ]
; i} |
21 ji=8.89 §
- - e H
w{ }  — y=320+570x :
A :
s yp=3.20
3
o] 4 :
: *
[ ]
m -
' |
0 1
Indicator, x

e For binary indicator, slope is the average difference in the outcome between the two group

e For continuous variable estimated slope is a weighted average of slopes for every possible

air of 2 points
P P 34 /62



SBP & BMI, what is your interpretation?

Blood Pressure

3I5
Increase age in BMI, increase Systolic Blood Pressure?
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Linear Regression / OLS outputs

fitl <- lm(bpl ~ bmi, data= df)
summary (fitl)

##

## Call:

## Im(formula = bpl ~ bmi, data = df)

H#

## Residuals:

## Min 1Q Median 3Q Max

## -3.2488 -0.7917 0.0489 0.7104 3.1221

H#

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 127.84876 0.44371 288.133 <2e-16 **xx*

## bmi 0.04541 0.01824 2.489 0.0133 x*

## ——-

## Signif. codes: 0 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 1.067 on 335 degrees of freedom

## Multiple R-squared: 0.01816, Adjusted R-squared: 0.01523
## F-statistic: 6.198 on 1 and 335 DF, p-value: 0.01328
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Linear Regression / OLS: Getting a more interpretable
intercept

fit2<- lm(bpl ~I(bmi -mean(bmi)), data=df); summary(fit2)

H#

## Call:

## Im(formula = bpl ~ I(bmi - mean(bmi)), data = df)

H

## Residuals:

## Min 1Q Median 3Q Max

## —-3.2488 -0.7917 0.0489 0.7104 3.1221

H

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 128.94386 0.05812 2218.636 <2e-16 *x*x%
## I(bmi - mean(bmi)) 0.04541 0.01824 2.489 0.0133 *
## ———

## Signif. codes: 0 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
H#

## Residual standard error: 1.067 on 335 degrees of freedom
## Multiple R-squared: 0.01816, Adjusted R-squared: 0.01523
## F-statistic: 6.198 on 1 and 335 DF, p-value: 0.01328

The intercept is now the average SBP at the average BMI. The slope is unchanged and
represents how much the SBP changes for a 1 unit increase in BMI. 37 /62



Interpreting regression results

summ(fit2, confint = T)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

MODEL INFO:
Observations: 337

Dependent Variable: bpl
Type: OLS linear regression
MODEL FIT:
F(1,335) = 6.20, p = 0.01
R? = 0.02
Adj. R? = 0.02
Standard errors:0LS
Est 2.5%
(Intercept) 128.94 128.83
I(bmi - mean(bmi)) 0.05 0.01

2.49
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R-squared

(var(dfs$bpl) - summary(fit2)$sigmar2)/var(dfsbpl)
## [1] 0.01523312

cor (dfsbpl, df$bmi)Ar2

## [1] 0.01816397

Bluntly speaking, the R-squared is comparing a meaningful measure (residual variation)
to a meaningless one (the total variation), and therefore it becomes meaningless, and so
should be avoided.

t-statistic (coefficient divided by the standard error); t-distribution with n - 2 degrees of
freedom. NHT, Hy : 81 =0

F-statistic: A statistic for NHT, H = all the coefficents in the model (except the
intercept/constant) = 0, at once, and tests how unlikely results are given that null.
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Standardized variables

fit3 <- Im(bpl ~ bmi + ageye + fat + fibre, data= df)

#summary (fit3)
round (summ(fit3)$"coeftable", 3)

##
#H#
##
#H#
##
#H#

How to make regression coefficients comparable?

Est. S.E.
(Intercept) 125.376 0.640
bm-i 0.058 0.018
ageye 0.052 0.008
fat -0.012 0.025
fibre -0.155 0.109

t val.

195.
3.
6.

-0.
-1.

841
224
546
472
429

1 population standard deviation.

[l ol oNOoNO

P

.000
.001
.000
.637
.154

 "Scale" coefficients by the (study) population standard deviation ( X /sd(X) )

e Effects interpretable as effects per population standard deviation, i.e., the change in Y per
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Standardized variables

fit3a <- lm(bpl ~ bmi + I(ageye/ sd(ageye) ) + I(fat/sd(fat, na.rm=T)) +
I(fibre/sd(fibre, na.rm=T)), data= df)

#
r

##
##
##
##
##
##

summary (fit3a)
ound (summ(fit3a)$"coeftable", 3)

Est.
(Intercept) 125.376
bmi 0.058
I(ageye/sd(ageye)) 0.365
I(fat/sd(fat, na.rm = T)) -0.028
I(fibre/sd(fibre, na.rm = T)) -0.087

[l oNoNoNO)

S.E.
. 640
.018
.056
.060
.061

t val. p
195.841 0.000
3.224 0.001
6.546 0.000
-0.472 0.637
-1.429 0.154

e Note that T-statistics and p-values remain the same, only (re)scaled the coefficients

There is no guarantee that the relative sizes
of the population sd's of variables are
constant across populations. Hence,
comparisons of standardized effects do not
apply to other study populations.
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Predictions from the normal regression model

e If we would like to guess the outcome at a particular value of the predictor, say X, the
regression model guesses

Bo+ 81X
* Note that at the observed value of X, we obtain the predictions
/17; — Yz' — BO _|’/81Xi

e Remember that least squares minimizes

> (Y — )

=1

for u; expressed as points on a line
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Predicting some SBP as a function of BMI

Numerical predictions

1. Select the values of X to predict values of Y’
2. Use the OLS regression results to estimate the prediction
o Substituting into the equation

o Using the pred-ict functioninR

newx <- c(20, 30, 35) # predict using the predict function
#predict by substituting into the equation predict(fitl,

coef(fitl)[1] + coef(fitl)[2] * newx newdata = data.frame(bmi = newx))
## [1] 128.7569 129.2110 129.4381 H# 1 2 3

## 128.7569 129.2110 129.4381
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Predicting some SBP as a function of BMI: Graphical display Some R code

new_df <- data.frame(bmi= newx, bpl = predict(fitl, newdata = data.frame(bmi = newx)))

gg_reg_mean + geom_point() +
geom_point(data=new_df, aes(x=bmi, y=bpl), color="red", size=4) +
geom_segment (aes (x 20, y = 125, xend = 20, yend 128.76), colour = "red") +
geom_segment(aes(x = 30, y = 125, xend = 30, yend 129.2), colour = "red") +
geom_segment (aes (x 35, vy 125, xend = 35, yend 129.44), colour = "red")

Blocd Pressure

BMI

44 /62



Categorical explanatory variables

Cloud figure of SBEP by Categorical EMI

132 4

1301

SRP

1284

tetnos bell ki d!.!ﬂ:ﬁh!!ﬂ REE TINEN
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126 1

Heslthy Welght Underwelght Oibesity Severe Obeslly
BMI
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Categorical explanatory variables

Using the categorical status

fit4 <- Im(bpl ~ as.factor(bmicat), data= df)
#summary (fit4)
summ(fit4)

#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##

MODEL INFO:

Observations: 337

Dependent Variable: bpl
Type: OLS linear regression

MODEL FIT:
F(3,333) = 4.16, p = 0.01
R2 = 0.04

Adj. R? = 0.03

Standard errors:0LS

Est S.E. t val
(Intercept) 128.82 0.08 1687.86
as.factor (bmicat)1 0.58 0.33 1.76
as.factor(bmicat)2 0.19 0.12 1.56
as.factor(bmicat)3 0.92 0.30 3.02
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Categorical explanatory variables

Using the categorical status and removing the intercept

fit4a <- lm(bpl ~0 + as.factor(bmicat), data= df)
#summary (fit4a)
summ(fit4a)

#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##

MODEL INFO:

Observations: 337

Dependent Variable: bpl
Type: OLS linear regression

MODEL FIT:

F(4,333) = 1245985.42, p = 0.00
R2 = 1.00

Adj. R2 = 1.00

Standard errors:0LS

Est S.E t val p
as.factor(bmicat)0 128.82 0.08 1687.86 0.00
as.factor (bmicat)1 129.40 0.32 404.76 0.00
as.factor(bmicat)2 129.01 0.10 1332.90 0.00
as.factor(bmicat)3 129.74 0.29 441.18 0.00
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Collinearity

fits <- lm(bpl ~ bmi + ageye + fat +

energy, data= df)

round (summ(fit5)$"coeftable", 3)

#H#
##
#H#
##
#H#
##

round (summ(fit5, confint = T)$"coeftable",

##
#H#
##
#H#
##
#H#

Est.

(Intercept) 125.666

bmi
ageye
fat
energy

0.
0.
0.
-0.

056
051
028
033

Est.

(Intercept) 125.666

bmi
ageye
fat
energy

0.
0.
0.
-0.

056
051
028
033

S.E.
.668 1
.018
.008
.042
.023

[l oM oMo

2.5%
124.352
0.022
0.035
-0.054
-0.078

t val.
88.107
3.202
6.424
0.675
-1.487

[l o oNOoNO]

97.5%
126.981
0.091
0.066
0.110
0.011

P

.000
.001
.000
.500
.138

t val.

188.
3.
6.
0.

-1.

107
202
424
675
487

[l oNoNoNO)

df2<-df %>%

P

.000
.001
.000
.500
.138

select(bpl, weight, bmi,
fat, energy)
GGally: :ggpairs(df2)

ABsaus
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Collinearity

fit5a <- lm(bpl ~ bmi + ageye + energy, data= df)
round (summ(fit5a, confint = T)$"coeftable", 3)

##
##
##
##
##

(Intercept) 125.641 124.330

bmi
ageye
energy

Est. 2.5%
0.057 0.022
0.051 0.035

-0.021 -0.046

97.5%
126.952
0.091
0.066
0.004

t val.

188.516 0.
3.251 0.
6.471 0.
-1.640 0.

fitsb <- lm(bpl ~ bmi + ageye + fat, data= df)
round (summ(fit5b, confint = T)$"coeftable", 3)

#H#t
#H#
#H#t
#H#
#H#t

(Intercept) 125.343 124.098

bmi
ageye
fat

Est. 2.5%
0.054 0.020
0.052 0.037

-0.023 -0.070

97.5%
126.588
0.089
0.068
0.024

t val.

198.064 0.
3.097 0.
6.649 0.
-0.962 0.

000
001
000
102

000
002
000
337

49/62



Interpreting coefficients on transformed variables

fit6 <- lm(bpl ~ bmi + ageye +energy + log(weight), data= df)
round (summ(fit6, confint = T)$"coeftable", 3)

##
##
##
##
##
##

SBP increases 1.3 mmHg for a 10% increase in weight

Est. 2.5%
(Intercept) 121.374 116.436
bmi 0.005 -0.062
ageye 0.052 0.037
energy -0.024 -0.050
log(weight) 1.297 -0.150

e Transforming explanatory variables will produce absolute effects of the response variable
for a relative change of the explanatory variable.

* The size of the relative change reflected in the parameter estimate is determined by the

base of the logarithm used.

97.5% t val.

126.
0.
0.068
0.
2.745

312
072

001

48.351
0.158
6.632

-1.898
1.763

[l oM oNOoNO)

P

.000
.874
.000
.059
.079
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For each variable A

|

Do you want to know the

effect of something on A?

| o

Do you want to know the

effect of A on something?

[ ~o

Are there any open paths
between A and Y?

| o

Leave it out!

I Yes

Will controlling for A ruin

the identification?

o

Maybe add A as a predictor
to reduce residual variance

and thus standard errors

Add A as an interaction.

Y= Bo+B X+p, A+ XxA+e

Yes

Yes

No,

Yes

Yes

Constructing a Regression Equation From The Effect

A is the dependent variable

A= Bot+PX+e

A 1s the treatment

Y=.60+51A+€

Should A be controlled for
to identify the effect of X
on Y? (closes a back door

path and isn’t post-

treatment/a collider)

lYes

Add A as a control variable

to close a back door

!

Should the effect of X on Y
differ across values of A?

No

Y=0Bo+ X +pA+¢
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https://theeffectbook.net/ch-StatisticalAdjustment.html#turning-a-causal-diagram-into-a-regression

Diagnostic Plots

Consider this:

fit7 <- lm(bpl ~ as.factor(bmicat) + ageye Plot Residuals vs fitted and Q-Q plots
round (summ(fit7)$"coeftable", 3)

plot(fit7, which=1:2)

#it Est. S.E. t val. p

## (Intercept) 119.856 2.473 48.470 0.000

## as.factor(bmicat)l 0.646 0.343 1.883 0.061 . -
## as.factor(bmicat)2 -0.076 0.155 -0.488 0.626 .

## as.factor(bmicat)3 0.268 0.346 0.774 0.439 ]

## ageye 0.050 0.008 6.387 0.000 i

## energy -0.022 0.013 -1.690 0.092

## log(weight) 1.687 0.588 2.871 0.004 )

Fitted values
Im(bp1 ~ asfactor(bmicat) + ageye + energy + log(weight))

o

nnnnnnnnnnnnnnnnnnnn
Im(bp1 ~ asfactoribmicat) + ageye + energy + log(weight))
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Summary

Regression is a mathematical tool for making predictions and comparisons
Regression coefficients can always be interpreted as average comparisons
Regression coefficients can always be used for predictions

But, regression coefficients can only sometimes be interpreted as effects, depending on
your causal model
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QUESTIONS?

COMMENTS?
RECOMMENDATIONS?
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Extra slide:

Code for the cloud figure (slide 45):

ggl <- ggplot(df, aes(x = bmicatl, y = bpl)) + ## add half-violin from {ggdist} package
ggdist::stat_halfeye(## custom bandwidth
adjust = .5, ## adjust height
width = .6, ## move geom to the right

justification = -.2, ## remove slab interval
.width = 0,
point_colour = NA
) +
geom_boxplot(
width = .12, ## remove outliers

outlier.color = NA ## ‘outlier.shape = NA" works as well
) + ## add dot plots from {ggdist} package
ggdist::stat_dots(## orientation to the left
side = "left", ## move geom to the left
justification = 1.1, ## adjust grouping (binning) of observations
binwidth = .05) + ## remove white space on the left
coord_cartesian(xlim = c(1.2, NA)) +
geom_hline(yintercept=130, color = "red", size=2)+ theme_classic()
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Bayesian Linear Regression
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Four key steps for Bayesian modeling

Guide for the fundamentals of both single-level and hierarchical linear regression modeling

Can use Stan and front end rstanarm package (brms is good alternative)

Detailed vignettes can be found here

e Step 1 Specify the data model and prior - Prior likelihood o< posterior
-*Step 2 Estimate the model parameters - Bayes theorem typically involves using a
numerical algorithm to draw a representative sample from the posterior distribution

e Step 3 Check sampling quality and model fit - Graphical and numerical checks are
necessary, if fails go back to Step 1

e Step 4 Summarize, interpret results - Make posterior predictions

For some simple models, analytical (closed-form ) solutions are possible

Almost all non-trivial models the full posterior has to be approximated numerically by sampling
(simulating draws) based on Markov Chain Monte Carlo algorithms

If you have 1 hour check out this video to really understand MCMC
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http://mc-stan.org/rstanarm/articles/
https://www.publichealth.columbia.edu/research/population-health-methods/markov-chain-monte-carlo
https://www.youtube.com/watch?v=Qqz5AJjyugM

Linear regression (Bayesian)

Can also use brms package as the font end and get the same results

library(brms)
fit_1b <- stan_glm(bpl ~ bmi, data=df, seed=123, refresh = 0)
print(fit_1b, digits=2)

#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t
#H#
#H#t

stan_glm
family: gaussian [identity]
formula: bpl ~ bmi
observations: 337
predictors: 2
Median MAD_SD
(Intercept) 127.84 0.45

bm-i 0.05 0.02

Auxiliary parameter(s):
Median MAD_SD
sigma 1.07 0.04

* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
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Default priors

stan_glm uses default weakly informative priors seen with prior_summary (model)

prior_summary (fit_1b)

#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#
##
#H#

Priors for model 'fit_1b'

Intercept (after predictors centered)
Specified prior:

~ normal(location = 129, scale = 2.5)
Adjusted prior:
~ normal(location = 129, scale = 2.7)

Coefficients
Specified prior:

~ normal(location = 0, scale = 2.5)
Adjusted prior:
~ normal(location = 0, scale = 0.84)

Auxiliary (sigma)
Specified prior:

~ exponential(rate = 1)
Adjusted prior:
~ exponential(rate = 0.93)

See help('prior_summary.stanreg') for more details
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Priors

Priors are often viewed as the Achilles' heel of Bayesian analyses.

Personally, they can be a strength as they allow the incorporation of prior knowledge, are
entirely transparent and are updated by the current data following the uncontested laws of
probability.

Bayesian analyses are sometimes done using flat or non-informative priors to allow final
results to be completely dominated by the data.

This is rarely a good idea

For example, using the prior 8 = N(0, o = 500) produces some strange beliefs
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Non-informative priors are rarely a good idea

Consider one such non-informative prior N(0,500)

## [1] "Pr(-250 < theta < 250) = 0.38"

How could this represent anyone's serious prior beliefs
Some prior information usually available. Even if nothing to suggest a priori that a coefficient
will be + or -, almost always can suggest that different orders of magnitude are not equally

likely.

vague rather than non-informative priors are the default priors in most packages and should

be used unless specific informative priors are available
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Same results with OLS

Since there are 1,000 data points the priors probably contribute very little.
Therefore may expect to get the same numerical results with standard linear regression using
1m function

fit_2 <= lm(bpl ~ bmi, data=df)
print(fit_2, digits=2)

##

## Call:

## Im(formula = bpl ~ bmi, data = df)
H

## Coefficients:

## (Intercept) bm-i

## 127.849 0.045

Same results as with the Bayesian approach
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