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Have you met Euler?
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Expected competencies

e Knows when logistic regression analysis is needed (Questions and type of data).
e Can describe the logistic regression model, (assumptions & implications).
e Knows the relationship between ORs and Logistic regression coefficients.

e Knows how a statistical package is used to fit a logistic regression model to continuous
and categorical predictors.

o Interpret logistic regression model output, and assess model's fit.

Obijectives

e To review core concepts of logistic regression
e Provide tools to improve the inference when assessing binary outcomes

e Illustrate advantages of Bayesian inference.
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Have you met Euler?
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Eulers' number a.k.a.' e'is a numerical constant
2.7182818...

Described under logarithm concepts & it's basically the base of the natural logarithm.

Mostly used to represent the non-linear increase or decrease of a function.

In R we use the expression exp ()
el = exp(1) =2.7182818; €’ = exp(0) = 1 & €* =0 4752



Basic math - review of logarithms

Laws of Exponents:
e . ef = e2th
() = e
where e and (8 can be any real numbers and be any positive real number
Logarithms:
e =N
The value of x which solves this equation is written as:

x = loge N

The right-hand side is expressed as “log to the base e of N”
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Basic math

Other manipulations
log-M + log.N = log.(MN)
loge M — log.N = log.(M/N)
loge(M™) = N -log.(M)

The purpose of these early logarithmic tables was to take advantage of the law of exponents in
order to avoid messy multiplications in the era before electronic calculators.

e Any positive base is possible for logarithms. For example, the exponential equation
43 = 64 can be written in terms of a logarithm as log,(64) = 3

e In practice, the only bases that actually get used to any extent are 10 (“common

logarithms”, written as Logl10(x) ) and e = 2.71828 ("natural logarithm", log(x)) <
Euler's
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Predicting categorical outcome data

Linear Regression Logistic Regression
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Spam filters

e Data from 3921 emails and 21 variables
on them contained in openintro
package

* Outcome: whether the email is spam or
not

e Predictors: number of characters,
whether the email had "Re:" in the
subject, time at which email was sent,
number of times the word "inherit"
shows up in the email, etc. Can use
glimpse(email) or ‘srt(email) to see
the dataset

Characteristic
spam

0

1
num_char
re_subj

0

1
to_multiple

0

1
urgent_subj

0

1

winner

Attrarh

N = 3,921’

3,554 (91%)
367 (9.4%)
6 (1, 14)

2,896 (74%)
1,025 (26%)

3,301 (84%)

620 (16%)

3,914 (100%)
7 (0.2%)
64 (1.6%)

NNND I(NNN N NN
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Spam filters

Would you expect longer or shorter emails to be spam?

plotspam<- email %>% t<-email %>% group_by(spam) 2%>%

ggplot(aes(x = num_char, y = spam, fill summarise(mean_num_char = mean(num_char))
geom_density_ridges2(alpha = 0.5) + kable(t)
labs(x = "Number of characters (in thousa

y = "Spam", title = "Spam vs. number of
guides(color = FALSE, fill = FALSE) + spam mean_num_char
scale_fill_manual(values = c("#89CFFo", "
scale_color_manual(values = c("#0096FF", 0 11.250517

plotspam
1 5.439204

Spam vs. number of characters

Spam vs. "re:" in subject

Spam

| K
025
0 I
0

Spam

0 1
Whether “re:”, "RE:", etc. was in the email subject.

50 100 150 200
Number of characters (in thousands) 9 / 52



Modelling spam

e Both number of characters and whether the message has "re:" in the subject might be
related to whether the email is spam.

How do we come up with a model that will let us explore this relationship?

e For simplicity, we'll focus on the number of characters (num_char) as predictor, but the
model we describe can be expanded to take multiple predictors as well.
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Modelling spam

Let's first look at the data

means <- email %>%
group_by (spam) %>%
summarise(mean_num_char = mean(num_char)) N
mutate(group = 1)
Spam
g <- ggplot(email, aes(x = num_char, § 0
y = spam, color = spam)) + !
geom_jitter(alpha = 0.2) +
geom_Lline(data = means, °]
aes(x = mean_num_char, y = spam, group =
color = "green", size = 1.5) +
labs(x = "Number of characters (in thousa 0 NﬁmmmcmmmggmﬂmmmMQ%
scale_color_manual(values = c("#0096FF",
#guides (color = FALSE)+ This isn't something we can reasonably fit a
theme_bw () linear model to, we need something
different!
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Framing the problem

e We can treat each outcome (spam and not) as successes and failures arising from separate
Bernoulli trials

o Bernoulli trial: a random experiment with exactly two possible outcomes, "success"
and "failure", in which Pr(success) is the same every time the experiment is conducted

o Each Bernoulli trial can have a separate probability of success

y; ~ Bern(p;)

e We can then use the predictor variables to model that probability of success, p;

e We can't just use a linear model for p; (since p; must be between 0 and 1) but we can
transform the linear model to have the appropriate range
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Example:

How many heads from 20 flips of a fair coin rbinom(20,1,.5) for reproducibility need set. seed
(704)

set.seed(704)
samplel <- rbinom(20,1,.5) #<< 20 = nO tries, 1 = sample size (Bernoulli), 0.5 probability e

samplel

## [1] 1011100011111 0011011
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Sequential learning

Here is the sequence of data outcomes (0/1) of 20 trials with p = 0.5

Graphically our sequential learning process
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Generalized linear models

e This is a very general way of addressing many problems in regression and the resulting

models are called generalized linear models (GLMs)
e Logistic regression is just one example

e Other examples

Choice of Link g | Choice of Distribution  Expression Resulting Form:
Identity function g(u)=u Gaussian (normal) E(Y|x) = a+pix Linear regression
Logit function Bernoulli (binomial) logit[E(Y|x)] = a+B1x  Logistic regression
Complementary log-log Bernoulli (binomial) cloglog[E(Y|x)] = Complementary
g(u) = [In(-In(1-u))] a+Pix log-log regression
Probit function Bernoulli (binomial) O [E(Y|x)]=a+Bix  Probit regression
Natural log Poisson In[E(Y[x)] = a+Pix Poisson regression
Natural log Bernoulli (binomial) In[E(Y[x)] = a+Pix Binomial regression

e What is the difference btw the last 2 equations?
e Last equation gives risk ratio for binary outcomes.

e (Can also use identity function E(Y=1|X) for risk differences
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Three characteristics of GLMs

All GLMs have the following three characteristics:

1. A probability distribution describing a generative model for the outcome variable

2. Alinear model:

n=Bo+ B X1+ -+ B Xy

3. Alink function that relates the linear model to the parameter of the outcome distribution
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R linear syntax

linear model syntax

Model formula:
response ~ predictor(s)

mod <- Im(tc2009 ~ low, )

The same syntax is used for all R models (Poisson, logistic, Cox, etc).

Default link for linear regression is the identity function (Gaussian distribution)
Logistic model link most often is logit function and binomial distribution

e Standard logistic model -> glm(model formula, data, family = "binomial")

e Bayesian logistic model -> rstanarm::stan_glm(model formula, data,
family=binomial(link="logit"))

e Bayesian logistic model -> brms::brm(model formula, data,
family=binomial(link="logit"))
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Logistic regression

e Logistic regression is a GLM used to model a binary categorical outcome using numerical
and categorical predictors

e To finish specifying the Logistic model we just need to define a reasonable link function
that connects 7); (linear outcome variable) to p; -> logit function

e Logit function: For) < p <1

logit(p) = log(lL) = log(Odds)

— P

. logit(p) vs. p
d <- tibble(p = seq(0.001, 0.999,

length.out = 1000)) %>%
mutate(logit_p = log(p/(1-p))) a-
g <- ggplot(d, aes(x = p, y = logit_p)) +
geom_line() + xlim(0,1) +
ylab("logit(p)") +
labs(title = "logit(p) vs. p")

logit(p)

0.00 025 0.50 0.75 1.00
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Properties of the logit and logistic (inverse logit) functions

Logit function takes a value between 0 and 1 and maps it to a value between —oo and oo

logit(p) = log(lp%p> = o+ fiz

e Take the inverse of the above equation, applies (exp) to both sides to get the inverse logit
function, AKA logistic or expit functions:

p — ewp(]{-i-ﬂlﬂf

1—p

e Rearranging leads to

_ _eap™” € (0, 1) or equivalently p = . € (0,1)
p= 1+exp®the ? q yp= ltexp (*+017) ,

* The above is the logistic function & takes a value between —oo & oo and maps it to a
value between 0 & 1, a probability.
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Properties of the inverse logit or logistic function:

Logit is interpreted as the log odds of a success & inverse logit gives the probability of success.

B exp®TH®
P=7 + expethz <01
Ifp=P(D=1] X=x),whatisP(D=0 | X =x)?
1
P(D=0|X=12) = € (0,1)
1 + expothiz
Facilitates the development of the logit model
exp®th1e
Odds — P(D — 1|X — :U) _ 14-expth® _ ea:poﬂ_ﬁlw
PD=0X=2) _ 1 _
1+expa+/31x

Taking logs of both sides

P(D=1|X =z)
P(D=0|X =z)

log( ) = log(Odds) = logit = o + Pix
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The logistic regression model

Based on the three GLM criteria we have

e y; ~ Bern(p;)
e 1 =B+ Bix1;i + -+ Bpn
o logit(p;) = n;

e fitis done with maximum likelihood and not minimizing the sum of squared residuals,
actually there are no residuals!

L(success) =7

L(failure) =1—=

n

L(model) = HL(yZ)

1=1

e Likelihood values are often very small, one reason to use log-likelihood.
* Log likelihood is always negative as the likelihood is always between 0-1.

e Best fit is smallest value (i.e closest to 0) 21/52



Likelihood Ratio Test (LRT)

Here, our goal is to compare the log-likelihoods of two models: the one we build vs. the
constant model.

Similar to comparing the sum of the squares explained by a LR model to the model that
consists solely of the grand mean.

The null hypothesisinthe LRTisthat 8; = B39 = --- = 8, = 0.

The alternative hypothesis is that at least one of these coefficients is non-zero. The test statistic
is:

G = —2log(constant model) — (—2 log(model))

These two quantities are known as deviances. It can be shown that G follows a x? distribution
with k degrees of freedom (k=no. of parameters in the model).
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Likelihood Ratio Test (LRT)

Spam example - model GLM (same format as LR except)

e use "glm" instead of "1m"

e define family = "binomial" for the link function

mod <- glm(spam ~ num_char, data = email, family = "binomial")
jtools::summ(mod, confint=T, exp=T, digits = 3, model.info = F, model.fit = F)

exp(Est.) 2.5% 97.5% zval. P
(Intercept) 0.166 0.144 0.190 -25.135 0.000
num_char 0.940 0.925 0.955 -7.746 0.000
Standard errors: MLE

logLik(mod)
## 'log Lik.' -1173.201 (df=2)
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Likelihood Ratio Test (LRT)

library(lmtest)

lrtest(mod)

## Likelihood ratio test

H#

## Model 1: spam ~ num_char

## Model 2: spam ~ 1

#H #Df LoglLik Df Chisq Pr(>Chisq)

## 1 2 -1173.2

H# 2 1 -1218.6 -1 90.779 < 2.2e-16 *x*x%
H# ——-

## Signif. codes: 0O '*x*x' 0.001 'xx' 0.01

Model is improved with the addition of the num_char variable

l*l

0.05

0.1

1
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The logistic regression model

3 spaces to consider

* |ogistic space - for 1 unit change in x -> linear change in 31 (change in log odds)

e odds space - for 1 unit change in x -> = e multiplier -> (change in odds ratio)

ebre

e probability space - for 1 unit change in x -> no nice sentence to describe the change since
non-linear function but intuitively easier to understand

B exp(Bo + Biz1i + -+ + BrTr,;)
1+ exp(Bo + fiz1i + - + Brxk,i)

Di 65(071)
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Odds space

el is the multiplier for for 1 unit change in x (odds ratio - constant change)
Consider predicting spam based on inclusion of the term winner

two.way <- table(email$winner, email$spam); two.way <- two.way[c(2,1),] #changing row order
kable(two.way); mosaic::oddsRatio(two.way)

0 1
yes 44 20
no 3510 347
## [1] 4.597852
mod <- glm(spam ~ winner, data = email, family = "binomial"); exp(coef(mod))

## (Intercept) winneryes
H# 0.0988604 4,5978517

This shows that OR calculated from 2X2 table = exp(8) from logistic model
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Spam model

#Usual model approach
spam_fit <- glm(spam ~ num_char, data = email, family = "binomial")
jtools: :summ(spam_fit, digits=3, confint=T, model.info = F, model.fit = F) #use summary(spam

Est. 2.5% 97.5% zval. p
(Intercept) -1.799 -1.939 -1.658 -25.135 0.000
num_char -0.062 -0.078 -0.046 -7.746 0.000
Standard errors: MLE
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Prediction

P(spam) for an email with 2000 characters
Model:

1og(L) — —1.80 — 0.0621 x num_char

1-p
log( -~ ) =-1.80-0.0621* 2 = -1.9242
1-p

L = exp(—1.9242) =0.15— p = 0.15 x (1 — p)
p=0.15 — 0.15p — 1.15p = 0.15

p = 0.15/1.15 = 0.13
Somewhat easier with less calculations
rstanarm::invlogit(-1.924)

## [1] 0.1274162
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Prediction

What is the probability that an email with 15000 or 40000 characters is spam?

# General formula from tidymodels

spam_fit <- Tlogistic_reg() %>% set_engine("
fit(spam ~ num_char,
family="binomial", data = email)
newdata <- tibble(num_char = c(2, 15, 40),
color= c("#7CB9E8", "#E25822",
shape = c(22, 24, 23))

y_hat <- predict(spam_fit, newdata, type =
p_hat <- exp(y_hat) / (1 + exp(y_hat))

newdata <- newdata %>%
bind_cols(y_hat = y_hat,p_hat = p_hat)

spam_aug <- augment(spam_fit$fit) %>%
mutate(prob =
exp(.fitted) / (1 + exp(.fitted))

Spam vs. number of characters

14 aEmne ®0 » °

Spam

= S

° ?\lloumber of charact;(rl)g (in thousands) B
e 2K chars: P(spam)=10.13
e 15K chars, P(spam) = 0.06
® 40K chars, P(spam) = 0.01
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Prediction

e The mechanics of prediction is easy:

o Plug in values of predictors to the model equation

o Calculate the predicted value of the response variable, ¢
e Getting it right is hard!

o There is no guarantee the model estimates you have are correct

o Or that your model will perform as well with new data as it did with your sample data
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Underfitting and overfitting

=== Underfit

=== Qverfit
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Sensitivity and specificity
We already learned how to compare models using the deviance, but how do we know how well
our model works?

One techinque for assessing the goodness-of-fit in a logistic regression model is to examine
the percentage of the time that our model was right.”

Email is spam Email is not spam
Email labelled spam True positive False positive (Type 1 error)

Email labelled not spam False negative (Type 2 error) True negative

e Sensitivity = P(Labelled spam | Email spam) =TP /(TP + FN)
o Sensitivity = 1 - False negative rate =1 - (FN /(TP + FN) )
e Specificity = P(Labelled not spam | Email not spam)=TN / (FP + TN)

o Specificity = 1 - False positive rate =1 - (FP / (FP + TN))
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Classification

modl <- glm(spam ~ ., data = email, family = "binomial") #full model
email <- email %>%
mutate(fitted = fitted.values(modl)) %>%
mutate(fitspam = ifelse(fitted >= 0.5, 1, 0))
tbl <- table(email$spam, email$fitspam)
tbl

#H#

#H# 0 1
#H# 0 3521 33
#H# 1 299 68

sum(diag(tbl)) / nrow(email)

## [1] 0.9153277

Model is correct 91.5% of the time
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Accuracy of other models

Average spam risk of the null model

av_risk <- sum(as.numeric(email$Sspam==1)) /
email <- email %>%
mutate(fitspam= sample(c(0,1), size=3921,
replace=TRUE, c(l-av_risk, av_risk)
table(email$spam, email$fitspam)

##

## 0 1
## 0 3267 287
## 1 329 38

(table(email$spam, emailS$fitspam)[1,1] +
table(email$spam,
emailsfitspam)[2,2]) / nrow(email)

## [1] 0.8428972

model accuracy = 82%

Model probability as coin toss

email <- email %>% mutate(fitspam= sample(c
size=3921, replace=TRUE))
table(email$spam, email$fitspam)

#H#

#H# 0 1
#H# O 1809 1745
#H#t 1 188 179

(table(email$spam, emailS$fitspam)[1,1] +
table(email$spam,
emailsfitspam)[2,2]) / nrow(email)

## [1] 0.5070135

model accuracy = 50%
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Trade-offs

If you were designing a spam filter, would
you want sensitivity and specificity to be
high or low?

library (rsample) # get initial_split, trai
email_split <- dinitial_split(email, prop =
# Create data frames for the two sets:
train_data <- training(email_split)
test_data <- testing(email_split)
email_fit <- logistic_reg() %>%
set_engine("glm") 9%>%
fit(spam ~ ., data = train_data,
family = "binomial")
email_pred <- predict(email_fit, test_data,
type = "prob") %>%
bind_cols(test_data %>%
dplyr::select(spam, time))

What are the trade-offs associated with each
decision?

email_pred %>%
roc_curve(truth = spam, .pred_1, event_le

0.75

sensitivity
o
3

o

)

s
L

000{ +

T T T T T
0.00 0.25 0.50 0.75 1.00
1 - specificity

email_pred %>% roc_auc(truth = spam,.pred_1

## # A tibble: 1 x 3

H# .metric .estimator .estimate
H# <chr> <chr> <dbl>
## 1 roc_auc binary 0.875
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Types of logistic regression

The three types of logistic regression

1. Binary logistic regression - What we have been doing

2. Multinomial logistic regression - When we have multiple outcomes, e.qg. predict whether
someone may have the flu, an allergy, a cold, or COVID-19

3. Ordinal logistic regression - When the outcome is ordered, e.g. determine the severity of a
COVID-19 infection, sorting it into mild, moderate, and severe cases

For what it's worth, in machine learning (ML) supervised learning is used to classify
something or predict a value, and logistic regression is a common classifier used ML
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IIlustration of reproducing results and more...

A recent paper in the NEJM concluded that "In patients with refractory out-of-hospital cardiac
arrest, extracorporeal CPR and conventional CPR had similar effects on survival with a favorable
neurologic outcome”.

Survival with Favorable Neurologic Outcome at 6 Mo

1001
. T OR, 1.3 (95% Cl, 0.5-3.3)
T 40
2
©
o 304
o
Y 20
g 20 16
E 14/70
S 10- 10/63
o

0- L : .
Extracorporeal CPR Conventional CPR

Two questions

1. Can we reproduce the analysis?
2. Accepting the authors' analysis, do we accept their conclusion of similar effects?
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https://www.nejm.org/doi/full/10.1056/NEJMoa2204511

Illustration of reproduction of results

Given the use of OR, the analysis was most likely been a logistic regression with the binary

outcome of success / failure at 180 days.

# simulate dataset - one line per individual
dat <- data.frame(trt = 1:133 > 63, #0 = control, 1 = extracorporeal
# time sample(1:180, size = 133, replace = TRUE),
event = c(1:63 < 11, 1:70 < 15)) %>%
mutate(trt = ifelse (trt=="FALSE", 0, 1),event = ifelse (event=="FALSE", 0, 1))
fit <- glm(event ~ trt, data = dat, family = binomial(link="1logit"))

7f wanted to simulate a

Log-Odds Coefficients Exponentiated coefficients which
reproduces the NEJM results.

Est. S.E. zval. p

4.8 0.0 exp(Est.) 2.5% 97.5% valz p

(Intercept) -1.7 0.3

trt 0.3 05 0.6 05
(Intercept) 0.19 0.10
1.33 0.54 3.24 0.62 0.54

0.37 -4.84 0.00

Standard errors: MLE
trt
Standard errors: MLE
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IIlustration of reproduction of results

A simpler approach is to use the aggregated data and apply a weight argument within the
glm function which gives the exact same answer as expected.

# create data frame
datl <- tibble(Trial = c("INCEPTION", "INCEPTION"), Tx = c("cCPR", "eCPR"),
fail = c(53, 56), success = c(10,14)) %>%
mutate(total = fail + success, prop_success = success / total)
fitl <- glm(prop_success ~ Tx, data = datl, family = binomial(link="T1logit"), weights = total

Log-Odds Coefficients Exponentiated coefficients

Est. S.E. zval. p jtools::summ(fitl, confint=T, exp=T, digits

(Intercept) -1.7 0.3 -4.8 0.0
TxeCPR 0.3 0.5 0.6 0.5

y4
0, (V)
exp(Est.) 2.5% 97.5% val. P

Standard errors: MLE (Intercept) 02 0.1 0.4 -48 0.0
TxeCPR 1.3 05 32 06 0.5

Standard errors; MLE
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lllustration: Reproduction of Results, using the Bayesian
approach

Here are 4 methods which all give the same answer as the frequentist method using the
default vague priors (to see defaults use prior_summary)

e 2 approaches with rstanarm - one with aggregated data, one with individual data

e 2 approaches with brms - one with aggregated data, one with individual data

#using stan_glm
fit2 <- stan_glm(prop_success ~ Tx, data = datl, family = binomial(link="logit"),
weights = total, refresh=0) #aggregate data
fit2a <- stan_glm(event ~ trt, data = dat, family = binomial(link="1logit"), refresh=0) #ind

#Using brms

fit3 <- brm(success | trials(total) ~ Tx, data = datl, family = binomial(link="1logit"), refr
fit3a <- brm(event ~ trt, data = dat, family = binomial(link="1logit"), refresh=0) #individua
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Reproduction of Results, using the Bayesian approach

How to assess the Odds Ratio from logistic regression model

library(knitr)

fit3 <- brm(success | trials(total) ~ Tx,
data = datl,
family = binomial(link="1logit")
draws3 <- as_draws_df(fit3) %>% # rename a
mutate(or = exp(b_TxeCPR)) # compute the

gg <- draws3 %>% ' ; i '
ggplot(aes(x = or)) + ’ © oddsrato ’
stat_halfeye(point_interval = mean_qi,
.width = .95, color="blue",
scale_y_continuous(NULL, breaks = NULL) +
xlim(0, 6) +
xlab("0dds ratio")+ theme_bw()
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Do we really want the OR?

OR is a measure of association that is difficult to interpret

e Popular because outcome from logistic regression models

But other options exist for binomial data

* The log-binomial and binomial regression models estimate the risk ratio and the risk
difference, respectively

e These models are sometimes referred to collectively as binomial regression models with,
respectively, a log link and an identity link
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Reproduction of Results, using the Bayesian approach

Risk difference using binomial regression

fit4 <- brm(success | trials(total) ~ Tx, data = datil,
family = binomial(link="1identity"), refresh=0)
draws4 <- as_draws_df(fit4) %>% #draws from posterior
transmute(diff= 100xb_TxeCPR) # rename and drop the unneeded columns

print(fit4, digits=2)

## Family: binomial

#it Links: mu = 1identity

## Formula: success | trials(total) ~ Tx

## Data: datl (Number of observations: 2)

## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

#it total post-warmup draws = 4000

H#

## Regression Coefficients:

#H Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.17 0.05 0.09 0.26 1.00 2501 2461
## TxeCPR 0.04 0.07 -0.09 0.17 1.00 2655 2058
##

## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Reproduction of Results, using the Bayesian approach

Risk difference using binomial regression

Risk difference of survival benefit (/100 patients)
Blue area = range of practical equivalence (ROPE) +/- 2%

20 10 0 10 20
Risk difference survival benefit (eCPR - cCPR)

Remember the authors' conclusions "eCPR and cCPR had similar effects on survival"
What is the probability this is true? Need to define similar?
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Region/Range of Practical Equivalence (ROPE)

Risk difference of survival benefit (/100 patients)
Blue area = range of practical equivalence (ROPE) +/- 2%

-10 0 10 20
Risk difference survival benefit (eCPR - cCPR)

Assuming +/- 2 lives / 100 is similar,

e Blue area represents this equivalence probability, 19.775%.

e There remains a 61.475% that eCPR offers a clinically meaningful survival benefit (orange
area to the right of blue area).

A good resource about the Range of Practical Equivalence -ROPE Here
Bayes has certainly deepened our appreciation of this data
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https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html

Another advantage of using the Bayesian approach

Some prior information exists from 2 previous RCTs and the Bayesian analysis can take this
information into account.

e PRAGUE & ARREST trials (combined) 25 successes and 122 failures in cCRP (beta(25, 122)).
e PRAGUE & ARREST trials (combined) 44 successes and 94 failures in eCRP (beta(44, 94)).

fit5 <- brm(success | trials(total) ~ 0 + Tx, data = datil,
family = binomial(link="1identity"), refresh = 0)

fit5 <- brm(success | trials(total) ~ 0 + Tx, data

= datl,
family = binomial(link="1identity"),

prior = c(prior(beta(l, 1), class = b, 1b = 0, ub = 1),
prior(beta(25,122), class = b, coef = "TxcCPR"),
prior(beta(44,94),class = b, coef = "TxeCPR")),

chains = 4, warmup = 1000, iter = 2000, seed = 123, refresh = 0)
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https://pubmed.ncbi.nlm.nih.gov/35191923/
https://pubmed.ncbi.nlm.nih.gov/30092413/

Another advantage of using the Bayesian approach

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Family: binomial
Links: mu = ddentity
Formula: success | trials(total) ~ 0 + Tx
Data: datl (Number of observations: 2)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
Regression Coefficients:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
TxcCPR 0.17 0.02 0.12 0.22 1.00 3457 2813
TxeCPR 0.28 0.03 0.22 0.34 1.00 3925 2855
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat 1is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Another advantage of using the Bayesian approach

Risk difference of survival benefit with informative prior
Blue area = range of practical equivalence (ROPE) +/- 2%

4 S
0 10 20
Risk difference survival benefit (eCPR - cCPR)

Despite inconclusive result from INCEPTION trial, the totality of the evidence suggest a
meaningful benefit from eCRP.,
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QUESTIONS?

COMMENTS?
RECOMMENDATIONS?
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Code for the prediction plot

gl <- ggplot(spam_aug, aes(x = num_char)) +
geom_point(aes(y = as.numeric(spam)-1, color = spam), alpha = 0.3) +
scale_color_manual(values = c("#0096FF", "#b03a2e")) +
scale_y_continuous(breaks = c(0, 1)) +
guides(color = FALSE) +
geom_line(aes(y = prob)) +
geom_point(data newdata, aes(x = num_char, y = p_hat),
fill newdata$color, shape = newdata$shape,
stroke = 1, size = 6) +

labs(x = "Number of characters (in thousands)", y = "Spam",
title = "Spam vs. number of characters"
) + theme_classic()
#g1
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Code for the Odds Ratio's Posterior
Distributions

fit3 <- brm(success | trials(total) ~ Tx,
data = datl,
family = binomial(link="1logit"), refresh=0) #aggregate data
draws3 <- as_draws_df(fit3) %>% # rename and drop the unneeded columns
mutate(or = exp(b_TxeCPR)) # compute the OR

gg <- draws3 %>%
ggplot(aes(x = or, color ="Tlightblue")) +
stat_halfeye(point_interval = mean_qi,
width = .95, color="blue") +# slab_colour
scale_y_continuous(NULL, breaks = NULL) +
x1im(0, 9) +
xlab("0dds ratio")+ theme_minimal()
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Code for the ROPE

gg <- ggplot(draws4, aes(x = diff)) +
stat_halfeye(aes(fill = after_stat(abs(x) < 2)), point_interval = mean_qi, .width = .95) +
scale_y_continuous(NULL, breaks = NULL) +
x1im(-20,25) +
xlab("Risk difference survival benefit (eCPR - cCPR)") +
scale_fill_manual(values = c("orange", "skyblue")) +
ggtitle("Risk difference of survival benefit (/100 patients)",

subtitle = "Blue area = range of practical equivalence (ROPE) +/- 2%") +
theme_bw() +

theme (legend.position="none"

Also check here:
https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html

Makowski, D., Ben-Shachar, M. S., & Ludecke, D. (2019). bayestestR: Describing Effects and their
Uncertainty, Existence and Significance within the Bayesian Framework. Journal of Open
Source Software, 4(40), 1541. https://doi.org/10.21105/joss.01541
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