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Have you met Euler?
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Expected competencies

Knows when logistic regression analysis is needed (Questions and type of data).

Can describe the logistic regression model, (assumptions & implications).

Knows the relationship between ORs and Logistic regression coefficients.

Knows how a statistical package is used to fit a logistic regression model to continuous

and categorical predictors.

Interpret logistic regression model output, and assess model's fit.

Objectives

To review core concepts of logistic regression

Provide tools to improve the inference when assessing binary outcomes

Illustrate advantages of Bayesian inference.
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Have you met Euler?

Eulers' number a.k.a.' e ' is a numerical constant

2.7182818...

Described under logarithm concepts & it's basically the base of the natural logarithm.

Mostly used to represent the non-linear increase or decrease of a function.

In R we use the expression exp()

 = exp(1) =2.7182818;  = exp(0) = 1 &  = 0e1 e0 e∞
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Basic math - review of logarithms
Laws of Exponents:

where  and  can be any real numbers and be any positive real number

Logarithms:

The value of x which solves this equation is written as:

The right-hand side is expressed as “log to the base  of ”

eα ⋅ eβ = eα+β

(eα)β = eαβ

α β

ex = N

x = logeN

e N
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Basic math

Other manipulations

The purpose of these early logarithmic tables was to take advantage of the law of exponents in

order to avoid messy multiplications in the era before electronic calculators.

Any positive base is possible for logarithms. For example, the exponential equation

 can be written in terms of a logarithm as 

In practice, the only bases that actually get used to any extent are 10 (“common

logarithms”, written as log10(x) ) and e = 2.71828 ("natural logarithm", log(x)) 

Euler's

logeM + logeN = loge(MN)

logeM − logeN = loge(M/N)

loge(MN) = N ⋅ loge(M)

43 = 64 log4(64) = 3

←

e =
∞

∑
n=0

= 1 + + + + ⋯
1
n!

1
1

1
1 ⋅ 2

1
1 ⋅ 2 ⋅ 3
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Predicting categorical outcome data
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Data from 3921 emails and 21 variables

on them contained in openintro

package

Outcome: whether the email is spam or

not

Predictors: number of characters,

whether the email had "Re:" in the

subject, time at which email was sent,

number of times the word "inherit"

shows up in the email, etc. Can use

glimpse(email) or `srt(email) to see

the dataset

Characteristic N = 3,921
1

spam

    0 3,554 (91%)

    1 367 (9.4%)

num_char 6 (1, 14)

re_subj

    0 2,896 (74%)

    1 1,025 (26%)

to_multiple

    0 3,301 (84%)

    1 620 (16%)

urgent_subj

    0 3,914 (100%)

    1 7 (0.2%)

winner 64 (1.6%)

attach 000 (0 00 000)

Spam filters
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plotspam<- email %>%
  ggplot(aes(x = num_char, y = spam,  fill 
  geom_density_ridges2(alpha = 0.5) +
  labs(x = "Number of characters (in thousa
    y = "Spam", title = "Spam vs. number of
  guides(color = FALSE, fill = FALSE) +
  scale_fill_manual(values = c("#89CFF0", "
  scale_color_manual(values = c("#0096FF", 
plotspam

t<-email %>% group_by(spam) %>% 
  summarise(mean_num_char = mean(num_char))
kable(t)

spam mean_num_char

0 11.250517

1 5.439204

--

Spam filters
Would you expect longer or shorter emails to be spam?
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Modelling spam

Both number of characters and whether the message has "re:" in the subject might be

related to whether the email is spam.

How do we come up with a model that will let us explore this relationship?

For simplicity, we'll focus on the number of characters (num_char) as predictor, but the

model we describe can be expanded to take multiple predictors as well.
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means <- email %>%
  group_by(spam) %>%
  summarise(mean_num_char = mean(num_char))
  mutate(group = 1)

g <- ggplot(email, aes(x = num_char, 
     y = spam, color = spam)) +
  geom_jitter(alpha = 0.2) +
  geom_line(data = means, 
  aes(x = mean_num_char, y = spam, group = 
  color = "green", size = 1.5) +
  labs(x = "Number of characters (in thousa
  scale_color_manual(values = c("#0096FF", 

#guides(color = FALSE)+ 

  theme_bw()

This isn't something we can reasonably fit a

linear model to, we need something

different!

Modelling spam
Let's first look at the data
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Framing the problem

We can treat each outcome (spam and not) as successes and failures arising from separate

Bernoulli trials

Bernoulli trial: a random experiment with exactly two possible outcomes, "success"

and "failure", in which Pr(success) is the same every time the experiment is conducted

Each Bernoulli trial can have a separate probability of success

We can then use the predictor variables to model that probability of success, 

We can't just use a linear model for  (since  must be between 0 and 1) but we can

transform the linear model to have the appropriate range

yi ∼ Bern(pi)

pi

pi pi
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Example:
How many heads from 20 flips of a fair coin rbinom(20,1,.5) for reproducibility need set.seed

(704)

set.seed(704)
sample1 <- rbinom(20,1,.5) #<< 20 = n0 tries, 1 = sample size (Bernoulli), 0.5 probability ev
sample1

##  [1] 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1
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Sequential learning

Here is the sequence of data outcomes (0/1) of 20 trials with p = 0.5

Graphically our sequential learning process
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Generalized linear models

This is a very general way of addressing many problems in regression and the resulting

models are called generalized linear models (GLMs)

Logistic regression is just one example

Other examples

What is the difference btw the last 2 equations?

Last equation gives risk ratio for binary outcomes.

Can also use identity function E(Y=1|X) for risk differences

15 / 52



Three characteristics of GLMs
All GLMs have the following three characteristics:

1. A probability distribution describing a generative model for the outcome variable

2. A linear model:

3. A link function that relates the linear model to the parameter of the outcome distribution

η = β0 + β1X1 + ⋯ + βkXk
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R linear syntax

Default link for linear regression is the identity function (Gaussian distribution)

Logistic model link most often is logit function and binomial distribution

Standard logistic model -> glm(model formula, data, family = "binomial")

Bayesian logistic model -> rstanarm::stan_glm(model formula, data,

family=binomial(link="logit"))

Bayesian logistic model -> brms::brm(model formula, data,

family=binomial(link="logit"))
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d <- tibble(p = seq(0.001, 0.999, 
        length.out = 1000)) %>%
  mutate(logit_p = log(p/(1-p)))
g <- ggplot(d, aes(x = p, y = logit_p)) + 
  geom_line() +  xlim(0,1) + 
  ylab("logit(p)") +
  labs(title = "logit(p) vs. p")

Logistic regression

Logistic regression is a GLM used to model a binary categorical outcome using numerical

and categorical predictors

To finish specifying the Logistic model we just need to define a reasonable link function

that connects  (linear outcome variable) to  -> logit function

Logit function: For 

ηi pi

0 ≤ p ≤ 1

logit(p) = log( ) = log(Odds)
p

1 − p
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Properties of the logit and logistic (inverse logit) functions

Logit function takes a value between 0 and 1 and maps it to a value between  and 

Take the inverse of the above equation, applies (exp) to both sides to get the inverse logit

function, AKA logistic or expit functions:

Rearranging leads to

The above is the logistic function & takes a value between  &  and maps it to a

value between 0 & 1, a probability.

−∞ ∞

logit(p) = log( ) = α + β1x
p

1−p

= expα+β1x
p

1 − p

p = ∈ (0, 1) or equivalently p = ∈ (0, 1)expα+β1x

1+expα+β1x
1

1+exp−(α+β1x)

−∞ ∞
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Properties of the inverse logit or logistic function:

Logit is interpreted as the log odds of a success & inverse logit gives the probability of success.

If  = P(D = 1 | X = x), what is P(D = 0 | X = x)?

Facilitates the development of the logit model

Taking logs of both sides

p = ∈ (0, 1)
expα+β1x

1 + expα+β1x

p

P(D = 0|X = x) = ∈ (0, 1)
1

1 + expα+β1x

Odds = = = expα+β1x
P(D = 1|X = x)
P(D = 0|X = x)

expα+β1x

1+expα+β1x

1
1+expα+β1x

log( ) = log(Odds) = logit = α + β1x
P(D = 1|X = x)
P(D = 0|X = x)
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The logistic regression model

Based on the three GLM criteria we have

fit is done with maximum likelihood and not minimizing the sum of squared residuals,

actually there are no residuals!

Likelihood values are often very small, one reason to use log-likelihood.

Log likelihood is always negative as the likelihood is always between 0-1.

Best fit is smallest value (i.e closest to 0)

yi ∼ Bern(pi)

ηi = β0 + β1x1,i + ⋯ + βnxn,i

logit(pi) = ηi

L(success) = π̂

L(failure) = 1 − π̂

L(model) =
n

∏
i=1

L(yi)
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Likelihood Ratio Test (LRT)

Here, our goal is to compare the log-likelihoods of two models: the one we build vs. the

constant model.

Similar to comparing the sum of the squares explained by a LR model to the model that

consists solely of the grand mean.

The null hypothesis in the LRT is that .

The alternative hypothesis is that at least one of these coefficients is non-zero. The test statistic

is:

These two quantities are known as deviances. It can be shown that  follows a  distribution

with k degrees of freedom (k=no. of parameters in the model).

β1 = β2 = ⋯ = βk = 0

G = −2 log(constant model) − (−2 log(model))

G χ2
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Likelihood Ratio Test (LRT)

Spam example - model GLM (same format as LR except)

use "glm" instead of "lm"

define family = "binomial" for the link function

mod <- glm(spam ~ num_char, data = email, family = "binomial")
jtools::summ(mod, confint=T, exp=T, digits = 3, model.info = F, model.fit = F)

exp(Est.) 2.5% 97.5% z val. p

(Intercept) 0.166 0.144 0.190 -25.135 0.000

num_char 0.940 0.925 0.955 -7.746 0.000

Standard errors: MLE

logLik(mod)

## 'log Lik.' -1173.201 (df=2)
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Likelihood Ratio Test (LRT)

library(lmtest)
lrtest(mod)

## Likelihood ratio test
## 
## Model 1: spam ~ num_char
## Model 2: spam ~ 1
##   #Df  LogLik Df  Chisq Pr(>Chisq)    
## 1   2 -1173.2                         
## 2   1 -1218.6 -1 90.779  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model is improved with the addition of the num_char variable
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The logistic regression model

3 spaces to consider

logistic space - for 1 unit change in x -> linear change in  (change in log odds)

odds space - for 1 unit change in x ->  = multiplier -> (change in odds ratio)

probability space - for 1 unit change in x -> no nice sentence to describe the change since

non-linear function but intuitively easier to understand

β1

eβ1(x+1)

eβ1x
eβ1

pi = ∈ (0, 1)
exp(β0 + β1x1,i + ⋯ + βkxk,i)

1 + exp(β0 + β1x1,i + ⋯ + βkxk,i)
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Odds space

 is the multiplier for for 1 unit change in x (odds ratio - constant change)

Consider predicting spam based on inclusion of the term winner

two.way <- table(email$winner, email$spam); two.way <- two.way[c(2,1),] #changing row order t
kable(two.way); mosaic::oddsRatio(two.way)

0 1

yes 44 20

no 3510 347

## [1] 4.597852

mod <- glm(spam ~ winner, data = email, family = "binomial"); exp(coef(mod))

## (Intercept)   winneryes 
##   0.0988604   4.5978517

This shows that OR calculated from 2X2 table =  from logistic model

eβ1

exp(β)
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Spam model

#Usual model approach

spam_fit <- glm(spam ~ num_char, data = email, family = "binomial")
jtools::summ(spam_fit, digits=3, confint=T, model.info = F, model.fit = F) #use summary(spam_

Est. 2.5% 97.5% z val. p

(Intercept) -1.799 -1.939 -1.658 -25.135 0.000

num_char -0.062 -0.078 -0.046 -7.746 0.000

Standard errors: MLE
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Prediction

P(spam) for an email with 2000 characters

Model:

 -1.80-0.0621* 2 = -1.9242

 0.15 

Somewhat easier with less calculations

rstanarm::invlogit(-1.924)

## [1] 0.1274162

log( ) = −1.80 − 0.0621 × num_char
p

1 − p

log( ) =p

1−p

= exp(−1.9242) =p

1−p
→ p = 0.15 × (1 − p)

p = 0.15 − 0.15p → 1.15p = 0.15

p = 0.15/1.15 = 0.13
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# General formula from tidymodels

spam_fit <- logistic_reg() %>% set_engine("
  fit(spam ~ num_char, 
      family="binomial", data = email)
newdata <- tibble(num_char = c(2, 15, 40), 
            color= c("#7CB9E8", "#E25822", 
            shape  = c(22, 24, 23))

y_hat <- predict(spam_fit, newdata, type = 

p_hat <- exp(y_hat) / (1 + exp(y_hat))

newdata <- newdata %>% 
  bind_cols(y_hat = y_hat,p_hat = p_hat)

spam_aug <- augment(spam_fit$fit) %>% 
  mutate(prob =
          exp(.fitted) / (1 + exp(.fitted))

2K chars: P(spam) = 0.13

15K chars, P(spam) = 0.06

40K chars, P(spam) = 0.01

Prediction

What is the probability that an email with 15000 or 40000 characters is spam?
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Prediction

The mechanics of prediction is easy:

Plug in values of predictors to the model equation

Calculate the predicted value of the response variable, 

Getting it right is hard!

There is no guarantee the model estimates you have are correct

Or that your model will perform as well with new data as it did with your sample data

ŷ
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Underfitting and overfitting
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Sensitivity and specificity

We already learned how to compare models using the deviance, but how do we know how well

our model works?

One techinque for assessing the goodness-of-fit in a logistic regression model is to examine

the percentage of the time that our model was right.”

Email is spam Email is not spam

Email labelled spam True positive False positive (Type 1 error)

Email labelled not spam False negative (Type 2 error) True negative

Sensitivity = P(Labelled spam | Email spam) = TP / (TP + FN)

Sensitivity = 1 − False negative rate = 1 - (FN / (TP + FN) )

Specificity = P(Labelled not spam | Email not spam) = TN / (FP + TN)

Specificity = 1 − False positive rate = 1 - (FP / (FP + TN))
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Classification

mod1 <- glm(spam ~ ., data = email, family = "binomial") #full model
email <- email %>%
  mutate(fitted = fitted.values(mod1)) %>%
  mutate(fitspam = ifelse(fitted >= 0.5, 1, 0))
tbl <- table(email$spam, email$fitspam)
tbl

##    
##        0    1
##   0 3521   33
##   1  299   68

sum(diag(tbl)) / nrow(email)

## [1] 0.9153277

Model is correct 91.5% of the time
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Average spam risk of the null model

av_risk <- sum(as.numeric(email$spam==1)) /
email <- email %>%
  mutate(fitspam= sample(c(0,1), size=3921,
        replace=TRUE, c(1-av_risk, av_risk)
table(email$spam, email$fitspam)

##    
##        0    1
##   0 3267  287
##   1  329   38

(table(email$spam, email$fitspam)[1,1] +
    table(email$spam, 
    email$fitspam)[2,2]) / nrow(email)

## [1] 0.8428972

model accuracy = 82%

Model probability as coin toss

email <- email %>% mutate(fitspam= sample(c
          size=3921, replace=TRUE))
table(email$spam, email$fitspam)

##    
##        0    1
##   0 1809 1745
##   1  188  179

(table(email$spam, email$fitspam)[1,1] +
    table(email$spam, 
    email$fitspam)[2,2]) / nrow(email)

## [1] 0.5070135

model accuracy = 50%

Accuracy of other models
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If you were designing a spam filter, would

you want sensitivity and specificity to be

high or low?

library (rsample) # get initial_split, trai
email_split <- initial_split(email, prop = 
# Create data frames for the two sets:

train_data <- training(email_split) 
test_data  <- testing(email_split)
email_fit <- logistic_reg() %>% 
  set_engine("glm") %>% 
  fit(spam ~ ., data = train_data, 
      family = "binomial")
email_pred <- predict(email_fit, test_data,
                      type = "prob") %>% 
  bind_cols(test_data %>% 
              dplyr::select(spam, time))

What are the trade-offs associated with each

decision?

email_pred %>% 
  roc_curve(truth = spam, .pred_1, event_le

email_pred %>% roc_auc(truth = spam,.pred_1

## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 roc_auc binary         0.875

Trade-offs
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Types of logistic regression

The three types of logistic regression

1. Binary logistic regression - What we have been doing

2. Multinomial logistic regression - When we have multiple outcomes, e.g. predict whether

someone may have the flu, an allergy, a cold, or COVID-19

3. Ordinal logistic regression - When the outcome is ordered, e.g. determine the severity of a

COVID-19 infection, sorting it into mild, moderate, and severe cases

For what it's worth, in machine learning (ML) supervised learning is used to classify

something or predict a value, and logistic regression is a common classifier used ML
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Illustration of reproducing results and more...

A recent paper in the NEJM concluded that "In patients with refractory out-of-hospital cardiac

arrest, extracorporeal CPR and conventional CPR had similar effects on survival with a favorable

neurologic outcome".

Two questions

1. Can we reproduce the analysis?

2. Accepting the authors' analysis, do we accept their conclusion of similar effects?
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Log-Odds Coefficients

Est. S.E. z val. p

(Intercept) -1.7 0.3 -4.8 0.0

trt 0.3 0.5 0.6 0.5

Standard errors: MLE

Exponentiated coefficients which

reproduces the NEJM results.

exp(Est.) 2.5% 97.5%
z

val.
p

(Intercept) 0.19 0.10 0.37 -4.84 0.00

trt 1.33 0.54 3.24 0.62 0.54

Standard errors: MLE

Illustration of reproduction of results

Given the use of OR, the analysis was most likely been a logistic regression with the binary

outcome of success / failure at 180 days.

# simulate dataset - one line per individual

dat <- data.frame(trt = 1:133 > 63,  #0 = control, 1 = extracorporeal
#   time = sample(1:180, size = 133, replace = TRUE),  if wanted to simulate a 

                 event = c(1:63 < 11, 1:70 < 15)) %>%
  mutate(trt = ifelse (trt=="FALSE", 0, 1),event = ifelse (event=="FALSE", 0, 1)) 
fit <- glm(event ~ trt, data = dat, family = binomial(link="logit"))

38 / 52



Log-Odds Coefficients

Est. S.E. z val. p

(Intercept) -1.7 0.3 -4.8 0.0

TxeCPR 0.3 0.5 0.6 0.5

Standard errors: MLE

Exponentiated coefficients

jtools::summ(fit1, confint=T, exp=T, digits

exp(Est.) 2.5% 97.5%
z

val.
p

(Intercept) 0.2 0.1 0.4 -4.8 0.0

TxeCPR 1.3 0.5 3.2 0.6 0.5

Standard errors: MLE

Illustration of reproduction of results

A simpler approach is to use the aggregated data and apply a weight argument within the

glm function which gives the exact same answer as expected.

# create data frame

dat1 <- tibble(Trial = c("INCEPTION", "INCEPTION"), Tx = c("cCPR", "eCPR"),
             fail = c(53, 56), success = c(10,14)) %>% 
  mutate(total = fail + success, prop_success = success / total) 
fit1 <- glm(prop_success ~ Tx, data = dat1, family = binomial(link="logit"), weights = total
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Illustration: Reproduction of Results, using the Bayesian
approach

Here are 4 methods which all give the same answer as the frequentist method using the

default vague priors (to see defaults use prior_summary)

2 approaches with rstanarm - one with aggregated data, one with individual data

2 approaches with brms - one with aggregated data, one with individual data

#using stan_glm

fit2 <- stan_glm(prop_success ~ Tx, data = dat1, family = binomial(link="logit"), 
                 weights = total, refresh=0) #aggregate data
fit2a <- stan_glm(event ~ trt, data = dat, family = binomial(link="logit"), refresh=0)  #indi

#Using brms

fit3 <- brm(success | trials(total) ~ Tx, data = dat1, family = binomial(link="logit"), refre
fit3a <- brm(event ~ trt, data = dat, family = binomial(link="logit"), refresh=0) #individual
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library(knitr) 

fit3 <- brm(success | trials(total) ~ Tx,  
            data = dat1, 
            family = binomial(link="logit")
draws3 <- as_draws_df(fit3)  %>% # rename a
  mutate(or = exp(b_TxeCPR)) # compute the 

gg <- draws3 %>% 
  ggplot(aes(x = or)) +
  stat_halfeye(point_interval = mean_qi, 
               .width = .95, color="blue", 
  scale_y_continuous(NULL, breaks = NULL) +
  xlim(0, 6) +
  xlab("Odds ratio")+ theme_bw()

Reproduction of Results, using the Bayesian approach

How to assess the Odds Ratio from logistic regression model
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Do we really want the OR?

OR is a measure of association that is difficult to interpret

Popular because outcome from logistic regression models

But other options exist for binomial data

The log-binomial and binomial regression models estimate the risk ratio and the risk

difference, respectively

These models are sometimes referred to collectively as binomial regression models with,

respectively, a log link and an identity link

42 / 52



Reproduction of Results, using the Bayesian approach

Risk difference using binomial regression

fit4 <- brm(success | trials(total) ~ Tx, data = dat1, 
            family = binomial(link="identity"), refresh=0) 
draws4 <- as_draws_df(fit4)  %>% #draws from posterior
   transmute(diff= 100*b_TxeCPR) # rename and drop the unneeded columns

print(fit4, digits=2)

##  Family: binomial 
##   Links: mu = identity 
## Formula: success | trials(total) ~ Tx 
##    Data: dat1 (Number of observations: 2) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Regression Coefficients:
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.17      0.05     0.09     0.26 1.00     2501     2461
## TxeCPR        0.04      0.07    -0.09     0.17 1.00     2655     2058
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Reproduction of Results, using the Bayesian approach

Risk difference using binomial regression

Remember the authors' conclusions "eCPR and cCPR had similar effects on survival"

What is the probability this is true? Need to define similar?
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Region/Range of Practical Equivalence (ROPE)

Assuming +/- 2 lives / 100 is similar,

Blue area represents this equivalence probability, 19.775%.

There remains a 61.475% that eCPR offers a clinically meaningful survival benefit (orange

area to the right of blue area).

A good resource about the Range of Practical Equivalence -ROPE Here

Bayes has certainly deepened our appreciation of this data

45 / 52

https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html


Another advantage of using the Bayesian approach

Some prior information exists from 2 previous RCTs and the Bayesian analysis can take this

information into account.

PRAGUE & ARREST trials (combined) 25 successes and 122 failures in cCRP (beta(25, 122)).

PRAGUE & ARREST trials (combined) 44 successes and 94 failures in eCRP (beta(44, 94)).

fit5 <- brm(success | trials(total) ~ 0 + Tx, data = dat1, 
            family = binomial(link="identity"), refresh = 0)

fit5 <- brm(success | trials(total) ~ 0 + Tx, data = dat1, 
            family = binomial(link="identity"),    
            prior = c(prior(beta(1, 1), class = b, lb = 0, ub = 1),
            prior(beta(25,122), class = b, coef = "TxcCPR"),
            prior(beta(44,94),class = b, coef = "TxeCPR")),
  chains = 4, warmup = 1000, iter = 2000, seed = 123, refresh = 0)
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Another advantage of using the Bayesian approach

##  Family: binomial 
##   Links: mu = identity 
## Formula: success | trials(total) ~ 0 + Tx 
##    Data: dat1 (Number of observations: 2) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Regression Coefficients:
##        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## TxcCPR     0.17      0.02     0.12     0.22 1.00     3457     2813
## TxeCPR     0.28      0.03     0.22     0.34 1.00     3925     2855
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Another advantage of using the Bayesian approach

Despite inconclusive result from INCEPTION trial, the totality of the evidence suggest a

meaningful benefit from eCRP.
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QUESTIONS?

COMMENTS?

RECOMMENDATIONS?
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Code for the prediction plot

g1 <- ggplot(spam_aug, aes(x = num_char)) +
  geom_point(aes(y = as.numeric(spam)-1, color = spam), alpha = 0.3) +
  scale_color_manual(values = c("#0096FF", "#b03a2e")) +
  scale_y_continuous(breaks = c(0, 1)) +
  guides(color = FALSE) +
  geom_line(aes(y = prob)) +
  geom_point(data = newdata, aes(x = num_char, y = p_hat), 
             fill = newdata$color, shape = newdata$shape, 
             stroke = 1, size = 6) +
  labs(x = "Number of characters (in thousands)", y = "Spam", 
       title = "Spam vs. number of characters"
  ) + theme_classic()
#g1
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Code for the Odds Ratio's Posterior
Distributions

fit3 <- brm(success | trials(total) ~ Tx, 
      data = dat1, 
      family = binomial(link="logit"), refresh=0) #aggregate data
draws3 <- as_draws_df(fit3)  %>% # rename and drop the unneeded columns
  mutate(or = exp(b_TxeCPR)) # compute the OR

gg <- draws3 %>% 
  ggplot(aes(x = or, color ="lightblue")) +
  stat_halfeye(point_interval = mean_qi, 
               .width = .95, color="blue") +# slab_colour
  scale_y_continuous(NULL, breaks = NULL) +
  xlim(0, 9) +
  xlab("Odds ratio")+ theme_minimal()

51 / 52



Code for the ROPE

gg <- ggplot(draws4, aes(x = diff)) +
  stat_halfeye(aes(fill = after_stat(abs(x) < 2)), point_interval = mean_qi, .width = .95) +
  scale_y_continuous(NULL, breaks = NULL) +
  xlim(-20,25) +
  xlab("Risk difference survival benefit (eCPR - cCPR)") +
  scale_fill_manual(values = c("orange", "skyblue")) +
  ggtitle("Risk difference of survival benefit (/100 patients)", 
          subtitle = "Blue area = range of practical equivalence (ROPE) +/- 2%") +
  theme_bw() +
  theme(legend.position="none")

Also check here:

https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html

Makowski, D., Ben-Shachar, M. S., & Lüdecke, D. (2019). bayestestR: Describing Effects and their

Uncertainty, Existence and Significance within the Bayesian Framework. Journal of Open

Source Software, 4(40), 1541. https://doi.org/10.21105/joss.01541
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