Last updated: 2022-07-27

Checks: 6 1

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2e60ed7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/GSEA/
    Ignored:    data/humanFibroblast/
    Ignored:    figure/DEgenesGZplusSG_Groups.Rmd/.DS_Store

Untracked files:
    Untracked:  analysis/visHumanCardiacDEgenesHT.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(ggpubr)
  library(pheatmap)
  library(viridis)
  library(sctransform)
  library(fgsea)
  library(grid)
  library(gridExtra)
  library(clusterProfiler)
  library(org.Hs.eg.db)
  library(DOSE)
  library(enrichplot)
  library(msigdbr)

})

sign plot funct

## random plotting order
shuf <- function(df){
  return(df[sample(1:dim(df)[1], dim(df)[1]),])
}

## adapted from CellMixS
visGroup_adapt <- function (sce,group,dim_red = "TSNE",col_group=pal_nejm()(8)) 
{
    if (!is(sce, "SingleCellExperiment")) {
        stop("Error:'sce' must be a 'SingleCellExperiment' object.")
    }
    if (!group %in% names(colData(sce))) {
        stop("Error: 'group' variable must be in 'colData(sce)'")
    }
    cell_names <- colnames(sce)
    if (!dim_red %in% "TSNE") {
        if (!dim_red %in% reducedDimNames(sce)) {
            stop("Please provide a dim_red method listed in reducedDims of sce")
        }
        red_dim <- as.data.frame(reducedDim(sce, dim_red))
    }
    else {
        if (!"TSNE" %in% reducedDimNames(sce)) {
            if ("logcounts" %in% names(assays(sce))) {
                sce <- runTSNE(sce)
            }
            else {
                sce <- runTSNE(sce, exprs_values = "counts")
            }
        }
        red_dim <- as.data.frame(reducedDim(sce, "TSNE"))
    }
    colnames(red_dim) <- c("red_dim1", "red_dim2")
    df <- data.frame(sample_id = cell_names, group_var = colData(sce)[, 
        group], red_Dim1 = red_dim$red_dim1, red_Dim2 = red_dim$red_dim2)
    t <- ggplot(shuf(df), aes_string(x = "red_Dim1", y = "red_Dim2")) + 
        xlab(paste0(dim_red, "_1")) + ylab(paste0(dim_red, "_2")) + 
        theme_void() + theme(aspect.ratio = 1,
                             panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "grey", size = 0.3))
    t_group <- t + geom_point(size = 1, alpha = 0.7,
                              aes_string(color = "group_var")) + 
        guides(color = guide_legend(override.aes = list(size = 1), 
            title = group)) + ggtitle(group)
    if (is.numeric(df$group_var)) {
        t_group <- t_group + scale_color_viridis(option = "D")
    }
    else {
        t_group <- t_group + scale_color_manual(values = col_group)
    }
    t_group
}

integrate data

basedir <- here()
seurat <- readRDS(file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_intPatients_merged", 
                              "labeled_groups_seurat.rds"))
seurat <- subset(seurat, cond2 == "MyocarditisLT", invert=T)

color vectors

colPal <- pal_igv()(length(levels(seurat)))
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(8), pal_npg()(8), pal_aaas()(10))[1:length(unique(seurat$dataset))]
colCond <- pal_npg()(length(unique(seurat$cond2)))
colID <- c(pal_jco()(10), pal_npg()(10))[1:length(unique(seurat$ID))]
colOrig <- pal_aaas()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))
colProc <- pal_aaas()(length(unique(seurat$processing)))
colLab <- pal_futurama()(length(unique(seurat$label)))

names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colCond) <- unique(seurat$cond2)
names(colID) <- unique(seurat$ID)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)
names(colProc) <- unique(seurat$processing)
names(colLab) <- unique(seurat$label)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

label

DimPlot(seurat, reduction = "umap",  group.by = "label", cols=colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

technique

DimPlot(seurat, reduction = "umap", group.by = "technique", cols=colTec)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Sample

DimPlot(seurat, reduction = "umap", group.by = "dataset", cols=colSmp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

ID

DimPlot(seurat, reduction = "umap", group.by = "ID", cols=colID)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Origin

DimPlot(seurat, reduction = "umap", group.by = "origin", cols=colOrig)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

isolation

DimPlot(seurat, reduction = "umap", group.by = "isolation", cols=colIso)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

cond

DimPlot(seurat, reduction = "umap", group.by = "cond2", cols=colCond)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

processing

DimPlot(seurat, reduction = "umap", group.by = "processing", cols=colProc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

vis sel genes

genes <- data.frame(gene=rownames(seurat)) %>%
  mutate(geneID = gsub(".*\\.", "", gene))
selGenes <- read_tsv(paste0(basedir, "/data/selDEgenesGroups.txt")) %>% 
  left_join(., genes, by = "geneID")

seurat$label_plus_cond2 <- paste0(seurat$label, "_", seurat$cond2)
seurat$label_plus_cond2 <- as.factor(seurat$label_plus_cond2)
Idents(seurat) <- seurat$label_plus_cond2

gapVecCol <- seq(2, length(levels(seurat$label_plus_cond2)), by=2)

## keep gene order
pOut <- avgHeatmap(seurat = seurat, selGenes = selGenes,
                    colVecIdent = colLab, colVecCond=colCond,
                    ordVec=levels(seurat$label_plus_cond2),
                    gapVecR=NULL, gapVecC=gapVecCol,cc=FALSE,
                    cr=F, condCol=T)

## cluster genes
pOut <- avgHeatmap(seurat = seurat, selGenes = selGenes,
                    colVecIdent = colLab, colVecCond=colCond,
                    ordVec=levels(seurat$label_plus_cond2),
                    gapVecR=NULL, gapVecC=gapVecCol,cc=FALSE,
                    cr=T, condCol=T)

## overall DE genes

Idents(seurat) <- seurat$cond2
DEgenes <-FindAllMarkers(seurat, only.pos=T, logfc.threshold = 0.1,
                           min.pct = 0.01)


clVec <- unique(seurat$cond2)
GOcons <- lapply(clVec, function(cl){
  clustDE_DatSub <- DEgenes[which(DEgenes$cluster == cl),] %>% 
    mutate(ENS=gsub("\\..*$", "", gene)) #%>% 
    #slice_min(., max_pval, n=200)
  egoSS <- enrichGO(gene      = unique(clustDE_DatSub$ENS),
                OrgDb         = org.Hs.eg.db,
                keyType       = 'ENSEMBL',
                ont           = "BP",
                pAdjustMethod = "BH",
                pvalueCutoff  = 0.05,
                qvalueCutoff  = 0.05)
  egoSS <- setReadable(egoSS, OrgDb = org.Hs.eg.db)
  egoSSres <- egoSS@result %>% filter(p.adjust < 0.05) %>% 
    mutate(subset=cl)
})

names(GOcons) <- clVec

## table to select pathways
GOconsDat <- do.call("rbind", GOcons)

selGO <- read_tsv(paste0(basedir,"/data/GSEA/selGO_overall.txt")) %>% 
  mutate(GO_cond = paste0(GOterm, "_", cond2))
GOconsDatSel <- GOconsDat %>% mutate(GO_cond = paste0(ID, "_", subset)) %>% 
  filter(GO_cond %in% selGO$GO_cond) %>% 
  mutate(cond2 = gsub(".*_", "", subset)) 

grpVec <- unique(selGO$cond2)
lapply(grpVec, function(grp){
  selGODat <- GOconsDatSel %>% filter(cond2 == grp)
  selGODat <- selGODat %>% mutate(qscore=-log(p.adjust, base=10)) 
  p <- ggbarplot(selGODat, x = "Description", y = "qscore",
          fill = "cond2",               
          color = "cond2",            
          palette = colCond,            
          sort.val = "asc",           
          sort.by.groups = TRUE      
          #x.text.angle = 90           
          ) + 
  rotate()
p
})
[[1]]


[[2]]


[[3]]

signatures viridis

split by grp

signDat <- read_delim(file = paste0(basedir,
                    "/data/SelSignaturesTreat2.txt"),
                    delim = "\t")
genes <- data.frame(geneID=rownames(seurat)) %>% 
  mutate(gene=gsub("^.*\\.", "", geneID))
signDat <- signDat %>% left_join(.,genes, by="gene")
allSign <- unique(signDat$signature)

DefaultAssay(object = seurat) <- "integrated"
sce2 <- as.SingleCellExperiment(seurat)

DefaultAssay(object = seurat) <- "RNA"
sce <- as.SingleCellExperiment(seurat)
reducedDims(sce) <- list(PCA=reducedDim(sce2, "PCA"),
                         TSNE=reducedDim(sce2, "TSNE"),
                         UMAP=reducedDim(sce2, "UMAP"))

treatGrps <- unique(sce$cond2)

cutOff <- 3
pal = viridis(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$cond2 == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]


[[1]][[2]]



[[2]]
[[2]][[1]]


[[2]][[2]]



[[3]]
[[3]][[1]]


[[3]][[2]]



[[4]]
[[4]][[1]]


[[4]][[2]]



[[5]]
[[5]][[1]]


[[5]][[2]]

cutOff <- 2
pal = viridis(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$cond2 == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]


[[1]][[2]]



[[2]]
[[2]][[1]]


[[2]][[2]]



[[3]]
[[3]][[1]]


[[3]][[2]]



[[4]]
[[4]][[1]]


[[4]][[2]]



[[5]]
[[5]][[1]]


[[5]][[2]]

cutOff <- 1
pal = viridis(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$cond2 == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]


[[1]][[2]]



[[2]]
[[2]][[1]]


[[2]][[2]]



[[3]]
[[3]][[1]]


[[3]][[2]]



[[4]]
[[4]][[1]]


[[4]][[2]]



[[5]]
[[5]][[1]]


[[5]][[2]]

signatures red blue

split by grp

cutOff <- 3
pal = colorRampPalette(c("#053061", "#f7f7f7","#85122d"))(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$cond2 == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]


[[1]][[2]]



[[2]]
[[2]][[1]]


[[2]][[2]]



[[3]]
[[3]][[1]]


[[3]][[2]]



[[4]]
[[4]][[1]]


[[4]][[2]]



[[5]]
[[5]][[1]]


[[5]][[2]]

cutOff <- 2
pal = colorRampPalette(c("#053061", "#f7f7f7","#85122d"))(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$cond2 == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]


[[1]][[2]]



[[2]]
[[2]][[1]]


[[2]][[2]]



[[3]]
[[3]][[1]]


[[3]][[2]]



[[4]]
[[4]][[1]]


[[4]][[2]]



[[5]]
[[5]][[1]]


[[5]][[2]]

cutOff <- 1
pal = colorRampPalette(c("#053061", "#f7f7f7","#85122d"))(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$cond2 == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]


[[1]][[2]]



[[2]]
[[2]][[1]]


[[2]][[2]]



[[3]]
[[3]][[1]]


[[3]][[2]]



[[4]]
[[4]][[1]]


[[4]][[2]]



[[5]]
[[5]][[1]]


[[5]][[2]]

vis sel genes violin

genesDat <- data.frame(EnsID=rownames(seurat)) %>% 
  mutate(gene=gsub(".*\\.", "", EnsID))
selGenes <- data.frame(gene=c("BMP2", "BMP4", "BMPR1A", "BMPR2")) %>% 
  left_join(., genesDat, by="gene")

## subsample to equal number
Idents(seurat) <- seurat$cond2
seuratSub <- subset(seurat, downsample = min(table(seurat$cond2)))

pList <- sapply(selGenes$EnsID, function(x){
  p <- VlnPlot(object = seuratSub, features = x,
               group.by = "cond2",
               cols = colCond, pt.size = 0.2
               )
  plot(p)
})

pList <- sapply(selGenes$EnsID, function(x){
  p <- VlnPlot(object = seurat, features = x,
               group.by = "label", split.by = "cond2",
               cols = colCond, pt.size = 0.1
               )
  plot(p)
})

vis sel genes avg heatmap

selGenesHM <- selGenes %>% mutate(gene = EnsID)
Idents(seurat) <- seurat$label_plus_cond2
pOut <- avgHeatmap(seurat = seurat, selGenes = selGenesHM,
                    colVecIdent = colLab, colVecCond=colCond,
                    ordVec=levels(seurat$label_plus_cond2),
                    gapVecR=NULL, gapVecC=gapVecCol,cc=FALSE,
                    cr=T, condCol=T)

Idents(seurat) <- seurat$cond2
pOut <- avgHeatmap(seurat = seurat, selGenes = selGenesHM,
                    colVecIdent = colCond, 
                    ordVec=levels(seurat),
                    gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                    cr=T, condCol=F)

vis sel genes dotplot across label

Idents(seurat) <- seurat$label_plus_cond2
DotPlot(seurat, assay="RNA", features = selGenes$EnsID, scale =T,
        cluster.idents = T, dot.min = 0, dot.scale = 3, scale.by = "size") +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=selGenes$EnsID, labels=selGenes$gene) +
  xlab("") + ylab("")

vis sel genes dotplot total

Idents(seurat) <- seurat$cond2
DotPlot(seurat, assay="RNA", features = selGenes$EnsID, scale =F,
        cluster.idents = T, dot.min = 0, dot.scale = 3, scale.by = "size") +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=selGenes$EnsID, labels=selGenes$gene) +
  xlab("") + ylab("")

session info

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] msigdbr_7.5.1               enrichplot_1.16.1          
 [3] DOSE_3.22.0                 org.Hs.eg.db_3.15.0        
 [5] AnnotationDbi_1.58.0        clusterProfiler_4.4.4      
 [7] gridExtra_2.3               fgsea_1.22.0               
 [9] sctransform_0.3.3           viridis_0.6.2              
[11] viridisLite_0.4.0           pheatmap_1.0.12            
[13] ggpubr_0.4.0                ggsci_2.9                  
[15] runSeurat3_0.1.0            here_1.0.1                 
[17] magrittr_2.0.3              sp_1.5-0                   
[19] SeuratObject_4.1.0          Seurat_4.1.1               
[21] forcats_0.5.1               stringr_1.4.0              
[23] dplyr_1.0.9                 purrr_0.3.4                
[25] readr_2.1.2                 tidyr_1.2.0                
[27] tibble_3.1.8                ggplot2_3.3.6              
[29] tidyverse_1.3.2             SingleCellExperiment_1.18.0
[31] SummarizedExperiment_1.26.1 Biobase_2.56.0             
[33] GenomicRanges_1.48.0        GenomeInfoDb_1.32.2        
[35] IRanges_2.30.0              S4Vectors_0.34.0           
[37] BiocGenerics_0.42.0         MatrixGenerics_1.8.1       
[39] matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] scattermore_0.8        bit64_4.0.5            knitr_1.39            
  [4] irlba_2.3.5            DelayedArray_0.22.0    data.table_1.14.2     
  [7] rpart_4.1.16           KEGGREST_1.36.3        RCurl_1.98-1.7        
 [10] generics_0.1.3         cowplot_1.1.1          RSQLite_2.2.15        
 [13] shadowtext_0.1.2       RANN_2.6.1             future_1.27.0         
 [16] bit_4.0.4              tzdb_0.3.0             spatstat.data_2.2-0   
 [19] xml2_1.3.3             lubridate_1.8.0        httpuv_1.6.5          
 [22] assertthat_0.2.1       gargle_1.2.0           xfun_0.31             
 [25] hms_1.1.1              jquerylib_0.1.4        babelgene_22.3        
 [28] evaluate_0.15          promises_1.2.0.1       fansi_1.0.3           
 [31] dbplyr_2.2.1           readxl_1.4.0           igraph_1.3.4          
 [34] DBI_1.1.3              htmlwidgets_1.5.4      spatstat.geom_2.4-0   
 [37] googledrive_2.0.0      ellipsis_0.3.2         backports_1.4.1       
 [40] deldir_1.0-6           vctrs_0.4.1            ROCR_1.0-11           
 [43] abind_1.4-5            cachem_1.0.6           withr_2.5.0           
 [46] ggforce_0.3.3          progressr_0.10.1       vroom_1.5.7           
 [49] treeio_1.20.1          goftest_1.2-3          cluster_2.1.3         
 [52] ape_5.6-2              lazyeval_0.2.2         crayon_1.5.1          
 [55] labeling_0.4.2         pkgconfig_2.0.3        tweenr_1.0.2          
 [58] nlme_3.1-158           rlang_1.0.4            globals_0.15.1        
 [61] lifecycle_1.0.1        miniUI_0.1.1.1         downloader_0.4        
 [64] modelr_0.1.8           cellranger_1.1.0       rprojroot_2.0.3       
 [67] polyclip_1.10-0        lmtest_0.9-40          Matrix_1.4-1          
 [70] aplot_0.1.6            carData_3.0-5          zoo_1.8-10            
 [73] reprex_2.0.1           ggridges_0.5.3         googlesheets4_1.0.0   
 [76] png_0.1-7              bitops_1.0-7           KernSmooth_2.23-20    
 [79] Biostrings_2.64.0      blob_1.2.3             workflowr_1.7.0       
 [82] qvalue_2.28.0          parallelly_1.32.1      spatstat.random_2.2-0 
 [85] rstatix_0.7.0          gridGraphics_0.5-1     ggsignif_0.6.3        
 [88] scales_1.2.0           memoise_2.0.1          plyr_1.8.7            
 [91] ica_1.0-3              zlibbioc_1.42.0        compiler_4.2.1        
 [94] scatterpie_0.1.7       RColorBrewer_1.1-3     fitdistrplus_1.1-8    
 [97] cli_3.3.0              XVector_0.36.0         listenv_0.8.0         
[100] patchwork_1.1.1        pbapply_1.5-0          MASS_7.3-58           
[103] mgcv_1.8-40            tidyselect_1.1.2       stringi_1.7.8         
[106] highr_0.9              yaml_2.3.5             GOSemSim_2.22.0       
[109] ggrepel_0.9.1          sass_0.4.2             fastmatch_1.1-3       
[112] tools_4.2.1            future.apply_1.9.0     parallel_4.2.1        
[115] rstudioapi_0.13        git2r_0.30.1           farver_2.1.1          
[118] Rtsne_0.16             ggraph_2.0.5           digest_0.6.29         
[121] rgeos_0.5-9            shiny_1.7.2            Rcpp_1.0.9            
[124] car_3.1-0              broom_1.0.0            later_1.3.0           
[127] RcppAnnoy_0.0.19       httr_1.4.3             colorspace_2.0-3      
[130] rvest_1.0.2            fs_1.5.2               tensor_1.5            
[133] reticulate_1.25        splines_4.2.1          uwot_0.1.11           
[136] yulab.utils_0.0.5      tidytree_0.3.9         spatstat.utils_2.3-1  
[139] graphlayouts_0.8.0     ggplotify_0.1.0        plotly_4.10.0         
[142] xtable_1.8-4           jsonlite_1.8.0         ggtree_3.4.1          
[145] tidygraph_1.2.1        ggfun_0.0.6            R6_2.5.1              
[148] pillar_1.8.0           htmltools_0.5.3        mime_0.12             
[151] glue_1.6.2             fastmap_1.1.0          BiocParallel_1.30.3   
[154] codetools_0.2-18       utf8_1.2.2             lattice_0.20-45       
[157] bslib_0.4.0            spatstat.sparse_2.1-1  leiden_0.4.2          
[160] GO.db_3.15.0           survival_3.3-1         rmarkdown_2.14        
[163] munsell_0.5.0          DO.db_2.9              GenomeInfoDbData_1.2.8
[166] haven_2.5.0            reshape2_1.4.4         gtable_0.3.0          
[169] spatstat.core_2.4-4   
date()
[1] "Wed Jul 27 17:33:49 2022"

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] msigdbr_7.5.1               enrichplot_1.16.1          
 [3] DOSE_3.22.0                 org.Hs.eg.db_3.15.0        
 [5] AnnotationDbi_1.58.0        clusterProfiler_4.4.4      
 [7] gridExtra_2.3               fgsea_1.22.0               
 [9] sctransform_0.3.3           viridis_0.6.2              
[11] viridisLite_0.4.0           pheatmap_1.0.12            
[13] ggpubr_0.4.0                ggsci_2.9                  
[15] runSeurat3_0.1.0            here_1.0.1                 
[17] magrittr_2.0.3              sp_1.5-0                   
[19] SeuratObject_4.1.0          Seurat_4.1.1               
[21] forcats_0.5.1               stringr_1.4.0              
[23] dplyr_1.0.9                 purrr_0.3.4                
[25] readr_2.1.2                 tidyr_1.2.0                
[27] tibble_3.1.8                ggplot2_3.3.6              
[29] tidyverse_1.3.2             SingleCellExperiment_1.18.0
[31] SummarizedExperiment_1.26.1 Biobase_2.56.0             
[33] GenomicRanges_1.48.0        GenomeInfoDb_1.32.2        
[35] IRanges_2.30.0              S4Vectors_0.34.0           
[37] BiocGenerics_0.42.0         MatrixGenerics_1.8.1       
[39] matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] scattermore_0.8        bit64_4.0.5            knitr_1.39            
  [4] irlba_2.3.5            DelayedArray_0.22.0    data.table_1.14.2     
  [7] rpart_4.1.16           KEGGREST_1.36.3        RCurl_1.98-1.7        
 [10] generics_0.1.3         cowplot_1.1.1          RSQLite_2.2.15        
 [13] shadowtext_0.1.2       RANN_2.6.1             future_1.27.0         
 [16] bit_4.0.4              tzdb_0.3.0             spatstat.data_2.2-0   
 [19] xml2_1.3.3             lubridate_1.8.0        httpuv_1.6.5          
 [22] assertthat_0.2.1       gargle_1.2.0           xfun_0.31             
 [25] hms_1.1.1              jquerylib_0.1.4        babelgene_22.3        
 [28] evaluate_0.15          promises_1.2.0.1       fansi_1.0.3           
 [31] dbplyr_2.2.1           readxl_1.4.0           igraph_1.3.4          
 [34] DBI_1.1.3              htmlwidgets_1.5.4      spatstat.geom_2.4-0   
 [37] googledrive_2.0.0      ellipsis_0.3.2         backports_1.4.1       
 [40] deldir_1.0-6           vctrs_0.4.1            ROCR_1.0-11           
 [43] abind_1.4-5            cachem_1.0.6           withr_2.5.0           
 [46] ggforce_0.3.3          progressr_0.10.1       vroom_1.5.7           
 [49] treeio_1.20.1          goftest_1.2-3          cluster_2.1.3         
 [52] ape_5.6-2              lazyeval_0.2.2         crayon_1.5.1          
 [55] labeling_0.4.2         pkgconfig_2.0.3        tweenr_1.0.2          
 [58] nlme_3.1-158           rlang_1.0.4            globals_0.15.1        
 [61] lifecycle_1.0.1        miniUI_0.1.1.1         downloader_0.4        
 [64] modelr_0.1.8           cellranger_1.1.0       rprojroot_2.0.3       
 [67] polyclip_1.10-0        lmtest_0.9-40          Matrix_1.4-1          
 [70] aplot_0.1.6            carData_3.0-5          zoo_1.8-10            
 [73] reprex_2.0.1           ggridges_0.5.3         googlesheets4_1.0.0   
 [76] png_0.1-7              bitops_1.0-7           KernSmooth_2.23-20    
 [79] Biostrings_2.64.0      blob_1.2.3             workflowr_1.7.0       
 [82] qvalue_2.28.0          parallelly_1.32.1      spatstat.random_2.2-0 
 [85] rstatix_0.7.0          gridGraphics_0.5-1     ggsignif_0.6.3        
 [88] scales_1.2.0           memoise_2.0.1          plyr_1.8.7            
 [91] ica_1.0-3              zlibbioc_1.42.0        compiler_4.2.1        
 [94] scatterpie_0.1.7       RColorBrewer_1.1-3     fitdistrplus_1.1-8    
 [97] cli_3.3.0              XVector_0.36.0         listenv_0.8.0         
[100] patchwork_1.1.1        pbapply_1.5-0          MASS_7.3-58           
[103] mgcv_1.8-40            tidyselect_1.1.2       stringi_1.7.8         
[106] highr_0.9              yaml_2.3.5             GOSemSim_2.22.0       
[109] ggrepel_0.9.1          sass_0.4.2             fastmatch_1.1-3       
[112] tools_4.2.1            future.apply_1.9.0     parallel_4.2.1        
[115] rstudioapi_0.13        git2r_0.30.1           farver_2.1.1          
[118] Rtsne_0.16             ggraph_2.0.5           digest_0.6.29         
[121] rgeos_0.5-9            shiny_1.7.2            Rcpp_1.0.9            
[124] car_3.1-0              broom_1.0.0            later_1.3.0           
[127] RcppAnnoy_0.0.19       httr_1.4.3             colorspace_2.0-3      
[130] rvest_1.0.2            fs_1.5.2               tensor_1.5            
[133] reticulate_1.25        splines_4.2.1          uwot_0.1.11           
[136] yulab.utils_0.0.5      tidytree_0.3.9         spatstat.utils_2.3-1  
[139] graphlayouts_0.8.0     ggplotify_0.1.0        plotly_4.10.0         
[142] xtable_1.8-4           jsonlite_1.8.0         ggtree_3.4.1          
[145] tidygraph_1.2.1        ggfun_0.0.6            R6_2.5.1              
[148] pillar_1.8.0           htmltools_0.5.3        mime_0.12             
[151] glue_1.6.2             fastmap_1.1.0          BiocParallel_1.30.3   
[154] codetools_0.2-18       utf8_1.2.2             lattice_0.20-45       
[157] bslib_0.4.0            spatstat.sparse_2.1-1  leiden_0.4.2          
[160] GO.db_3.15.0           survival_3.3-1         rmarkdown_2.14        
[163] munsell_0.5.0          DO.db_2.9              GenomeInfoDbData_1.2.8
[166] haven_2.5.0            reshape2_1.4.4         gtable_0.3.0          
[169] spatstat.core_2.4-4