Last updated: 2021-09-03

Checks: 6 1

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 09af7f9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/humanFibroblast/

Untracked files:
    Untracked:  analysis/mergeHumanSamples.Rmd
    Untracked:  metadata.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(ggpubr)
  library(pheatmap)
})

set dir

basedir <- here()
metaDat <- read_tsv(paste0(basedir, "/metadata.txt"), col_names = T)

load and assign samples

assignSamples <- function(smpNam, basedirSmp, smpTec, smpBatch, smpLoc, smpOri,
                          smpIso){
  smpNamFull <- list.files(path = paste0(basedirSmp, "/data/humanFibroblast/"),
                 pattern = paste0(smpNam, ".*_seurat.rds"))
  seuratSmp <- readRDS(paste0(basedirSmp, "/data/humanFibroblast/", smpNamFull))
  seuratSmp$technique <- smpTec
  seuratSmp$batch <- smpBatch
  seuratSmp$location <- smpLoc
  seuratSmp$origin <- smpOri
  seuratSmp$isolation <- smpIso
  return(seuratSmp)
}

####################################################################

for(i in 1:length(metaDat$Sample)){
  seuratX <- assignSamples(smpNam = metaDat$Sample[i],
                           basedirSmp = basedir,
                           smpTec = metaDat$technique[i],
                           smpBatch = metaDat$batch[i],
                           smpLoc = metaDat$location[i],
                           smpOri = metaDat$origin[i],
                           smpIso = metaDat$isolation[i])
  if(exists("seurat")){
    seurat <- merge(x = seurat, y = seuratX, project = "humanCardiacFibro")
  }else{
    seurat <- seuratX
  }
}

remove(seuratX)

run clustering and DR and remove contaminating cells

seurat <- rerunSeurat3(seurat)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8124
Number of edges: 308631

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9621
Number of communities: 14
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8124
Number of edges: 308631

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9234
Number of communities: 15
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8124
Number of edges: 308631

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9035
Number of communities: 18
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8124
Number of edges: 308631

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9454
Number of communities: 14
Elapsed time: 0 seconds
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026271.Grem1` >0) ## 5 cells
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026527.Bmp2` >0) ## 14104 cells

dat <- data.frame(table(seurat$dataset))
colnames(dat) <- c("dataset", "all")

knitr::kable(dat)
dataset all
1_20210811_Hu_nucleoi_seq_ECMO_Heart01_Myocardium_NextGEM 4041
10_20210817_Hu_nucleoi_seq_ECMO_Heart04_Myocardium_NextGEM 1549
2_20210811_Hu_nucleoi_seq_ECMO_Heart01_Septum_NextGEM 1895
3_20210811_Hu_cells_seq_ECMO_Heart01_Myocardium_NextGEM 395
4_20210811_Hu_cell_seq_ECMO_Heart01_Septum_NextGEM 244

color vectors

colPal <- pal_igv()(length(levels(seurat)))
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(8), pal_npg()(8))[1:length(unique(seurat$dataset))]
colLoc <- pal_npg()(length(unique(seurat$location)))
colBatch <- pal_jco()(length(unique(seurat$batch)))
colOrig <- pal_futurama()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))

names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colLoc) <- unique(seurat$location)
names(colBatch) <- unique(seurat$batch)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

technique

DimPlot(seurat, reduction = "umap", group.by = "technique", cols=colTec)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Sample

DimPlot(seurat, reduction = "umap", group.by = "dataset", cols=colSmp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

batch

DimPlot(seurat, reduction = "umap", group.by = "batch", cols=colBatch)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Origin

DimPlot(seurat, reduction = "umap", group.by = "origin", cols=colOrig)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

isolation

DimPlot(seurat, reduction = "umap", group.by = "isolation", cols=colIso)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

location

DimPlot(seurat, reduction = "umap", group.by = "location", cols=colLoc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

marker genes

seurat_markers_all <- FindAllMarkers(object = seurat, assay ="RNA",
                                     only.pos = TRUE, min.pct = 0.25,
                                     logfc.threshold = 0.25,
                                     test.use = "wilcox")

top 15 marker genes per cluster

cluster <- levels(seurat)
selGenesAll <- seurat_markers_all %>% group_by(cluster) %>% 
  top_n(-15, p_val_adj) %>% 
  top_n(15, avg_log2FC)
selGenesAll <- selGenesAll %>% mutate(geneIDval=gsub("^.*\\.", "", gene)) %>% filter(nchar(geneIDval)>1)

template_hm <- c(
    "#### {{cl}}\n",
    "```{r top marker {{cl}}, fig.height=8, fig.width=6, echo = FALSE}\n",
    "selGenes <- selGenesAll %>% filter(cluster=='{{cl}}')",
    "pOut <- avgHeatmap(seurat = seurat, selGenes = selGenes,
                  colVecIdent = colPal, 
                  ordVec=levels(seurat),
                  gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                  cr=T, condCol=F)\n",
    "```\n",
    "\n"
  )

plots_gp <- lapply(cluster, 
  function(cl) knitr::knit_expand(text = template_hm)
)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

save objects

Idents(seurat) <- seurat$seurat_clusters
saveRDS(seurat, file = paste0(basedir, 
                              "/data/humanHearts_merged_seurat.rds"))

write.table(seurat_markers_all,
            file=paste0(basedir, "/data/humanHearts_merged_markerGenes.txt"),
            row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t")

session info

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.1             
 [7] SeuratObject_4.0.2          Seurat_4.0.3               
 [9] forcats_0.5.1               stringr_1.4.0              
[11] dplyr_1.0.7                 purrr_0.3.4                
[13] readr_2.0.0                 tidyr_1.1.3                
[15] tibble_3.1.3                ggplot2_3.3.5              
[17] tidyverse_1.3.1             SingleCellExperiment_1.14.1
[19] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[21] GenomicRanges_1.44.0        GenomeInfoDb_1.28.1        
[23] IRanges_2.26.0              S4Vectors_0.30.0           
[25] BiocGenerics_0.38.0         MatrixGenerics_1.4.2       
[27] matrixStats_0.60.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.20        tidyselect_1.1.1      
  [4] htmlwidgets_1.5.3      grid_4.1.0             Rtsne_0.15            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.21.0          miniUI_0.1.1.1         withr_2.4.2           
 [13] colorspace_2.0-2       highr_0.9              knitr_1.33            
 [16] rstudioapi_0.13        ROCR_1.0-11            ggsignif_0.6.2        
 [19] tensor_1.5             listenv_0.8.0          labeling_0.4.2        
 [22] git2r_0.28.0           GenomeInfoDbData_1.2.6 polyclip_1.10-0       
 [25] farver_2.1.0           bit64_4.0.5            rprojroot_2.0.2       
 [28] parallelly_1.27.0      vctrs_0.3.8            generics_0.1.0        
 [31] xfun_0.25              R6_2.5.0               bitops_1.0-7          
 [34] spatstat.utils_2.2-0   DelayedArray_0.18.0    assertthat_0.2.1      
 [37] promises_1.2.0.1       scales_1.1.1           vroom_1.5.4           
 [40] gtable_0.3.0           globals_0.14.0         goftest_1.2-2         
 [43] workflowr_1.6.2        rlang_0.4.11           splines_4.1.0         
 [46] rstatix_0.7.0          lazyeval_0.2.2         spatstat.geom_2.2-2   
 [49] broom_0.7.9            yaml_2.2.1             reshape2_1.4.4        
 [52] abind_1.4-5            modelr_0.1.8           backports_1.2.1       
 [55] httpuv_1.6.1           tools_4.1.0            ellipsis_0.3.2        
 [58] spatstat.core_2.3-0    jquerylib_0.1.4        RColorBrewer_1.1-2    
 [61] ggridges_0.5.3         Rcpp_1.0.7             plyr_1.8.6            
 [64] zlibbioc_1.38.0        RCurl_1.98-1.3         rpart_4.1-15          
 [67] deldir_0.2-10          pbapply_1.4-3          cowplot_1.1.1         
 [70] zoo_1.8-9              haven_2.4.3            ggrepel_0.9.1         
 [73] cluster_2.1.2          fs_1.5.0               RSpectra_0.16-0       
 [76] data.table_1.14.0      scattermore_0.7        openxlsx_4.2.4        
 [79] lmtest_0.9-38          reprex_2.0.1           RANN_2.6.1            
 [82] fitdistrplus_1.1-5     hms_1.1.0              patchwork_1.1.1       
 [85] mime_0.11              evaluate_0.14          xtable_1.8-4          
 [88] rio_0.5.27             readxl_1.3.1           gridExtra_2.3         
 [91] compiler_4.1.0         KernSmooth_2.23-20     crayon_1.4.1          
 [94] htmltools_0.5.1.1      mgcv_1.8-36            later_1.2.0           
 [97] tzdb_0.1.2             lubridate_1.7.10       DBI_1.1.1             
[100] dbplyr_2.1.1           MASS_7.3-54            Matrix_1.3-4          
[103] car_3.0-11             cli_3.0.1              igraph_1.2.6          
[106] pkgconfig_2.0.3        foreign_0.8-81         plotly_4.9.4.1        
[109] spatstat.sparse_2.0-0  xml2_1.3.2             bslib_0.2.5.1         
[112] XVector_0.32.0         rvest_1.0.1            digest_0.6.27         
[115] sctransform_0.3.2      RcppAnnoy_0.0.19       spatstat.data_2.1-0   
[118] rmarkdown_2.10         cellranger_1.1.0       leiden_0.3.9          
[121] uwot_0.1.10            curl_4.3.2             shiny_1.6.0           
[124] lifecycle_1.0.0        nlme_3.1-152           jsonlite_1.7.2        
[127] carData_3.0-4          limma_3.48.2           viridisLite_0.4.0     
[130] fansi_0.5.0            pillar_1.6.2           lattice_0.20-44       
[133] fastmap_1.1.0          httr_1.4.2             survival_3.2-11       
[136] glue_1.4.2             zip_2.2.0              png_0.1-7             
[139] bit_4.0.4              stringi_1.7.3          sass_0.4.0            
[142] irlba_2.3.3            future.apply_1.7.0    
date()
[1] "Fri Sep  3 15:56:37 2021"

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.1             
 [7] SeuratObject_4.0.2          Seurat_4.0.3               
 [9] forcats_0.5.1               stringr_1.4.0              
[11] dplyr_1.0.7                 purrr_0.3.4                
[13] readr_2.0.0                 tidyr_1.1.3                
[15] tibble_3.1.3                ggplot2_3.3.5              
[17] tidyverse_1.3.1             SingleCellExperiment_1.14.1
[19] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[21] GenomicRanges_1.44.0        GenomeInfoDb_1.28.1        
[23] IRanges_2.26.0              S4Vectors_0.30.0           
[25] BiocGenerics_0.38.0         MatrixGenerics_1.4.2       
[27] matrixStats_0.60.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.20        tidyselect_1.1.1      
  [4] htmlwidgets_1.5.3      grid_4.1.0             Rtsne_0.15            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.21.0          miniUI_0.1.1.1         withr_2.4.2           
 [13] colorspace_2.0-2       highr_0.9              knitr_1.33            
 [16] rstudioapi_0.13        ROCR_1.0-11            ggsignif_0.6.2        
 [19] tensor_1.5             listenv_0.8.0          labeling_0.4.2        
 [22] git2r_0.28.0           GenomeInfoDbData_1.2.6 polyclip_1.10-0       
 [25] farver_2.1.0           bit64_4.0.5            rprojroot_2.0.2       
 [28] parallelly_1.27.0      vctrs_0.3.8            generics_0.1.0        
 [31] xfun_0.25              R6_2.5.0               bitops_1.0-7          
 [34] spatstat.utils_2.2-0   DelayedArray_0.18.0    assertthat_0.2.1      
 [37] promises_1.2.0.1       scales_1.1.1           vroom_1.5.4           
 [40] gtable_0.3.0           globals_0.14.0         goftest_1.2-2         
 [43] workflowr_1.6.2        rlang_0.4.11           splines_4.1.0         
 [46] rstatix_0.7.0          lazyeval_0.2.2         spatstat.geom_2.2-2   
 [49] broom_0.7.9            yaml_2.2.1             reshape2_1.4.4        
 [52] abind_1.4-5            modelr_0.1.8           backports_1.2.1       
 [55] httpuv_1.6.1           tools_4.1.0            ellipsis_0.3.2        
 [58] spatstat.core_2.3-0    jquerylib_0.1.4        RColorBrewer_1.1-2    
 [61] ggridges_0.5.3         Rcpp_1.0.7             plyr_1.8.6            
 [64] zlibbioc_1.38.0        RCurl_1.98-1.3         rpart_4.1-15          
 [67] deldir_0.2-10          pbapply_1.4-3          cowplot_1.1.1         
 [70] zoo_1.8-9              haven_2.4.3            ggrepel_0.9.1         
 [73] cluster_2.1.2          fs_1.5.0               RSpectra_0.16-0       
 [76] data.table_1.14.0      scattermore_0.7        openxlsx_4.2.4        
 [79] lmtest_0.9-38          reprex_2.0.1           RANN_2.6.1            
 [82] fitdistrplus_1.1-5     hms_1.1.0              patchwork_1.1.1       
 [85] mime_0.11              evaluate_0.14          xtable_1.8-4          
 [88] rio_0.5.27             readxl_1.3.1           gridExtra_2.3         
 [91] compiler_4.1.0         KernSmooth_2.23-20     crayon_1.4.1          
 [94] htmltools_0.5.1.1      mgcv_1.8-36            later_1.2.0           
 [97] tzdb_0.1.2             lubridate_1.7.10       DBI_1.1.1             
[100] dbplyr_2.1.1           MASS_7.3-54            Matrix_1.3-4          
[103] car_3.0-11             cli_3.0.1              igraph_1.2.6          
[106] pkgconfig_2.0.3        foreign_0.8-81         plotly_4.9.4.1        
[109] spatstat.sparse_2.0-0  xml2_1.3.2             bslib_0.2.5.1         
[112] XVector_0.32.0         rvest_1.0.1            digest_0.6.27         
[115] sctransform_0.3.2      RcppAnnoy_0.0.19       spatstat.data_2.1-0   
[118] rmarkdown_2.10         cellranger_1.1.0       leiden_0.3.9          
[121] uwot_0.1.10            curl_4.3.2             shiny_1.6.0           
[124] lifecycle_1.0.0        nlme_3.1-152           jsonlite_1.7.2        
[127] carData_3.0-4          limma_3.48.2           viridisLite_0.4.0     
[130] fansi_0.5.0            pillar_1.6.2           lattice_0.20-44       
[133] fastmap_1.1.0          httr_1.4.2             survival_3.2-11       
[136] glue_1.4.2             zip_2.2.0              png_0.1-7             
[139] bit_4.0.4              stringi_1.7.3          sass_0.4.0            
[142] irlba_2.3.3            future.apply_1.7.0