Last updated: 2023-11-27
Checks: 7 0
Knit directory: Cardiotoxicity/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230109)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 522ca8c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/variance_values by gene.png
Ignored: data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
Ignored: data/Arr_GWAS.txt
Ignored: data/Arr_geneset.RDS
Ignored: data/BC_cell_lines.csv
Ignored: data/BurridgeDOXTOX.RDS
Ignored: data/CADGWASgene_table.csv
Ignored: data/CAD_geneset.RDS
Ignored: data/CALIMA_Data/
Ignored: data/Clamp_Summary.csv
Ignored: data/Cormotif_24_k1-5_raw.RDS
Ignored: data/Counts_RNA_ERMatthews.txt
Ignored: data/DAgostres24.RDS
Ignored: data/DAtable1.csv
Ignored: data/DDEMresp_list.csv
Ignored: data/DDE_reQTL.txt
Ignored: data/DDEresp_list.csv
Ignored: data/DEG-GO/
Ignored: data/DEG_cormotif.RDS
Ignored: data/DF_Plate_Peak.csv
Ignored: data/DRC48hoursdata.csv
Ignored: data/Da24counts.txt
Ignored: data/Dx24counts.txt
Ignored: data/Dx_reQTL_specific.txt
Ignored: data/EPIstorelist24.RDS
Ignored: data/Ep24counts.txt
Ignored: data/FC_necela.RDS
Ignored: data/FC_necela_names.RDS
Ignored: data/Full_LD_rep.csv
Ignored: data/GOIsig.csv
Ignored: data/GOplots.R
Ignored: data/GTEX_setsimple.csv
Ignored: data/GTEX_sig24.RDS
Ignored: data/GTEx_gene_list.csv
Ignored: data/HFGWASgene_table.csv
Ignored: data/HF_geneset.RDS
Ignored: data/Heart_Left_Ventricle.v8.egenes.txt
Ignored: data/Heatmap_mat.RDS
Ignored: data/Heatmap_sig.RDS
Ignored: data/Hf_GWAS.txt
Ignored: data/K_cluster
Ignored: data/K_cluster_kisthree.csv
Ignored: data/K_cluster_kistwo.csv
Ignored: data/Knowles_log2cpm_real.RDS
Ignored: data/Knowles_variation_data.RDS
Ignored: data/Knowlesvarlist.RDS
Ignored: data/LD50_05via.csv
Ignored: data/LDH48hoursdata.csv
Ignored: data/Mt24counts.txt
Ignored: data/NoRespDEG_final.csv
Ignored: data/RINsamplelist.txt
Ignored: data/RNA_seq_trial.RDS
Ignored: data/Seonane2019supp1.txt
Ignored: data/TMMnormed_x.RDS
Ignored: data/TOP2Bi-24hoursGO_analysis.csv
Ignored: data/TR24counts.txt
Ignored: data/TableS10.csv
Ignored: data/TableS11.csv
Ignored: data/TableS9.csv
Ignored: data/Top2_expression.RDS
Ignored: data/Top2biresp_cluster24h.csv
Ignored: data/Var_test_list.RDS
Ignored: data/Var_test_list24.RDS
Ignored: data/Var_test_list24alt.RDS
Ignored: data/Var_test_list3.RDS
Ignored: data/Vargenes.RDS
Ignored: data/Viabilitylistfull.csv
Ignored: data/allexpressedgenes.txt
Ignored: data/allfinal3hour.RDS
Ignored: data/allgenes.txt
Ignored: data/allmatrix.RDS
Ignored: data/allmymatrix.RDS
Ignored: data/annotation_data_frame.RDS
Ignored: data/averageviabilitytable.RDS
Ignored: data/avgLD50.RDS
Ignored: data/avg_LD50.RDS
Ignored: data/backGL.txt
Ignored: data/burr_genes.RDS
Ignored: data/calcium_data.RDS
Ignored: data/clamp_summary.RDS
Ignored: data/cormotif_3hk1-8.RDS
Ignored: data/cormotif_initalK5.RDS
Ignored: data/cormotif_initialK5.RDS
Ignored: data/cormotif_initialall.RDS
Ignored: data/cormotifprobs.csv
Ignored: data/counts24hours.RDS
Ignored: data/cpmcount.RDS
Ignored: data/cpmnorm_counts.csv
Ignored: data/crispr_genes.csv
Ignored: data/ctnnt_results.txt
Ignored: data/cvd_GWAS.txt
Ignored: data/dat_cpm.RDS
Ignored: data/data_outline.txt
Ignored: data/drug_noveh1.csv
Ignored: data/efit2.RDS
Ignored: data/efit2_final.RDS
Ignored: data/efit2results.RDS
Ignored: data/ensembl_backup.RDS
Ignored: data/ensgtotal.txt
Ignored: data/filcpm_counts.RDS
Ignored: data/filenameonly.txt
Ignored: data/filtered_cpm_counts.csv
Ignored: data/filtered_raw_counts.csv
Ignored: data/filtermatrix_x.RDS
Ignored: data/folder_05top/
Ignored: data/geneDoxonlyQTL.csv
Ignored: data/gene_corr_df.RDS
Ignored: data/gene_corr_frame.RDS
Ignored: data/gene_prob_tran3h.RDS
Ignored: data/gene_probabilityk5.RDS
Ignored: data/geneset_24.RDS
Ignored: data/gostresTop2bi_ER.RDS
Ignored: data/gostresTop2bi_LR
Ignored: data/gostresTop2bi_LR.RDS
Ignored: data/gostresTop2bi_TI.RDS
Ignored: data/gostrescoNR
Ignored: data/gtex/
Ignored: data/heartgenes.csv
Ignored: data/hsa_kegg_anno.RDS
Ignored: data/individualDRCfile.RDS
Ignored: data/individual_DRC48.RDS
Ignored: data/individual_LDH48.RDS
Ignored: data/indv_noveh1.csv
Ignored: data/kegglistDEG.RDS
Ignored: data/kegglistDEG24.RDS
Ignored: data/kegglistDEG3.RDS
Ignored: data/knowfig4.csv
Ignored: data/knowfig5.csv
Ignored: data/label_list.RDS
Ignored: data/ld50_table.csv
Ignored: data/mean_vardrug1.csv
Ignored: data/mean_varframe.csv
Ignored: data/mymatrix.RDS
Ignored: data/new_ld50avg.RDS
Ignored: data/nonresponse_cluster24h.csv
Ignored: data/norm_LDH.csv
Ignored: data/norm_counts.csv
Ignored: data/old_sets/
Ignored: data/organized_drugframe.csv
Ignored: data/plan2plot.png
Ignored: data/plot_intv_list.RDS
Ignored: data/plot_list_DRC.RDS
Ignored: data/qval24hr.RDS
Ignored: data/qval3hr.RDS
Ignored: data/qvalueEPItemp.RDS
Ignored: data/raw_counts.csv
Ignored: data/response_cluster24h.csv
Ignored: data/sampsettrz.RDS
Ignored: data/sigVDA24.txt
Ignored: data/sigVDA3.txt
Ignored: data/sigVDX24.txt
Ignored: data/sigVDX3.txt
Ignored: data/sigVEP24.txt
Ignored: data/sigVEP3.txt
Ignored: data/sigVMT24.txt
Ignored: data/sigVMT3.txt
Ignored: data/sigVTR24.txt
Ignored: data/sigVTR3.txt
Ignored: data/siglist.RDS
Ignored: data/siglist_final.RDS
Ignored: data/siglist_old.RDS
Ignored: data/slope_table.csv
Ignored: data/supp10_24hlist.RDS
Ignored: data/supp10_3hlist.RDS
Ignored: data/supp_normLDH48.RDS
Ignored: data/supp_pca_all_anno.RDS
Ignored: data/table3a.omar
Ignored: data/test_run_sample_list.txt
Ignored: data/testlist.txt
Ignored: data/toplistall.RDS
Ignored: data/trtonly_24h_genes.RDS
Ignored: data/trtonly_3h_genes.RDS
Ignored: data/tvl24hour.txt
Ignored: data/tvl24hourw.txt
Ignored: data/venn_code.R
Ignored: data/viability.RDS
Untracked files:
Untracked: .RDataTmp
Untracked: .RDataTmp1
Untracked: .RDataTmp2
Untracked: .RDataTmp3
Untracked: 3hr all.pdf
Untracked: Code_files_list.csv
Untracked: Data_files_list.csv
Untracked: Doxorubicin_vehicle_3_24.csv
Untracked: Doxtoplist.csv
Untracked: EPIqvalue_analysis.Rmd
Untracked: GWAS_list_of_interest.xlsx
Untracked: KEGGpathwaylist.R
Untracked: OmicNavigator_learn.R
Untracked: SigDoxtoplist.csv
Untracked: analysis/DRC_viability_check.Rmd
Untracked: analysis/cellcycle_kegg_genes.R
Untracked: analysis/ciFIT.R
Untracked: analysis/export_to_excel.R
Untracked: analysis/featureCountsPLAY.R
Untracked: cleanupfiles_script.R
Untracked: code/biomart_gene_names.R
Untracked: code/constantcode.R
Untracked: code/corMotifcustom.R
Untracked: code/cpm_boxplot.R
Untracked: code/extracting_ggplot_data.R
Untracked: code/movingfilesto_ppl.R
Untracked: code/pearson_extract_func.R
Untracked: code/pearson_tox_extract.R
Untracked: code/plot1C.fun.R
Untracked: code/spearman_extract_func.R
Untracked: code/venndiagramcolor_control.R
Untracked: cormotif_p.post.list_4.csv
Untracked: figS1024h.pdf
Untracked: individual-legenddark2.png
Untracked: installed_old.rda
Untracked: motif_ER.txt
Untracked: motif_LR.txt
Untracked: motif_NR.txt
Untracked: motif_TI.txt
Untracked: output/DNR_DEGlist.csv
Untracked: output/DNRvenn.RDS
Untracked: output/DOX_DEGlist.csv
Untracked: output/DOXvenn.RDS
Untracked: output/EPI_DEGlist.csv
Untracked: output/EPIvenn.RDS
Untracked: output/FC_necela.RDS
Untracked: output/Figures/
Untracked: output/GTEXv8_gene_median_tpm.RDS
Untracked: output/GTEXv8_gene_tpm_heart_left_ventricle.RDS
Untracked: output/KEGGcellcyclegenes.RDS
Untracked: output/Knowles_log2cpm.csv
Untracked: output/MTX_DEGlist.csv
Untracked: output/MTXvenn.RDS
Untracked: output/SETA_analysis_reyes.RDS
Untracked: output/TRZ_DEGlist.csv
Untracked: output/TableS8.csv
Untracked: output/Volcanoplot_10
Untracked: output/Volcanoplot_10.RDS
Untracked: output/allfinal_sup10.RDS
Untracked: output/counts_v8_heart_left_ventricle_gct.RDS
Untracked: output/crisprfoldchange.RDS
Untracked: output/endocytosisgenes.csv
Untracked: output/gene_corr_fig9.RDS
Untracked: output/legend_b.RDS
Untracked: output/motif_ERrep.RDS
Untracked: output/motif_LRrep.RDS
Untracked: output/motif_NRrep.RDS
Untracked: output/motif_TI_rep.RDS
Untracked: output/output-old/
Untracked: output/rank24genes.csv
Untracked: output/rank3genes.csv
Untracked: output/reneem@ls6.tacc.utexas.edu
Untracked: output/sequencinginformationforsupp.csv
Untracked: output/sequencinginformationforsupp.prn
Untracked: output/sigVDA24.txt
Untracked: output/sigVDA3.txt
Untracked: output/sigVDX24.txt
Untracked: output/sigVDX3.txt
Untracked: output/sigVEP24.txt
Untracked: output/sigVEP3.txt
Untracked: output/sigVMT24.txt
Untracked: output/sigVMT3.txt
Untracked: output/sigVTR24.txt
Untracked: output/sigVTR3.txt
Untracked: output/supplementary_motif_list_GO.RDS
Untracked: output/toptablebydrug.RDS
Untracked: output/trop_knowles_fun.csv
Untracked: output/tvl24hour.txt
Untracked: output/x_counts.RDS
Untracked: reneebasecode.R
Unstaged changes:
Modified: analysis/GTEx_genes.Rmd
Modified: analysis/Var_genes.Rmd
Modified: analysis/after_comments.Rmd
Modified: analysis/variance_scrip.Rmd
Modified: output/daplot.RDS
Modified: output/dxplot.RDS
Modified: output/epplot.RDS
Modified: output/mtplot.RDS
Modified: output/plan2plot.png
Modified: output/trplot.RDS
Modified: output/veplot.RDS
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/Knowels_trop_analysis.Rmd
)
and HTML (docs/Knowels_trop_analysis.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 522ca8c | reneeisnowhere | 2023-11-27 | adding more analysis |
html | b474072 | reneeisnowhere | 2023-11-21 | Build site. |
Rmd | 5c45b92 | reneeisnowhere | 2023-11-21 | adding knowles data again |
html | b4d55c4 | reneeisnowhere | 2023-11-21 | Build site. |
Rmd | b1b9563 | reneeisnowhere | 2023-11-21 | adding logcpm with knowles data |
html | b442590 | reneeisnowhere | 2023-11-21 | Build site. |
Rmd | b464f89 | reneeisnowhere | 2023-11-21 | updates to links again |
html | 19a3502 | reneeisnowhere | 2023-11-21 | Build site. |
Rmd | d17d270 | reneeisnowhere | 2023-11-21 | adding links |
html | c72467c | reneeisnowhere | 2023-11-09 | Build site. |
Rmd | 8a6ebc1 | reneeisnowhere | 2023-11-09 | updates on plots |
html | 9af9df6 | reneeisnowhere | 2023-11-09 | Build site. |
Rmd | 60c64d1 | reneeisnowhere | 2023-11-09 | adding boxplots |
html | d12232a | reneeisnowhere | 2023-11-07 | Build site. |
Rmd | 441f82b | reneeisnowhere | 2023-11-07 | adding more code |
html | cae46a9 | reneeisnowhere | 2023-11-07 | Build site. |
html | bd0342c | reneeisnowhere | 2023-11-07 | Build site. |
Rmd | 453ebe6 | reneeisnowhere | 2023-11-07 | adding code |
Rmd | d6ecce9 | reneeisnowhere | 2023-11-07 | adding code |
html | ae9124e | reneeisnowhere | 2023-10-30 | Build site. |
Rmd | 74c2dc1 | reneeisnowhere | 2023-10-30 | updated |
Rmd | d970e84 | reneeisnowhere | 2023-10-30 | adding more analysis |
library(tidyverse)
library(ggsignif)
library(cowplot)
library(ggpubr)
library(scales)
library(sjmisc)
library(kableExtra)
library(broom)
library(ComplexHeatmap)
library(ggVennDiagram)
library(biomaRt)
library(limma)
library(edgeR)
library(RColorBrewer)
palette_colors_mine <- colorRampPalette(colors = c("green","white","purple","red" ))(60)
scales::show_col(palette_colors_mine)
Here I will attempt to recreate my correlation analysis on the knowles data using their troponin and RNAseq log2cpm.
### genes I want to know about
interest_genes <- read.csv("output/GOI_genelist.txt", row.names = 1)
trop_knowles <- read.csv("output/trop_knowles_fun.csv", row.names = 1)
Knowles_log2cpm <- readRDS("data/Knowles_log2cpm_real.RDS")
trop0.625 <- trop_knowles %>%
filter(dosage <1)
store <- Knowles_log2cpm %>%
dplyr::select( 'ESGN',ends_with(c('0.625', '0'))) %>%
dplyr::filter(ESGN %in% interest_genes$ensembl_gene_id) %>%
pivot_longer(cols=!ESGN, names_to = "ind", values_to = "counts") %>%
separate(ind,into=c("cell_line","dosage"), sep = ":") %>%
mutate(dosage = as.numeric(dosage)) %>%
full_join(., trop0.625, by=c("cell_line", "dosage")) %>%
group_by(cell_line) %>%
full_join(., interest_genes, by = c("ESGN" = "ensembl_gene_id"))
###new graph stuff
for (gene in interest_genes$ensembl_gene_id){
gene_plot <- store %>%
dplyr::filter(ESGN == gene) %>%
ggplot(., aes(x=troponin, y=counts))+
geom_point(aes(col=cell_line))+
geom_smooth(method="lm")+
facet_wrap(hgnc_symbol~dosage, scales="free")+
theme_classic()+
xlab("troponin I expression") +
ylab("Gene counts in log2 cpm") +
ggtitle(expression(paste("Correlation between counts and troponin I Knowles")))+
scale_color_manual(values = palette_colors_mine, aesthetics = c("color", "fill"), guide=FALSE)+
# guides(fill="none")+
ggpubr:: stat_cor(method="spearman",
# cor.coef.name="rho",
aes(label = paste(..r.label.., ..p.label.., sep = "~`,\n`~")),
color = "black",
label.x.npc = 0.01,
label.y.npc=0.01,
size = 3)+
theme(plot.title = element_text(size = rel(1.5), hjust = 0.5,face = "bold"),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(size = 1.5),
axis.text = element_text(size = 8, color = "black", angle = 20),
strip.text.x = element_text(size = 12, color = "black", face = "italic"))
print(gene_plot)
}
Version | Author | Date |
---|---|---|
bd0342c | reneeisnowhere | 2023-11-07 |
Version | Author | Date |
---|---|---|
bd0342c | reneeisnowhere | 2023-11-07 |
Knowles Boxplots of Fig9 genes
Knowles_log2cpm_box <- readRDS("data/Knowles_log2cpm_real.RDS")
store_box <- Knowles_log2cpm_box %>%
# dplyr::select( 'ESGN',ends_with(c('0.625', '0'))) %>%
dplyr::filter(ESGN %in% interest_genes$ensembl_gene_id) %>%
pivot_longer(cols=!ESGN, names_to = "ind", values_to = "counts") %>%
separate(ind,into=c("cell_line","dosage"), sep = ":") %>%
mutate(dosage = as.numeric(dosage)) %>%
# full_join(., trop0.625, by=c("cell_line", "dosage")) %>%
group_by(cell_line) %>%
full_join(., interest_genes, by = c("ESGN" = "ensembl_gene_id"))
store_box %>%
mutate(dosage=factor(dosage, levels=c('0','0.000', '0.625','1.25', '2.5','5'))) %>%
ggplot(., aes(x=dosage,y=counts), group=dosage)+
geom_boxplot()+
facet_wrap(~hgnc_symbol)
Version | Author | Date |
---|---|---|
9af9df6 | reneeisnowhere | 2023-11-09 |
RNA_seq_trial<- readRDS("data/RNA_seq_trial.RDS")
all_cpmcount <- read_table("data/Counts_RNA_ERMatthews.txt")
cpm_count_main <- readRDS("data/cpmcount.RDS") %>% rownames_to_column(var = "ENTREZID")
colnames(cpm_count_main) <- colnames(all_cpmcount)
test_run_sample_list <- read.csv("data/test_run_sample_list.txt", row.names = 1)
colnames(RNA_seq_trial) <- c("ENTREZID",test_run_sample_list$Sample_ID)
lcpm_trial <- RNA_seq_trial %>%
column_to_rownames("ENTREZID") %>%
cpm(., log=TRUE) %>%
as.data.frame() #%>%
row_means <- rowMeans(lcpm_trial)
x_trial <- lcpm_trial[row_means > 0,]
dim(x_trial)
[1] 13277 4
list_genes_trial <- rownames(x_trial)
ggVennDiagram::ggVennDiagram(list(list_genes_trial, cpm_count_main$ENTREZID),
category.names = c("Trialgenes","Maingenes"),
show_intersect = TRUE,
set_color = "black",
label = "count",
label_percent_digit = 1,
label_size = 4,
label_alpha = 0,
label_color = "black",
edge_lty = "solid", set_size = 4.5)#+
lcpm_trial_full <- RNA_seq_trial %>%
column_to_rownames("ENTREZID") %>%
cpm(., log=TRUE) %>%
as.data.frame() %>%
rownames_to_column(var = "ENTREZID")
lcpm_trial_full %>%
column_to_rownames(var="ENTREZID") %>%
cor(.) %>%
Heatmap(.,layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 10))})
Version | Author | Date |
---|---|---|
ae9124e | reneeisnowhere | 2023-10-30 |
lcpm_main <- all_cpmcount %>%
column_to_rownames("ENTREZID") %>%
cpm(., log=TRUE) %>%
as.data.frame() %>%
rownames_to_column(var = "ENTREZID") %>%
dplyr::select(ENTREZID, all_of(starts_with("DOX"))) %>%
dplyr::select(ENTREZID, all_of(ends_with("3h")))
combined_data <- lcpm_main %>%
full_join(., lcpm_trial_full, by= "ENTREZID") %>%
column_to_rownames("ENTREZID") %>%
dplyr::select(starts_with("DOX"),`3hr_0.5`)%>%
cor(.,)
Heatmap(combined_data,column_title = "Full gene list",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(combined_data, i, j)), x, y,
gp = gpar(fontsize = 10))})
only79_ind <- lcpm_main %>%
full_join(., lcpm_trial_full, by= "ENTREZID") %>%
dplyr::select(ENTREZID,'3hr_0.5',"DOX.4.3h") %>%
column_to_rownames("ENTREZID") %>%
cor(.,)
Heatmap(only79_ind,column_title = "Full gene list_79",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(only79_ind, i, j)), x, y,
gp = gpar(fontsize = 10))})
lcpm_main_veh <- all_cpmcount %>%
column_to_rownames("ENTREZID") %>%
cpm(., log=TRUE) %>%
as.data.frame() %>%
rownames_to_column(var = "ENTREZID") %>%
dplyr::select(ENTREZID, all_of(c(starts_with("DOX"),starts_with("VEH")))) %>%
dplyr::select(ENTREZID, all_of(ends_with("3h")))
combined_data_veh<- lcpm_main_veh %>%
full_join(., lcpm_trial_full, by= "ENTREZID") %>%
column_to_rownames("ENTREZID") %>%
cor(.,)
Heatmap(combined_data_veh, column_title = "all genes in list, no filtering",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(combined_data_veh, i, j)), x, y,
gp = gpar(fontsize = 8))})
Version | Author | Date |
---|---|---|
ae9124e | reneeisnowhere | 2023-10-30 |
lcpm_trial_filter_main <- lcpm_trial_full %>%
filter(ENTREZID %in% cpm_count_main$ENTREZID)
lcpm_trial_filter_main %>%
column_to_rownames(var="ENTREZID") %>%
cor(.) %>%
Heatmap(.,column_title = "Using 14,084 expressed genes from Main data",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 8))})
Version | Author | Date |
---|---|---|
ae9124e | reneeisnowhere | 2023-10-30 |
lcpm_trial_filter <- lcpm_trial_full %>%
filter(ENTREZID %in% list_genes_trial)
lcpm_trial_filter %>%
column_to_rownames(var="ENTREZID") %>%
cor(.) %>%
Heatmap(.,column_title = "Using 13277 expressed genes",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 8))})
Version | Author | Date |
---|---|---|
ae9124e | reneeisnowhere | 2023-10-30 |
lcpm_main_filter_trial <- lcpm_main_veh %>%
filter(ENTREZID %in% list_genes_trial)
lcpm_trial_filter %>%
full_join(., lcpm_main_filter_trial, by = "ENTREZID") %>%
column_to_rownames(var="ENTREZID") %>%
cor(.) %>%
Heatmap(.,column_title = "Using 13277 expressed genes",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 8))})
Version | Author | Date |
---|---|---|
ae9124e | reneeisnowhere | 2023-10-30 |
lcpm_trial_filter_main %>%
left_join(., lcpm_main, by = "ENTREZID") %>%
column_to_rownames(var="ENTREZID") %>%
dplyr::select(DOX.4.3h,starts_with(("3hr")))%>%
cor(.) %>%
Heatmap(.,column_title = "Using 14084 expressed genes, just 79-1",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 8))})
Version | Author | Date |
---|---|---|
bd0342c | reneeisnowhere | 2023-11-07 |
hr3_indv4 <- lcpm_trial_filter_main %>%
left_join(., lcpm_main, by = "ENTREZID") %>%
column_to_rownames(var="ENTREZID") %>%
dplyr::select(DOX.4.3h,`3hr_0.5`,`3hr_0.0`)%>%
cor(.) %>%
Heatmap(.,column_title = "Using 14084 expressed genes, just 79-1",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 8))})
plot(hr3_indv4)
Version | Author | Date |
---|---|---|
bd0342c | reneeisnowhere | 2023-11-07 |
correlation heatmap of 3hr Dox 1-6 individuals and trial data
lcpm_trial_filter_main %>%
left_join(., lcpm_main, by = "ENTREZID") %>%
column_to_rownames(var="ENTREZID") %>%
dplyr::select(starts_with("DOX"),`3hr_0.5`)%>%
cor(.) %>%
Heatmap(.,column_title = "Using 14084 expressed genes, just 79-1 with all 3 hour samples",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 8))})
Version | Author | Date |
---|---|---|
9af9df6 | reneeisnowhere | 2023-11-09 |
lcpm_main %>%
left_join(., lcpm_trial_full, by = "ENTREZID") %>%
column_to_rownames(var="ENTREZID") %>%
dplyr::select(starts_with("DOX"),`3hr_0.5`)%>%
cor(.) %>%
Heatmap(.,column_title = "all 29395 genes expriment with trial 0.5 uM",
layer_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.3f", pindex(., i, j)), x, y,
gp = gpar(fontsize = 8))})
Version | Author | Date |
---|---|---|
b4d55c4 | reneeisnowhere | 2023-11-21 |
backGL <-read_csv("data/backGL.txt",
col_types = cols(...1 = col_skip()))
GOI_genelist <- read.csv("output/GOI_genelist.txt", row.names = 1)
cpm_boxplot_trial <-function(lcpm_trial, GOI, ylab) {
##GOI needs to be ENTREZID
df_plot <- lcpm_trial %>%
dplyr::filter(rownames(.)== GOI) %>%
pivot_longer(everything(),
names_to = "treatment",
values_to = "counts") %>%
separate(treatment, c("time","conc"), sep= "_") %>%
mutate(conc = factor(conc,levels=c('0.0','0.1','0.5','1.0'), labels = c ("NT", "0.1 uM", "0.5 uM", "1.0 uM")))
plota <- ggplot2::ggplot(df_plot, aes(x=conc, y= counts))+
geom_col(position="identity")+
theme_bw()+
ylab(ylab)+
xlab("")+
ggtitle(paste(GOI))+
theme(
# strip.background = element_rect(fill = "white",linetype=1, linewidth = 0.5),
plot.title = element_text(size=12,hjust = 0.5,face="bold"),
axis.title = element_text(size = 10, color = "black"),
axis.ticks = element_line(linewidth = 1.0),
panel.background = element_rect(colour = "black", size=1),
# axis.text.x = element_blank(),
strip.text.x = element_text(margin = margin(2,0,2,0, "pt"),face = "bold"))
print(plota)
}
for (g in seq(1:11)){
datafilter <- GOI_genelist
a <- GOI_genelist[g,3]
# b <- datafilter[g,1]
cpm_boxplot_trial(lcpm_trial,GOI=datafilter[g,1],
ylab =bquote(~italic(.(a))~log[2]~"cpm "))
}
expression of trial RNA seq data ### Knowles log2cpm 24hr and my log2cpm 24hr
library(ggsignif)
kcpm <- store_box %>%
mutate(dosage=factor(dosage, levels=c('0','0.000', '0.625','1.25', '2.5','5'))) %>%
dplyr::filter(dosage==("0")|dosage == "0.625") %>%
mutate(expr="K")
lcpm_24h <- all_cpmcount %>%
column_to_rownames("ENTREZID") %>%
cpm(., log=TRUE) %>%
as.data.frame() %>%
rownames_to_column(var = "ENTREZID") %>%
dplyr::select(ENTREZID, all_of(starts_with(c("DOX","VEH")))) %>%
dplyr::select(ENTREZID, all_of(ends_with("24h"))) %>%
dplyr::filter(ENTREZID %in% interest_genes$entrezgene_id) %>%
pivot_longer(cols=!ENTREZID, names_to = "ind", values_to = "counts") %>%
mutate(ENTREZID = as.numeric(ENTREZID)) %>%
full_join(., interest_genes, by = c("ENTREZID"="entrezgene_id")) %>%
mutate(expr="ME") %>%
rename("ESGN"="ensembl_gene_id","entrezgene_id"="ENTREZID") %>%
separate(ind, into = c("dosage","cell_line",NA)) %>%
mutate(dosage=case_match(dosage,"DOX"~"0.5", .default = dosage))
lcpm_24h %>%
rbind(.,kcpm) %>%
mutate(dosage=factor(dosage, levels=c('0','0.625',"VEH","0.5"))) %>%
ggplot(., aes(x=dosage,y=counts), group=expr)+
geom_boxplot()+
facet_wrap(~hgnc_symbol, scales="free_y" )#+
# geom_signif(
# comparisons = list(
# c('0', '0.5'),
# c('0', '0.625'),
# c('0.5','0.625')
# ),
# test = "t.test",
# tip_length = 0.01,
# map_signif_level = FALSE,
# textsize = 4,
# step_increase = 0.3
# )
store_var <- Knowles_log2cpm %>%
dplyr::select( 'ESGN',ends_with(c('0.625', '0'))) %>%
rowwise() %>%
mutate(mean_DOX=mean(c_across(ends_with('0.625'))),
var_DOX=var(c_across(ends_with('0.625'))),
mean_NT=mean(c_across(ends_with('0'))),
var_NT=var(c_across(ends_with('0')))) %>%
mutate(data=list(var.test(c_across(ends_with("0.625")),c_across(ends_with("0"))))) %>%
dplyr::select("ESGN","mean_DOX","var_DOX","mean_NT", "var_NT","data")
saveRDS(store_var, "data/Knowles_variation_data.RDS")
knowlesdrug<- store_var %>%
dplyr::select("ESGN","mean_DOX","var_DOX","mean_NT", "var_NT") %>%
pivot_longer(cols = !"ESGN", names_to = "short", values_to = "values") %>%
separate(short, into=c("calc","treatment")) #%>%
knowlesdrug %>%
as.data.frame() %>%
dplyr::filter(calc == "mean") %>%
ggplot(., aes(x= treatment, y=values))+
geom_boxplot()+
ggtitle("Knowles Means across all genes")+
geom_signif(
comparisons = list(
c("DOX", "NT")),
test = "t.test",
tip_length = 0.01,
map_signif_level = FALSE
# textsize = 4,
# # y_position = 11,
# step_increase = 0.05
)
knowlesdrug %>%
as.data.frame() %>%
dplyr::filter(calc == "var") %>%
ggplot(., aes(x= treatment, y=values))+
geom_boxplot(outlier.shape= NA)+
ggtitle(" Knowles Variance across all genes")+
geom_signif(
comparisons = list(
c("DOX", "NT")),
test = "t.test",
tip_length = 0.01,
y_position = 0.5,
# vjust=1,
map_signif_level = FALSE)+
ylim(NA,1.25)
library(qvalue)
p_list <- map_df(store_var$data,~as.data.frame(.x$p.value))
rownames(p_list) <- store_var$ESGN
estDOXk <- qvalue(p_list)
hist(estDOXk)
plot(estDOXk)
summary(estDOXk)
Call:
qvalue(p = p_list)
pi0: 0.3993136
Cumulative number of significant calls:
<1e-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1
p-value 1919 2762 4065 4832 5533 6453 12317
q-value 1616 2447 3895 4810 5723 6956 12317
local FDR 1143 1759 2724 3313 3800 4507 12317
knowlesvar <- data.frame("pvalues"=estDOXk$pvalues,"qvalues"=estDOXk$qvalues,"lfdr"= estDOXk$lfdr)
colnames(knowlesvar) <- c("pvalues", "qvalues","lfdr")
intersecting_K <- knowlesvar %>%
filter(lfdr<0.1)
my_qval_list24 <- readRDS("data/qval24hr.RDS")
EPI508_list <- my_qval_list24 %>%
dplyr::select(ENTREZID,EPIqvalues) %>%
filter(EPIqvalues<0.1) %>%
dplyr::select(ENTREZID) %>%
mutate(ENTREZID=as.numeric(ENTREZID)) %>%
left_join(.,backGL, by="ENTREZID")
Knowlesvarlist <- readRDS("data/Knowlesvarlist.RDS")
# Knowlesvarlist<- getBM(attributes=my_attributes,filters ='ensembl_gene_id',values = rownames(intersecting_K), mart = ensembl)
length(intersect(EPI508_list$ENTREZID,Knowlesvarlist$entrezgene_id))
[1] 299
intersect_genes <- EPI508_list %>%
dplyr::filter(ENTREZID %in% Knowlesvarlist$entrezgene_id)
intersect_genes %>%
kable(.,caption = "EPI Highly variable genes") %>%
kable_paper("striped", full_width = FALSE) %>%
kable_styling(full_width = TRUE, bootstrap_options = c("striped","hover")) %>%
scroll_box(width = "100%", height = "400px")
ENTREZID | SYMBOL |
---|---|
49856 | WRAP73 |
23463 | ICMT |
5195 | PEX14 |
23207 | PLEKHM2 |
79363 | CPLANE2 |
55160 | ARHGEF10L |
55616 | ASAP3 |
57095 | PITHD1 |
84065 | TMEM222 |
23673 | STX12 |
56063 | TMEM234 |
127544 | RNF19B |
113444 | SMIM12 |
27095 | TRAPPC3 |
112950 | MED8 |
9670 | IPO13 |
387338 | NSUN4 |
8543 | LMO4 |
64858 | DCLRE1B |
128077 | LIX1L |
6944 | VPS72 |
65005 | MRPL9 |
11266 | DUSP12 |
5279 | PIGC |
83479 | DDX59 |
134 | ADORA1 |
163859 | SDE2 |
5664 | PSEN2 |
65094 | JMJD4 |
126731 | CCSAP |
22796 | COG2 |
79723 | SUV39H2 |
253430 | IPMK |
26091 | HERC4 |
219738 | FAM241B |
11319 | ECD |
5532 | PPP3CB |
79933 | SYNPO2L |
118924 | FRA10AC1 |
10360 | NPM3 |
9937 | DCLRE1A |
9184 | BUB3 |
161 | AP2A2 |
10612 | TRIM3 |
65975 | STK33 |
113174 | SAAL1 |
627 | BDNF |
79797 | ZNF408 |
10978 | CLP1 |
55048 | VPS37C |
144097 | SPINDOC |
57410 | SCYL1 |
10432 | RBM14 |
338692 | ANKRD13D |
5883 | RAD9A |
116985 | ARAP1 |
282679 | AQP11 |
51585 | PCF11 |
60492 | CCDC90B |
54851 | ANKRD49 |
10929 | SRSF8 |
5049 | PAFAH1B2 |
219902 | TLCD5 |
219899 | TBCEL |
9538 | EI24 |
219833 | KCNJ5-AS1 |
57102 | C12orf4 |
8079 | MLF2 |
25977 | NECAP1 |
79657 | RPAP3 |
55652 | SLC48A1 |
1019 | CDK4 |
23041 | MON2 |
29110 | TBK1 |
253827 | MSRB3 |
117177 | RAB3IP |
22822 | PHLDA1 |
89795 | NAV3 |
1407 | CRY1 |
51228 | GLTP |
400073 | C12orf76 |
5564 | PRKAB1 |
51499 | TRIAP1 |
387893 | KMT5A |
11066 | SNRNP35 |
5901 | RAN |
283537 | SLC46A3 |
2963 | GTF2F2 |
337867 | UBAC2 |
3621 | ING1 |
253959 | RALGAPA1 |
123016 | TTC8 |
51527 | GSKIP |
2972 | BRF1 |
22893 | BAHD1 |
9325 | TRIP4 |
5371 | PML |
60490 | PPCDC |
84219 | WDR24 |
23059 | CLUAP1 |
2072 | ERCC4 |
91949 | COG7 |
29070 | CCDC113 |
8824 | CES2 |
1874 | E2F4 |
6560 | SLC12A4 |
146198 | ZFP90 |
5119 | CHMP1A |
64359 | NXN |
5048 | PAFAH1B1 |
9135 | RABEP1 |
57336 | ZNF287 |
79736 | TEFM |
55813 | UTP6 |
54475 | NLE1 |
5193 | PEX12 |
22794 | CASC3 |
3292 | HSD17B1 |
10614 | HEXIM1 |
114881 | OSBPL7 |
8405 | SPOP |
10237 | SLC35B1 |
81558 | FAM117A |
55316 | RSAD1 |
8161 | COIL |
6426 | SRSF1 |
54903 | MKS1 |
284161 | GDPD1 |
57508 | INTS2 |
84923 | FAM104A |
55028 | C17orf80 |
6730 | SRP68 |
9489 | PGS1 |
9775 | EIF4A3 |
57521 | RPTOR |
79643 | CHMP6 |
5881 | RAC3 |
55364 | IMPACT |
54531 | MIER2 |
126308 | MOB3A |
29985 | SLC39A3 |
51343 | FZR1 |
6455 | SH3GL1 |
5609 | MAP2K7 |
79603 | CERS4 |
93134 | ZNF561 |
2193 | FARSA |
85360 | SYDE1 |
8907 | AP1M1 |
54858 | PGPEP1 |
93436 | ARMC6 |
79414 | LRFN3 |
163087 | ZNF383 |
84503 | ZNF527 |
22835 | ZFP30 |
284323 | ZNF780A |
29950 | SERTAD1 |
90324 | CCDC97 |
56006 | SMG9 |
7773 | ZNF230 |
9668 | ZNF432 |
147657 | ZNF480 |
112724 | RDH13 |
163033 | ZNF579 |
147694 | ZNF548 |
100293516 | ZNF587B |
25799 | ZNF324 |
55006 | TRMT61B |
253635 | GPATCH11 |
92906 | HNRNPLL |
8491 | MAP4K3 |
57504 | MTA3 |
53335 | BCL11A |
5861 | RAB1A |
27332 | ZNF638 |
129303 | TMEM150A |
5903 | RANBP2 |
10254 | STAM2 |
79828 | METTL8 |
80067 | DCAF17 |
129831 | RBM45 |
3628 | INPP1 |
6775 | STAT4 |
9330 | GTF3C3 |
57404 | CYP20A1 |
377007 | KLHL30 |
4735 | SEPTIN2 |
80023 | NRSN2 |
55317 | AP5S1 |
64412 | GZF1 |
51230 | PHF20 |
25980 | AAR2 |
10904 | BLCAP |
51006 | SLC35C2 |
10564 | ARFGEF2 |
11054 | OGFR |
80331 | DNAJC5 |
29104 | N6AMT1 |
84221 | SPATC1L |
51586 | MED15 |
6598 | SMARCB1 |
84700 | MYO18B |
402055 | SRRD |
84164 | ASCC2 |
23780 | APOL2 |
129138 | ANKRD54 |
9463 | PICK1 |
84247 | RTL6 |
132001 | TAMM41 |
23609 | MKRN2 |
22908 | SACM1L |
51385 | ZNF589 |
64925 | CCDC71 |
11070 | TMEM115 |
28972 | SPCS1 |
25871 | NEPRO |
131601 | TPRA1 |
7879 | RAB7A |
51122 | COMMD2 |
86 | ACTL6A |
90407 | TMEM41A |
1487 | CTBP1 |
7469 | NELFA |
10606 | PAICS |
92597 | MOB1B |
266812 | NAP1L5 |
56916 | SMARCAD1 |
55212 | BBS7 |
90826 | PRMT9 |
4750 | NEK1 |
55100 | WDR70 |
55814 | BDP1 |
167153 | TENT2 |
9765 | ZFYVE16 |
55781 | RIOK2 |
90355 | MACIR |
153443 | SRFBP1 |
8572 | PDLIM4 |
202052 | DNAJC18 |
23438 | HARS2 |
10826 | FAXDC2 |
9443 | MED7 |
5917 | RARS1 |
8899 | PRPF4B |
10473 | HMGN4 |
7746 | ZSCAN9 |
8449 | DHX16 |
57827 | C6orf47 |
578 | BAK1 |
5467 | PPARD |
6428 | SRSF3 |
9477 | MED20 |
25821 | MTO1 |
57226 | LYRM2 |
26235 | FBXL4 |
91749 | MFSD4B |
10758 | TRAF3IP2 |
5689 | PSMB1 |
5575 | PRKAR1B |
90639 | COX19 |
84262 | PSMG3 |
8379 | MAD1L1 |
54476 | RNF216 |
221830 | POLR1F |
3364 | HUS1 |
55695 | NSUN5 |
9569 | GTF2IRD1 |
113878 | DTX2 |
6717 | SRI |
9069 | CLDN12 |
10898 | CPSF4 |
3268 | AGFG2 |
5001 | ORC5 |
60561 | RINT1 |
64418 | TMEM168 |
27153 | ZNF777 |
80346 | REEP4 |
5533 | PPP3CC |
23087 | TRIM35 |
90362 | FAM110B |
55824 | PAG1 |
55656 | INTS8 |
51123 | ZNF706 |
51105 | PHF20L1 |
203062 | TSNARE1 |
55958 | KLHL9 |
54840 | APTX |
55035 | NOL8 |
5998 | RGS3 |
399665 | FAM102A |
84885 | ZDHHC12 |
5900 | RALGDS |
6837 | MED22 |
57109 | REXO4 |
92715 | DPH7 |
23708 | GSPT2 |
29934 | SNX12 |
139596 | UPRT |
64860 | ARMCX5 |
# saveRDS(Knowlesvarlist,"data/Knowlesvarlist.RDS")
GO analysis on after_comments data here
sessionInfo()
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/Chicago
tzcode source: internal
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] qvalue_2.32.0 RColorBrewer_1.1-3 edgeR_3.42.4
[4] limma_3.56.2 biomaRt_2.56.1 ggVennDiagram_1.2.3
[7] ComplexHeatmap_2.16.0 broom_1.0.5 kableExtra_1.3.4
[10] sjmisc_2.8.9 scales_1.2.1 ggpubr_0.6.0
[13] cowplot_1.1.1 ggsignif_0.6.4 lubridate_1.9.3
[16] forcats_1.0.0 stringr_1.5.0 dplyr_1.1.3
[19] purrr_1.0.2 readr_2.1.4 tidyr_1.3.0
[22] tibble_3.2.1 ggplot2_3.4.4 tidyverse_2.0.0
[25] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] splines_4.3.1 later_1.3.1 bitops_1.0-7
[4] filelock_1.0.2 XML_3.99-0.15 lifecycle_1.0.4
[7] sf_1.0-14 rstatix_0.7.2 doParallel_1.0.17
[10] rprojroot_2.0.4 processx_3.8.2 lattice_0.22-5
[13] vroom_1.6.4 insight_0.19.6 crosstalk_1.2.0
[16] backports_1.4.1 magrittr_2.0.3 plotly_4.10.3
[19] sass_0.4.7 rmarkdown_2.25 jquerylib_0.1.4
[22] yaml_2.3.7 httpuv_1.6.12 DBI_1.1.3
[25] abind_1.4-5 zlibbioc_1.46.0 rvest_1.0.3
[28] BiocGenerics_0.46.0 RCurl_1.98-1.13 yulab.utils_0.1.0
[31] rappdirs_0.3.3 git2r_0.32.0 circlize_0.4.15
[34] GenomeInfoDbData_1.2.10 IRanges_2.34.1 S4Vectors_0.38.2
[37] units_0.8-4 svglite_2.1.2 codetools_0.2-19
[40] xml2_1.3.5 tidyselect_1.2.0 shape_1.4.6
[43] farver_2.1.1 matrixStats_1.1.0 stats4_4.3.1
[46] BiocFileCache_2.8.0 webshot_0.5.5 jsonlite_1.8.7
[49] GetoptLong_1.0.5 e1071_1.7-13 ellipsis_0.3.2
[52] iterators_1.0.14 systemfonts_1.0.5 foreach_1.5.2
[55] tools_4.3.1 progress_1.2.2 Rcpp_1.0.11
[58] glue_1.6.2 xfun_0.41 mgcv_1.9-0
[61] GenomeInfoDb_1.36.4 withr_2.5.2 fastmap_1.1.1
[64] fansi_1.0.5 callr_3.7.3 digest_0.6.33
[67] timechange_0.2.0 R6_2.5.1 colorspace_2.1-0
[70] RSQLite_2.3.3 utf8_1.2.4 generics_0.1.3
[73] data.table_1.14.8 class_7.3-22 prettyunits_1.2.0
[76] httr_1.4.7 htmlwidgets_1.6.2 whisker_0.4.1
[79] pkgconfig_2.0.3 gtable_0.3.4 blob_1.2.4
[82] XVector_0.40.0 htmltools_0.5.7 carData_3.0-5
[85] clue_0.3-65 Biobase_2.60.0 png_0.1-8
[88] knitr_1.45 rstudioapi_0.15.0 tzdb_0.4.0
[91] reshape2_1.4.4 rjson_0.2.21 nlme_3.1-163
[94] curl_5.1.0 proxy_0.4-27 cachem_1.0.8
[97] GlobalOptions_0.1.2 sjlabelled_1.2.0 RVenn_1.1.0
[100] KernSmooth_2.23-22 parallel_4.3.1 AnnotationDbi_1.62.2
[103] pillar_1.9.0 vctrs_0.6.4 promises_1.2.1
[106] car_3.1-2 dbplyr_2.3.4 cluster_2.1.4
[109] evaluate_0.23 magick_2.8.1 cli_3.6.1
[112] locfit_1.5-9.8 compiler_4.3.1 rlang_1.1.2
[115] crayon_1.5.2 labeling_0.4.3 classInt_0.4-10
[118] ps_1.7.5 plyr_1.8.9 getPass_0.2-2
[121] fs_1.6.3 stringi_1.7.12 viridisLite_0.4.2
[124] munsell_0.5.0 Biostrings_2.68.1 lazyeval_0.2.2
[127] Matrix_1.6-2 hms_1.1.3 bit64_4.0.5
[130] KEGGREST_1.40.1 highr_0.10 memoise_2.0.1
[133] bslib_0.5.1 bit_4.0.5