Last updated: 2023-06-15

Checks: 5 2

Knit directory: Cardiotoxicity/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230109) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
C:/Program Files/R_WD/Cardiotoxicity/output/Fig_summary1.png output/Fig_summary1.png
C:/Program Files/R_WD/Cardiotoxicity/output/plan2plot.png output/plan2plot.png

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a2aa7e4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
    Ignored:    data/Arr_GWAS.txt
    Ignored:    data/Arr_geneset.RDS
    Ignored:    data/BC_cell_lines.csv
    Ignored:    data/CADGWASgene_table.csv
    Ignored:    data/CAD_geneset.RDS
    Ignored:    data/Clamp_Summary.csv
    Ignored:    data/Cormotif_24_k1-5_raw.RDS
    Ignored:    data/DAgostres24.RDS
    Ignored:    data/DAtable1.csv
    Ignored:    data/DDEMresp_list.csv
    Ignored:    data/DDE_reQTL.txt
    Ignored:    data/DDEresp_list.csv
    Ignored:    data/DEG-GO/
    Ignored:    data/DEG_cormotif.RDS
    Ignored:    data/DF_Plate_Peak.csv
    Ignored:    data/DRC48hoursdata.csv
    Ignored:    data/Da24counts.txt
    Ignored:    data/Dx24counts.txt
    Ignored:    data/Dx_reQTL_specific.txt
    Ignored:    data/Ep24counts.txt
    Ignored:    data/GOIsig.csv
    Ignored:    data/GOplots.R
    Ignored:    data/GTEX_setsimple.csv
    Ignored:    data/GTEx_gene_list.csv
    Ignored:    data/HFGWASgene_table.csv
    Ignored:    data/HF_geneset.RDS
    Ignored:    data/Heart_Left_Ventricle.v8.egenes.txt
    Ignored:    data/Hf_GWAS.txt
    Ignored:    data/K_cluster
    Ignored:    data/K_cluster_kisthree.csv
    Ignored:    data/K_cluster_kistwo.csv
    Ignored:    data/LDH48hoursdata.csv
    Ignored:    data/Mt24counts.txt
    Ignored:    data/RINsamplelist.txt
    Ignored:    data/Seonane2019supp1.txt
    Ignored:    data/TOP2Bi-24hoursGO_analysis.csv
    Ignored:    data/TR24counts.txt
    Ignored:    data/Top2biresp_cluster24h.csv
    Ignored:    data/Viabilitylistfull.csv
    Ignored:    data/allexpressedgenes.txt
    Ignored:    data/allgenes.txt
    Ignored:    data/allmatrix.RDS
    Ignored:    data/avgLD50.RDS
    Ignored:    data/backGL.txt
    Ignored:    data/cormotif_3hk1-8.RDS
    Ignored:    data/cormotif_initalK5.RDS
    Ignored:    data/cormotif_initialK5.RDS
    Ignored:    data/cormotif_initialall.RDS
    Ignored:    data/counts24hours.RDS
    Ignored:    data/cpmnorm_counts.csv
    Ignored:    data/crispr_genes.csv
    Ignored:    data/cvd_GWAS.txt
    Ignored:    data/dat_cpm.RDS
    Ignored:    data/data_outline.txt
    Ignored:    data/efit2.RDS
    Ignored:    data/efit2results.RDS
    Ignored:    data/ensembl_backup.RDS
    Ignored:    data/ensgtotal.txt
    Ignored:    data/filenameonly.txt
    Ignored:    data/filtered_cpm_counts.csv
    Ignored:    data/filtered_raw_counts.csv
    Ignored:    data/filtermatrix_x.RDS
    Ignored:    data/folder_05top/
    Ignored:    data/gene_corr_frame.RDS
    Ignored:    data/gene_prob_tran3h.RDS
    Ignored:    data/gene_probabilityk5.RDS
    Ignored:    data/gostresTop2bi_ER.RDS
    Ignored:    data/gostresTop2bi_LR
    Ignored:    data/gostresTop2bi_LR.RDS
    Ignored:    data/gostresTop2bi_TI.RDS
    Ignored:    data/gostrescoNR
    Ignored:    data/gtex/
    Ignored:    data/heartgenes.csv
    Ignored:    data/individualDRCfile.RDS
    Ignored:    data/individual_DRC48.RDS
    Ignored:    data/individual_LDH48.RDS
    Ignored:    data/knowfig4.csv
    Ignored:    data/knowfig5.csv
    Ignored:    data/knowles56.GMT
    Ignored:    data/knowlesGMT.GMT
    Ignored:    data/mymatrix.RDS
    Ignored:    data/nonresponse_cluster24h.csv
    Ignored:    data/norm_LDH.csv
    Ignored:    data/norm_counts.csv
    Ignored:    data/old_sets/
    Ignored:    data/plan2plot.png
    Ignored:    data/raw_counts.csv
    Ignored:    data/response_cluster24h.csv
    Ignored:    data/sigVDA24.txt
    Ignored:    data/sigVDA3.txt
    Ignored:    data/sigVDX24.txt
    Ignored:    data/sigVDX3.txt
    Ignored:    data/sigVEP24.txt
    Ignored:    data/sigVEP3.txt
    Ignored:    data/sigVMT24.txt
    Ignored:    data/sigVMT3.txt
    Ignored:    data/sigVTR24.txt
    Ignored:    data/sigVTR3.txt
    Ignored:    data/siglist.RDS
    Ignored:    data/table3a.omar
    Ignored:    data/toplistall.RDS
    Ignored:    data/tvl24hour.txt
    Ignored:    data/tvl24hourw.txt
    Ignored:    data/venn_code.R

Untracked files:
    Untracked:  .RDataTmp
    Untracked:  .RDataTmp1
    Untracked:  .RDataTmp2
    Untracked:  analysis/Seoane_chrom.Rmd
    Untracked:  cormotif_probability_genelist.csv
    Untracked:  individual-legenddark2.png
    Untracked:  installed_old.rda
    Untracked:  motif_ER.txt
    Untracked:  motif_LR.txt
    Untracked:  motif_NR.txt
    Untracked:  motif_TI.txt
    Untracked:  output/DNRmeQTLs.RDS
    Untracked:  output/DNRmeSNPs.RDS
    Untracked:  output/DNRreQTLs.RDS
    Untracked:  output/DOXmeQTLs.RDS
    Untracked:  output/DOXmeSNPs.RDS
    Untracked:  output/DOXreQTLs.RDS
    Untracked:  output/EPImeQTLs.RDS
    Untracked:  output/EPImeSNPs.RDS
    Untracked:  output/EPIreQTLs.RDS
    Untracked:  output/Fig_summary1.png
    Untracked:  output/GWAS_goi.csv
    Untracked:  output/MTXmeQTLs.RDS
    Untracked:  output/MTXmeSNPs.RDS
    Untracked:  output/MTXreQTLs.RDS
    Untracked:  output/Sup4seoane.csv
    Untracked:  output/egenes.csv
    Untracked:  output/egenes_hgnc.csv
    Untracked:  output/egenes_set.csv
    Untracked:  output/figure_1.Rmd
    Untracked:  output/heart_gtex.csv
    Untracked:  output/knowles4.RDS
    Untracked:  output/knowles5.RDS
    Untracked:  output/not_eqtls_GTEX.csv
    Untracked:  output/output-old/
    Untracked:  output/plan2plot.png
    Untracked:  output/plan48ldh.png
    Untracked:  reneebasecode.R

Unstaged changes:
    Modified:   analysis/Figure1.Rmd
    Modified:   analysis/Knowles2019.Rmd
    Modified:   code/eQTLcodes.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Figure1.Rmd) and HTML (docs/Figure1.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 908b616 reneeisnowhere 2023-06-13 Build site.
Rmd 44ae8bb reneeisnowhere 2023-06-13 picture check
html f2d0e90 reneeisnowhere 2023-06-13 Build site.
Rmd 71b3ce2 reneeisnowhere 2023-06-13 picture check
html d175bfb reneeisnowhere 2023-06-13 Build site.
Rmd 0c83ba8 reneeisnowhere 2023-06-13 picture check
html 044fc66 reneeisnowhere 2023-06-12 Build site.
Rmd 1ebf470 reneeisnowhere 2023-06-12 adding figure 1

Figure 1

Top2i drugs affect cardiomyocyte viability in a dose dependent manner.

A. Project Overview

things to note about this image so far: Need to import into illustrator. Goal is to have colors changes on Drugs from sick purple and jaundice yellow, to a red tone and a blue tone for non-ACs. I also want to change to add a time line of treatment.

B. Example Dose response curves from 48 hour drug exposure.

Lines are a log-logistic regression of the mean from quadruplicates at 8 separate concentrations for each condition, except (trastuzmab)TRZ, which is 7 concentrations.

DRC plot
C:/Program Files/R_WD/Cardiotoxicity/output

Legend for DRC plot{30%}

C 48 hour 50% leathal dose plot

library(car)
#library(dr4pl) no longer used
library(tidyverse)
library(tinytex)
library(BiocGenerics)
library(data.table)
library(drc)
# library(Hmisc)
# library(cowplot)
# library(grid)
library(ggsignif)
library(RColorBrewer)
library(broom)

sessionInfo()
R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] broom_1.0.5         RColorBrewer_1.1-3  ggsignif_0.6.4     
 [4] drc_3.0-1           MASS_7.3-60         data.table_1.14.8  
 [7] BiocGenerics_0.42.0 tinytex_0.45        lubridate_1.9.2    
[10] forcats_1.0.0       stringr_1.5.0       dplyr_1.1.2        
[13] purrr_1.0.1         readr_2.1.4         tidyr_1.3.0        
[16] tibble_3.2.1        ggplot2_3.4.2       tidyverse_2.0.0    
[19] car_3.1-2           carData_3.0-5       workflowr_1.7.0    

loaded via a namespace (and not attached):
 [1] httr_1.4.6       sass_0.4.6       jsonlite_1.8.5   splines_4.2.2   
 [5] gtools_3.9.4     bslib_0.5.0      getPass_0.2-2    highr_0.10      
 [9] yaml_2.3.7       pillar_1.9.0     backports_1.4.1  lattice_0.21-8  
[13] glue_1.6.2       digest_0.6.31    promises_1.2.0.1 colorspace_2.1-0
[17] sandwich_3.0-2   htmltools_0.5.5  httpuv_1.6.11    Matrix_1.5-4.1  
[21] pkgconfig_2.0.3  mvtnorm_1.2-2    scales_1.2.1     processx_3.8.1  
[25] whisker_0.4.1    later_1.3.1      tzdb_0.4.0       timechange_0.2.0
[29] git2r_0.32.0     generics_0.1.3   TH.data_1.1-2    cachem_1.0.8    
[33] withr_2.5.0      cli_3.6.1        survival_3.5-5   magrittr_2.0.3  
[37] evaluate_0.21    ps_1.7.5         fs_1.6.2         fansi_1.0.4     
[41] tools_4.2.2      hms_1.1.3        lifecycle_1.0.3  multcomp_1.4-24 
[45] munsell_0.5.0    plotrix_3.8-2    callr_3.7.3      compiler_4.2.2  
[49] jquerylib_0.1.4  rlang_1.1.1      grid_4.2.2       rstudioapi_0.14 
[53] rmarkdown_2.22   gtable_0.3.3     codetools_0.2-19 abind_1.4-5     
[57] R6_2.5.1         zoo_1.8-12       knitr_1.43       fastmap_1.1.1   
[61] utf8_1.2.3       rprojroot_2.0.3  stringi_1.7.12   Rcpp_1.0.10     
[65] vctrs_0.6.2      png_0.1-8        tidyselect_1.2.0 xfun_0.39