Last updated: 2024-10-07

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d926a4a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/output_100_MA0835.2.txt
    Ignored:    data/output_101_MA0018.4.txt
    Ignored:    data/output_102_MA1102.2.txt
    Ignored:    data/output_103_MA0162.4.txt
    Ignored:    data/output_104_MA0598.3.txt
    Ignored:    data/output_105_MA0473.3.txt
    Ignored:    data/output_106_MA0640.2.txt
    Ignored:    data/output_107_MA0761.2.txt
    Ignored:    data/output_108_MA0477.2.txt
    Ignored:    data/output_109_MA0062.3.txt
    Ignored:    data/output_10_MA0076.2.txt
    Ignored:    data/output_110_MA0035.4.txt
    Ignored:    data/output_111_MA0482.2.txt
    Ignored:    data/output_112_MA1104.2.txt
    Ignored:    data/output_113_MA0490.2.txt
    Ignored:    data/output_114_MA0491.2.txt
    Ignored:    data/output_115_MA1107.2.txt
    Ignored:    data/output_116_MA0496.3.txt
    Ignored:    data/output_117_MA0620.3.txt
    Ignored:    data/output_118_MA0500.2.txt
    Ignored:    data/output_119_MA0089.2.txt
    Ignored:    data/output_11_MA0258.2.txt
    Ignored:    data/output_120_MA0782.2.txt
    Ignored:    data/output_121_MA0090.3.txt
    Ignored:    data/output_122_MA0809.2.txt
    Ignored:    data/output_123_MA0093.3.txt
    Ignored:    data/output_124_MA0609.2.txt
    Ignored:    data/output_125_MA1684.1.txt
    Ignored:    data/output_126_MA1928.1.txt
    Ignored:    data/output_127_MA1929.1.txt
    Ignored:    data/output_128_MA1930.1.txt
    Ignored:    data/output_129_MA1934.1.txt
    Ignored:    data/output_12_MA0150.2.txt
    Ignored:    data/output_130_MA1940.1.txt
    Ignored:    data/output_131_MA1942.1.txt
    Ignored:    data/output_132_MA1944.1.txt
    Ignored:    data/output_133_MA1951.1.txt
    Ignored:    data/output_134_MA1959.1.txt
    Ignored:    data/output_135_MA1964.1.txt
    Ignored:    data/output_136_MA1970.1.txt
    Ignored:    data/output_137_MA1988.1.txt
    Ignored:    data/output_138_MA1992.1.txt
    Ignored:    data/output_139_MA1993.1.txt
    Ignored:    data/output_13_MA0140.2.txt
    Ignored:    data/output_140_MA1995.1.txt
    Ignored:    data/output_141_MA1997.1.txt
    Ignored:    data/output_142_MA2002.1.txt
    Ignored:    data/output_143_MA0037.4.txt
    Ignored:    data/output_144_MA0156.3.txt
    Ignored:    data/output_145_MA0474.3.txt
    Ignored:    data/output_146_MA0489.2.txt
    Ignored:    data/output_147_MA0493.2.txt
    Ignored:    data/output_148_MA0516.3.txt
    Ignored:    data/output_149_MA0521.2.txt
    Ignored:    data/output_14_MA0591.1.txt
    Ignored:    data/output_150_MA0633.2.txt
    Ignored:    data/output_151_MA0659.3.txt
    Ignored:    data/output_152_MA0685.2.txt
    Ignored:    data/output_153_MA0697.2.txt
    Ignored:    data/output_154_MA0740.2.txt
    Ignored:    data/output_155_MA0742.2.txt
    Ignored:    data/output_156_MA0764.3.txt
    Ignored:    data/output_157_MA0831.3.txt
    Ignored:    data/output_158_MA1472.2.txt
    Ignored:    data/output_159_MA1483.2.txt
    Ignored:    data/output_15_MA0595.1.txt
    Ignored:    data/output_160_MA1511.2.txt
    Ignored:    data/output_161_MA1633.2.txt
    Ignored:    data/output_16_MA0596.1.txt
    Ignored:    data/output_17_MA0599.1.txt
    Ignored:    data/output_18_MA0603.1.txt
    Ignored:    data/output_19_MA0645.1.txt
    Ignored:    data/output_1_MA0029.1.txt
    Ignored:    data/output_1_Mecom.txt
    Ignored:    data/output_20_MA0475.2.txt
    Ignored:    data/output_21_MA0655.1.txt
    Ignored:    data/output_22_MA0656.1.txt
    Ignored:    data/output_23_MA0660.1.txt
    Ignored:    data/output_24_MA0741.1.txt
    Ignored:    data/output_25_MA0747.1.txt
    Ignored:    data/output_26_MA0751.1.txt
    Ignored:    data/output_27_MA0760.1.txt
    Ignored:    data/output_28_MA0098.3.txt
    Ignored:    data/output_29_MA0762.1.txt
    Ignored:    data/output_2_MA0119.1.txt
    Ignored:    data/output_30_MA0498.2.txt
    Ignored:    data/output_31_MA0774.1.txt
    Ignored:    data/output_32_MA0775.1.txt
    Ignored:    data/output_33_MA0783.1.txt
    Ignored:    data/output_34_MA0797.1.txt
    Ignored:    data/output_35_MA0510.2.txt
    Ignored:    data/output_36_MA0808.1.txt
    Ignored:    data/output_37_MA0816.1.txt
    Ignored:    data/output_38_MA0840.1.txt
    Ignored:    data/output_39_MA0117.2.txt
    Ignored:    data/output_3_MA0139.1.txt
    Ignored:    data/output_40_MA0841.1.txt
    Ignored:    data/output_41_MA0036.3.txt
    Ignored:    data/output_42_MA1114.1.txt
    Ignored:    data/output_43_MA1121.1.txt
    Ignored:    data/output_44_MA0750.2.txt
    Ignored:    data/output_45_MA0099.3.txt
    Ignored:    data/output_46_MA1126.1.txt
    Ignored:    data/output_47_MA1128.1.txt
    Ignored:    data/output_48_MA1129.1.txt
    Ignored:    data/output_49_MA1130.1.txt
    Ignored:    data/output_4_MA0145.2.txt
    Ignored:    data/output_50_MA1131.1.txt
    Ignored:    data/output_51_MA1132.1.txt
    Ignored:    data/output_52_MA1133.1.txt
    Ignored:    data/output_53_MA1134.1.txt
    Ignored:    data/output_54_MA1135.1.txt
    Ignored:    data/output_55_MA1136.1.txt
    Ignored:    data/output_56_MA1137.1.txt
    Ignored:    data/output_57_MA1138.1.txt
    Ignored:    data/output_58_MA1139.1.txt
    Ignored:    data/output_59_MA1141.1.txt
    Ignored:    data/output_5_MA0476.1.txt
    Ignored:    data/output_60_MA1142.1.txt
    Ignored:    data/output_61_MA1143.1.txt
    Ignored:    data/output_62_MA1144.1.txt
    Ignored:    data/output_63_MA1145.1.txt
    Ignored:    data/output_64_MA1101.2.txt
    Ignored:    data/output_65_MA1474.1.txt
    Ignored:    data/output_66_MA1475.1.txt
    Ignored:    data/output_67_MA1484.1.txt
    Ignored:    data/output_68_MA1512.1.txt
    Ignored:    data/output_69_MA1516.1.txt
    Ignored:    data/output_6_MA0478.1.txt
    Ignored:    data/output_70_MA1517.1.txt
    Ignored:    data/output_71_MA1520.1.txt
    Ignored:    data/output_72_MA1521.1.txt
    Ignored:    data/output_73_MA1523.1.txt
    Ignored:    data/output_74_MA1527.1.txt
    Ignored:    data/output_75_MA1528.1.txt
    Ignored:    data/output_76_MA1564.1.txt
    Ignored:    data/output_77_MA1571.1.txt
    Ignored:    data/output_78_MA1572.1.txt
    Ignored:    data/output_79_MA1593.1.txt
    Ignored:    data/output_7_MA0488.1.txt
    Ignored:    data/output_80_MA1599.1.txt
    Ignored:    data/output_81_MA1628.1.txt
    Ignored:    data/output_82_MA1629.1.txt
    Ignored:    data/output_83_MA1100.2.txt
    Ignored:    data/output_84_MA0462.2.txt
    Ignored:    data/output_85_MA0766.2.txt
    Ignored:    data/output_86_MA1140.2.txt
    Ignored:    data/output_87_MA0842.2.txt
    Ignored:    data/output_88_MA0746.2.txt
    Ignored:    data/output_89_MA1713.1.txt
    Ignored:    data/output_8_MA0492.1.txt
    Ignored:    data/output_90_MA1721.1.txt
    Ignored:    data/output_91_MA1632.1.txt
    Ignored:    data/output_92_MA1634.1.txt
    Ignored:    data/output_93_MA1635.1.txt
    Ignored:    data/output_94_MA1641.1.txt
    Ignored:    data/output_95_MA1643.1.txt
    Ignored:    data/output_96_MA1645.1.txt
    Ignored:    data/output_97_MA1656.1.txt
    Ignored:    data/output_98_MA1726.1.txt
    Ignored:    data/output_99_MA1728.1.txt
    Ignored:    data/output_9_MA0501.1.txt
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/
    Ignored:    trimmed_Ind1_75DA24h_S7.nodup.splited.bam/

Untracked files:
    Untracked:  Correlationplot_scaled.pdf
    Untracked:  DOX_DAR_assess.Rmd
    Untracked:  EAR_2_plot.pdf
    Untracked:  ESR_1_plot.pdf
    Untracked:  Firstcorr plotATAC.pdf
    Untracked:  IND1_2_3_6_corrplot.pdf
    Untracked:  LR_3_plot.pdf
    Untracked:  NR_1_plot.pdf
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/ReHeat_analysis.Rmd
    Untracked:  analysis/TE_analysis_old.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  analysis/nucleosome_explore.Rmd
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/MRC_clusterlog2cpm.R
    Untracked:  code/TSSE.R
    Untracked:  code/just_for_Fun.R
    Untracked:  code/toplist_assembly.R
    Untracked:  lcpm_filtered_corplot.pdf
    Untracked:  log2cpmfragcount.pdf
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  output_1_Mecom.txt
    Untracked:  splited/
    Untracked:  trimmed_Ind1_75DA24h_S7.nodup.fragment.size.distribution.pdf
    Untracked:  trimmed_Ind1_75DA3h_S1.nodup.fragment.size.distribution.pdf

Unstaged changes:
    Modified:   analysis/CorMotif_data_n45.Rmd
    Modified:   analysis/Enrichment_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/Peak_calling.Rmd
    Modified:   analysis/Raodah.Rmd
    Modified:   analysis/Smaller_set_DAR.Rmd
    Modified:   analysis/TE_analysis.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Enhancer_files_ff.Rmd) and HTML (docs/Enhancer_files_ff.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html d926a4a reneeisnowhere 2024-10-07 Build site.
Rmd 2132070 reneeisnowhere 2024-10-07 heatmmaps baby!
html 6e3a803 reneeisnowhere 2024-09-30 Build site.
Rmd 74f6474 reneeisnowhere 2024-09-30 updates to code
html e174c87 reneeisnowhere 2024-09-23 Build site.
Rmd c473b77 reneeisnowhere 2024-09-23 adding the updated 8 groups
Rmd a6d16a7 reneeisnowhere 2024-09-10 updates

####Loading

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
# library(Cormotif)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(JASPAR2022)
library(TFBSTools)
library(MotifDb)
library(BSgenome.Hsapiens.UCSC.hg38)
library(plyranges)
library(genomation)
library(gprofiler2)

Data loading

# toplistall_RNA <- readRDS("data/other_papers/toplistall_RNA.RDS") 
# S13Table <- read.csv( "data/other_papers/S13Table_Matthews2024.csv",row.names = 1)
# ##14021
# 
# EAR_RNA <- S13Table %>% 
#   dplyr::filter(MOTIF=="EAR") %>% 
#   dplyr::select(ENTREZID) %>% 
#   mutate(ENTREZID= as.character(ENTREZID))
# ESR_RNA <- S13Table %>% 
#   dplyr::filter(MOTIF=="ESR")%>% 
#   dplyr::select(ENTREZID)%>% 
#   mutate(ENTREZID= as.character(ENTREZID))
# LR_RNA <- S13Table %>% 
#   dplyr::filter(MOTIF=="LR")%>% 
#   dplyr::select(ENTREZID)%>% 
#   mutate(ENTREZID=as.character(ENTREZID))
# NR_RNA <- S13Table %>% 
#   dplyr::filter(MOTIF=="NR")%>% 
#   dplyr::select(ENTREZID)%>% 
#   mutate(ENTREZID= as.character(ENTREZID))

# exp_neargene_table <- read_delim("data/n45_bedfiles/exp_neargene_table.tsv", 
#     delim = "\t", escape_double = FALSE, 
#     trim_ws = TRUE)

TSS_NG_data <- read_delim("data/Final_four_data/TSS_assigned_NG.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE)

col_ng_peak <- read.delim("data/Final_four_data/collapsed_new_peaks.txt")

peakAnnoList_ff_8motif <- readRDS("data/Final_four_data/peakAnnoList_ff_8motif.RDS")
# list2env(peakAnnoList_n45_motif, envir = .GlobalEnv)

# peakAnnoList_3_n45 <- readRDS("data/peakAnnoList_3_n45.RDS")
# peakAnnoList_24_n45<- readRDS("data/peakAnnoList_24_n45.RDS")

all_peak_gr <- as.GRanges(peakAnnoList_ff_8motif$background)

# Joined_tss_neargene <- all_peak_gr %>%
#   as.data.frame() %>% 
#   dplyr::select(seqnames:id,geneId,distanceToTSS) %>% 
#   dplyr::filter(!grepl("chrX",id)& !grepl("chrY",id))%>%
#   dplyr::rename("close_geneId"="geneId") %>% 
#   mutate(start=start+1) %>% 
#   left_join(., TSS_NG_data, by=c("id"="peakid", "start"="start","end"="end")) %>%
#   dplyr::select(seqnames.x:close_geneId,distanceToTSS, entrezgene_id:dist_to_NG)
  


EAR_open <- as.data.frame(peakAnnoList_ff_8motif$EAR_open)
EAR_open_gr <-  as.GRanges(peakAnnoList_ff_8motif$EAR_open)
EAR_close <- as.data.frame(peakAnnoList_ff_8motif$EAR_close)
EAR_close_gr <-  as.GRanges(peakAnnoList_ff_8motif$EAR_close)


ESR_open <- as.data.frame(peakAnnoList_ff_8motif$ESR_open)
ESR_open_gr <- as.GRanges(peakAnnoList_ff_8motif$ESR_open)
ESR_close <- as.data.frame(peakAnnoList_ff_8motif$ESR_close)
ESR_close_gr <- as.GRanges(peakAnnoList_ff_8motif$ESR_close)
ESR_OC <- as.data.frame(peakAnnoList_ff_8motif$ESR_OC)
ESR_OC_gr <- as.GRanges(peakAnnoList_ff_8motif$ESR_OC)


LR_open <- as.data.frame(peakAnnoList_ff_8motif$LR_open)
LR_open_gr <-  as.GRanges(peakAnnoList_ff_8motif$LR_open)
LR_close <- as.data.frame(peakAnnoList_ff_8motif$LR_close)
LR_close_gr <-  as.GRanges(peakAnnoList_ff_8motif$LR_close)

NR <- as.data.frame(peakAnnoList_ff_8motif$NR)
NR_gr <-  as.GRanges(peakAnnoList_ff_8motif$NR)

EAR_open_list_all <-  TSS_NG_data %>%
    dplyr::filter(Peakid %in% EAR_open$Peakid) %>% 
  mutate(MRC="EAR_open") %>% 
  distinct(Peakid,.keep_all = TRUE)
EAR_close_list_all <-  TSS_NG_data %>%
    dplyr::filter(Peakid %in% EAR_close$Peakid) %>% 
  mutate(MRC="EAR_close") %>% 
  distinct(Peakid,.keep_all = TRUE)

ESR_open_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in% ESR_open$Peakid) %>% 
    mutate(MRC="ESR_open")%>% 
  distinct(Peakid,.keep_all = TRUE)
ESR_close_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in% ESR_close$Peakid) %>% 
    mutate(MRC="ESR_close")%>% 
  distinct(Peakid,.keep_all = TRUE)
ESR_OC_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in% ESR_OC$Peakid) %>% 
    mutate(MRC="ESR_OC")%>% 
  distinct(Peakid,.keep_all = TRUE)

LR_open_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in% LR_open$Peakid) %>% 
    mutate(MRC="LR_open")%>% 
  distinct(Peakid,.keep_all = TRUE)
LR_close_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in% LR_close$Peakid) %>% 
    mutate(MRC="LR_close")%>% 
  distinct(Peakid,.keep_all = TRUE)

NR_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in% NR$Peakid) %>% 
    mutate(MRC="NR")%>% 
  distinct(Peakid,.keep_all = TRUE)


ESR_C <- readRDS("data/Final_four_data/ESR_C.RDS")
ESR_D <- readRDS("data/Final_four_data/ESR_D.RDS")

ESRC_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in% NR$Peakid) %>% 
    mutate(MRC="ESR_opcl")%>% 
  distinct(Peakid,.keep_all = TRUE)

ESRD_list_all <- TSS_NG_data %>%
    dplyr::filter(Peakid %in%ESR_D$Peakid) %>% 
    mutate(MRC="ESR_clop")%>% 
  distinct(Peakid,.keep_all = TRUE)

# ESR_opcl <- 
  
  
# ESR_clop <-   
  
peak_list_all_mrc <- col_ng_peak %>% 
  mutate(mrc=if_else(Peakid %in% EAR_open$Peakid, "EAR_open",
                      if_else(Peakid %in% EAR_close$Peakid, "EAR_close",
                              if_else(Peakid %in% ESR_open$Peakid,"ESR_open",
                                      if_else(Peakid %in% ESR_close$Peakid,"ESR_close",
                                              if_else(Peakid %in% ESR_OC$Peakid,"ESR_OC",
                                                      if_else(Peakid %in% LR_open$Peakid,"LR_open",
                                                                      if_else(Peakid %in% LR_close$Peakid,"LR_close",
                                                                              if_else(Peakid %in% NR$Peakid,"NR","not_mrc"))))))))) %>% 
  mutate(mrc9=if_else(Peakid %in% EAR_open$Peakid, "EAR_open",
                      if_else(Peakid %in% EAR_close$Peakid, "EAR_close",
                              if_else(Peakid %in% ESR_open$Peakid,"ESR_open",
                                      if_else(Peakid %in% ESR_close$Peakid,"ESR_close",
                                              if_else(Peakid %in% ESR_C$Peakid,"ESR_opcl",
                                                      if_else(Peakid %in% LR_open$Peakid,"LR_open",
                                                                      if_else(Peakid %in% LR_close$Peakid,"LR_close",
                                                                              if_else(Peakid %in% NR$Peakid,"NR",if_else(Peakid %in% ESR_D$Peakid,"ESR_clop","not_mrc"))))))))) )
  
ESR_C <- readRDS("data/Final_four_data/ESR_C.RDS")
ESR_opcl_gr <- ESR_C %>% GRanges()
ESR_D <- readRDS("data/Final_four_data/ESR_D.RDS")
ESR_clop_gr <- ESR_D %>% GRanges()
EAR_open_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc =="EAR_open") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)
EAR_close_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc =="EAR_close") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)
  
ESR_open_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc =="ESR_open") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)
ESR_close_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc =="ESR_close") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)
ESR_OC_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc =="ESR_OC") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)
ESR_opcl_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc9 =="ESR_opcl") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc9) %>% 
  dplyr::rename("mrc"=mrc9) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)


ESR_clop_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc9 =="ESR_clop") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc9) %>% 
  dplyr::rename("mrc"=mrc9) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)


LR_open_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc =="LR_open") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)
LR_close_NG_2k<-  peak_list_all_mrc %>% 
      dplyr::filter(mrc =="LR_close") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene:SYMBOL, delim= ",") %>% 
    distinct(NCBI_gene,SYMBOL)

NR_NG_2k <-   peak_list_all_mrc %>%
      dplyr::filter(mrc =="NR") %>% 
    dplyr::filter(dist_to_NG >-2000&dist_to_NG<2000) %>% 
    dplyr::select(Peakid, NCBI_gene:SYMBOL,dist_to_NG, mrc) %>% 
    separate_longer_delim(., cols=NCBI_gene, delim= ",") %>% 
     separate_longer_delim(., cols=,SYMBOL, delim= ",")  
 
  

median_24_lfc <- read_csv("data/Final_four_data/median_24_lfc.csv") 
median_3_lfc <- read_csv("data/Final_four_data/median_3_lfc.csv")


# saveRDS(peak_list_all_mrc, "data/Final_four_data/Peak_list_all_mrc_NG.RDS")

Top2b_peaks_gr <- readBed("data/n45_bedfiles/TOP2B_CM.bed")

Enhancers and Response clusters

First: obtained a list of cis Regulatory Elements from Encode Screen [(https://screen.encodeproject.org/#)]

# BiocManager::install("plyranges")
# enhancers_HLV_46F <- genomation::readBed("C:/Users/renee/Downloads/Supplements folde manuscriptr/ENCODE/heart_left_ventricle_tissue_female_adult_46_years.enhancers.bed")
cREs_HLV_46F <- genomation::readBed("data/enhancerdata/ENCFF867HAD_ENCFF152PBB_ENCFF352YYH_ENCFF252IVK.7group.bed")

# cREs_HLV_53F <- genomation::readBed("data/enhancerdata/ENCFF417JSF_ENCFF651XRK_ENCFF320IPT_ENCFF440RUS.7group.bed") 
 
NR_cREs <- join_overlap_intersect(NR_gr,cREs_HLV_46F)
LR_open_cREs <- join_overlap_intersect(LR_open_gr,cREs_HLV_46F)
LR_close_cREs <- join_overlap_intersect(LR_close_gr,cREs_HLV_46F)
ESR_open_cREs <- join_overlap_intersect(ESR_open_gr,cREs_HLV_46F)
ESR_close_cREs <- join_overlap_intersect(ESR_close_gr,cREs_HLV_46F)
ESR_OC_cREs <- join_overlap_intersect(ESR_OC_gr,cREs_HLV_46F)
ESR_opcl_cREs <- join_overlap_intersect(ESR_opcl_gr, cREs_HLV_46F)
ESR_clop_cREs <- join_overlap_intersect(ESR_clop_gr, cREs_HLV_46F)
EAR_open_cREs <- join_overlap_intersect(EAR_open_gr,cREs_HLV_46F)
EAR_close_cREs <- join_overlap_intersect(EAR_close_gr,cREs_HLV_46F)
### These unique peaks are cREs that contain all types of cREs such as
# [1] "Low-DNase"                "DNase-only"               "CTCF-only,CTCF-bound"    
#  [4] "PLS,CTCF-bound"           "PLS"                      "dELS"                    
#  [7] "pELS"                     "DNase-H3K4me3"            "DNase-H3K4me3,CTCF-bound"
# [10] "dELS,CTCF-bound"          "pELS,CTCF-bound" #### NOT the exact ones I am interested in.      
 uni_EAR_open  <-  EAR_open_cREs %>% as.data.frame() %>% distinct(Peakid)
 uni_EAR_close <- EAR_close_cREs %>% as.data.frame() %>% distinct(Peakid)
 uni_ESR_open <- ESR_open_cREs%>% as.data.frame() %>% distinct(Peakid)
 uni_ESR_close <- ESR_close_cREs%>% as.data.frame() %>% distinct(Peakid)
 uni_ESR_OC <- ESR_OC_cREs%>% as.data.frame() %>% distinct(Peakid)
 uni_ESR_opcl <- ESR_opcl_cREs%>% as.data.frame() %>% distinct(Peakid)
 uni_ESR_clop <- ESR_clop_cREs%>% as.data.frame() %>% distinct(Peakid)
 uni_LR_open <- LR_open_cREs%>% as.data.frame() %>% distinct(Peakid)
 uni_LR_close <- LR_close_cREs%>% as.data.frame() %>% distinct(Peakid)
 uni_NR <- NR_cREs%>% as.data.frame() %>% distinct(Peakid)


allpeak_gr <- peak_list_all_mrc %>% 
  GRanges(.)
Whole_peaks <- join_overlap_intersect(allpeak_gr, cREs_HLV_46F)


Whole_peaks %>% 
  as.data.frame() %>% 
  group_by(blockCount, mrc9) %>%  tally %>% 
  pivot_wider(., id_cols = mrc9, names_from = blockCount, values_from = n) %>% 
  dplyr::select(mrc9, PLS:'pELS,CTCF-bound') %>% 
  kable(., caption="Breakdown of peaks overlapping cREs") %>% 
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 14)
Breakdown of peaks overlapping cREs
mrc9 PLS PLS,CTCF-bound dELS dELS,CTCF-bound pELS pELS,CTCF-bound
EAR_close 44 9 442 33 97 9
EAR_open 880 161 137 31 875 124
ESR_close 294 64 1588 248 543 106
ESR_opcl 1 NA 8 1 4 NA
ESR_open 173 33 171 35 302 66
LR_close 833 218 1620 304 996 225
LR_open 219 37 1081 116 435 72
NR 11375 3140 6464 1717 12589 2925
not_mrc 176 42 339 70 235 47
ESR_clop NA NA 36 NA 6 NA

Visualization of categories:

First, filtering cRE set by type to include ‘CTCF-only,CTCF-bound’, ‘PLS’, ‘PLS,CTCF-bound’,‘dELS’, ‘dELS,CTCF-bound’, ‘pELS’, ‘pELS,CTCF-bound’.

Second, reclassify (new column) to group the CTCF-bound into their respective groups so only 4 groups, (“CTCF-only”,“PLS”,“dELS”, “pELS”) are created.

Third, left-join the median LFC for both 3 hour and 24 hour data to data set and boxplot by group.

Fourth, rbind two more data frames to help with ggplot visualization

PLS= promoter like sequences pELS= proximal enhancer like sequences dELS=distal enhancer like sequences

EAR open

all_EAR_open_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="EAR_open") %>% 
  mutate(type="all_EAR_open") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_EAR_open_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="EAR_open") %>% 
  dplyr::filter(!Peakid %in% uni_EAR_open$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

EAR_open_cRE_list <- EAR_open_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="EAR_open") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


EAR_open_cRE_list %>% 
  rbind(notCRE_EAR_open_list) %>% 
  rbind(all_EAR_open_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste(" 24 hour EAR_open\n n = ",length(unique(EAR_open_cRE_list$Peakid))," out of ",peakAnnoList_ff_8motif$EAR_open@peakNum, " total peaks (",sprintf("%.1f",(length(unique(EAR_open_cRE_list$Peakid))/peakAnnoList_ff_8motif$EAR_open@peakNum*100)),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()#+

Version Author Date
d926a4a reneeisnowhere 2024-10-07
6e3a803 reneeisnowhere 2024-09-30
e174c87 reneeisnowhere 2024-09-23
  # xlim(-4,4)

EAR_open_complete_list <- EAR_open_cRE_list %>% 
  rbind(notCRE_EAR_open_list) %>% 
  rbind(all_EAR_open_list)

EAR close

all_EAR_close_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="EAR_close") %>% 
  mutate(type="all_EAR_close") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_EAR_close_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="EAR_close") %>% 
  dplyr::filter(!Peakid %in% uni_EAR_close$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

EAR_close_cRE_list <- EAR_close_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="EAR_close") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


EAR_close_cRE_list %>% 
  rbind(notCRE_EAR_close_list) %>% 
  rbind(all_EAR_close_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour EAR_close\n n = ",length(unique(EAR_close_cRE_list$Peakid))," out of ", peakAnnoList_ff_8motif$EAR_close@peakNum, " total peaks (",sprintf("%.1f",length(unique(EAR_close_cRE_list$Peakid))/ peakAnnoList_ff_8motif$EAR_close@peakNum*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)

EAR_close_complete_list <- EAR_close_cRE_list %>% 
  rbind(notCRE_EAR_close_list) %>% 
  rbind(all_EAR_close_list)

ESR close

all_ESR_close_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="ESR_close") %>% 
  mutate(type="all_ESR_close") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_ESR_close_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="ESR_close") %>% 
  dplyr::filter(!Peakid %in% uni_ESR_close$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

ESR_close_cRE_list <- ESR_close_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="ESR_close") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


ESR_close_cRE_list %>% 
  rbind(notCRE_ESR_close_list) %>% 
  rbind(all_ESR_close_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour ESR_close\n n = ",length(unique(ESR_close_cRE_list$Peakid))," out of ",  peakAnnoList_ff_8motif$ESR_close@peakNum, " total peaks (",sprintf("%.1f",length(unique(ESR_close_cRE_list$Peakid))/ peakAnnoList_ff_8motif$ESR_close@peakNum*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)

ESR_close_complete_list <- ESR_close_cRE_list %>% 
  rbind(notCRE_ESR_close_list) %>% 
  rbind(all_ESR_close_list)

ESR open

all_ESR_open_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="ESR_open") %>% 
  mutate(type="all_ESR_open") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_ESR_open_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="ESR_open") %>% 
  dplyr::filter(!Peakid %in% uni_ESR_open$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

ESR_open_cRE_list <- ESR_open_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="ESR_open") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


ESR_open_cRE_list %>% 
  rbind(notCRE_ESR_open_list) %>% 
  rbind(all_ESR_open_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour ESR_open\n n = ",length(unique(ESR_open_cRE_list$Peakid))," out of ",  peakAnnoList_ff_8motif$ESR_open@peakNum, " total peaks (",sprintf("%.1f",length(unique(ESR_open_cRE_list$Peakid))/ peakAnnoList_ff_8motif$ESR_open@peakNum*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)

ESR_open_complete_list <- ESR_open_cRE_list %>% 
  rbind(notCRE_ESR_open_list) %>% 
  rbind(all_ESR_open_list)

ESR OC

all_ESR_OC_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="ESR_OC") %>% 
  # mutate(mrc=mrc9) %>% 
  mutate(type="all_ESR_OC") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_ESR_OC_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="ESR_OC") %>% 
  dplyr::filter(!Peakid %in% uni_ESR_OC$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

ESR_OC_cRE_list <- ESR_OC_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="ESR_OC") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


ESR_OC_cRE_list %>% 
  rbind(notCRE_ESR_OC_list) %>% 
  rbind(all_ESR_OC_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour ESR_OC\n n = ",length(unique(ESR_OC_cRE_list$Peakid))," out of ",  peakAnnoList_ff_8motif$ESR_OC@peakNum, " total peaks (",sprintf("%.1f",length(unique(ESR_OC_cRE_list$Peakid))/ peakAnnoList_ff_8motif$ESR_OC@peakNum*100),"%)"))#+

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # facet_wrap(~direction)+
  # theme_bw()+
  # xlim(-4,4)

ESR_OC_complete_list <- ESR_OC_cRE_list %>% 
  rbind(notCRE_ESR_OC_list) %>% 
  rbind(all_ESR_OC_list)

ESR open/close

all_ESR_opcl_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc9=="ESR_opcl") %>% 
  mutate(mrc=mrc9) %>%
  mutate(type="all_ESR_opcl") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_ESR_opcl_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc9=="ESR_opcl") %>% 
  mutate(mrc=mrc9) %>%
  dplyr::filter(!Peakid %in% uni_ESR_opcl$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

ESR_opcl_cRE_list <- ESR_opcl_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="ESR_opcl") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


ESR_opcl_cRE_list %>% 
  rbind(notCRE_ESR_opcl_list) %>% 
  rbind(all_ESR_opcl_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour ESR_opcl\n n = ",length(unique(ESR_opcl_cRE_list$Peakid))," out of ",  length(ESR_C$Peakid), " total peaks (",sprintf("%.1f",length(unique(ESR_opcl_cRE_list$Peakid))/  length(ESR_C$Peakid)*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)

ESR_opcl_complete_list <- ESR_opcl_cRE_list %>% 
  rbind(notCRE_ESR_opcl_list) %>% 
  rbind(all_ESR_opcl_list)

ESR close/open

all_ESR_clop_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc9=="ESR_clop") %>% 
  mutate(mrc=mrc9) %>%
  mutate(type="all_ESR_clop") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_ESR_clop_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc9=="ESR_clop") %>% 
  mutate(mrc=mrc9) %>%
  dplyr::filter(!Peakid %in% uni_ESR_clop$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

ESR_clop_cRE_list <- ESR_clop_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="ESR_clop") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


ESR_clop_cRE_list %>% 
  rbind(notCRE_ESR_clop_list) %>% 
  rbind(all_ESR_clop_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour ESR_clop\n n = ",length(unique(ESR_clop_cRE_list$Peakid))," out of ",  length(ESR_C$Peakid), " total peaks (",sprintf("%.1f",length(unique(ESR_clop_cRE_list$Peakid))/  length(ESR_C$Peakid)*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)

ESR_clop_complete_list <- ESR_clop_cRE_list %>% 
  rbind(notCRE_ESR_clop_list) %>% 
  rbind(all_ESR_clop_list)

LR open

all_LR_open_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="LR_open") %>% 
  mutate(type="all_LR_open") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_LR_open_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="LR_open") %>% 
  dplyr::filter(!Peakid %in% uni_LR_open$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

LR_open_cRE_list <- LR_open_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="LR_open") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


LR_open_cRE_list %>% 
  rbind(notCRE_LR_open_list) %>% 
  rbind(all_LR_open_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
 ggtitle(paste0(" 24 hour LR_open\n n = ",length(unique(LR_open_cRE_list$Peakid))," out of ",  peakAnnoList_ff_8motif$LR_open@peakNum, " total peaks (",sprintf("%.1f",length(unique(LR_open_cRE_list$Peakid))/ peakAnnoList_ff_8motif$LR_open@peakNum*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)

LR_open_complete_list <- LR_open_cRE_list %>% 
  rbind(notCRE_LR_open_list) %>% 
  rbind(all_LR_open_list)
# LR_open

LR close

all_LR_close_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="LR_close") %>% 
  mutate(type="all_LR_close") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_LR_close_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="LR_close") %>% 
  dplyr::filter(!Peakid %in% uni_LR_close$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

LR_close_cRE_list <- LR_close_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="LR_close") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


LR_close_cRE_list %>% 
  rbind(notCRE_LR_close_list) %>% 
  rbind(all_LR_close_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour LR_close\n n = ",length(unique(LR_close_cRE_list$Peakid))," out of ",  peakAnnoList_ff_8motif$LR_close@peakNum, " total peaks (",sprintf("%.1f",length(unique(LR_close_cRE_list$Peakid))/ peakAnnoList_ff_8motif$LR_close@peakNum*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)

LR_close_complete_list <- LR_close_cRE_list %>% 
  rbind(notCRE_LR_close_list) %>% 
  rbind(all_LR_close_list)

No response

all_NR_list <- 
  peak_list_all_mrc %>% 
  dplyr::filter(mrc=="NR") %>% 
  mutate(type="all_NR") %>% 
   dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
    pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 
  
notCRE_NR_list <- peak_list_all_mrc %>% 
  dplyr::filter(mrc=="NR") %>% 
  dplyr::filter(!Peakid %in% uni_NR$Peakid) %>% 
  mutate(type="not_cRE_peaks") %>% 
  dplyr::select(Peakid,mrc,type) %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 

NR_cRE_list <- NR_cREs %>%
  as.data.frame() %>%
  dplyr::filter(blockCount=="CTCF-only,CTCF-bound"|
                  blockCount =="PLS"|
                  blockCount =="PLS,CTCF-bound"|
                  blockCount =="dELS"|
                  blockCount =="dELS,CTCF-bound"|
                  blockCount =="pELS"|
                  blockCount =="pELS,CTCF-bound") %>% 
  mutate(type=if_else(blockCount=="CTCF-only,CTCF-bound","CTCF-only", if_else(grepl("PLS",blockCount),"Promoter-like",                       if_else(grepl("pELS",blockCount),"Proximal enhancer-like", "Distal enhancer-like"),blockCount))) %>%
  dplyr::select(Peakid,type) %>% 
    mutate(mrc="NR") %>% 
  left_join(.,(median_24_lfc %>% ungroup%>% 
                 dplyr::select(peak,med_24h_lfc)),by = c("Peakid"="peak")) %>% 
  left_join(.,(median_3_lfc %>%ungroup %>% 
                 dplyr::select(peak,med_3h_lfc)),by = c("Peakid"="peak")) %>% 
  pivot_longer(cols = c("med_24h_lfc","med_3h_lfc"), names_to = "time", values_to = "lfc") 


NR_cRE_list %>% 
  rbind(notCRE_NR_list) %>% 
  rbind(all_NR_list) %>% 
  ggplot(., aes(y=type, x=lfc,group=type))+
  geom_boxplot() +
  scale_fill_discrete()+
  ggtitle(paste0(" 24 hour NR\n n = ",length(unique(NR_cRE_list$Peakid))," out of ",  peakAnnoList_ff_8motif$NR@peakNum, " total peaks (",sprintf("%.1f",length(unique(NR_cRE_list$Peakid))/ peakAnnoList_ff_8motif$NR@peakNum*100),"%)"))+
  # facet_wrap(~direction)+
  theme_bw()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
  # xlim(-4,4)


NR_complete_list <- NR_cRE_list %>% 
  rbind(notCRE_NR_list) %>% 
  rbind(all_NR_list)
GO analysis of neargenes from Peaks that are within 2kb of Neargene TSS.
background_NGs <- col_ng_peak %>% 
  dplyr::select (Peakid,NCBI_gene:dist_to_NG) %>% 
  # dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>% 
  distinct(SYMBOL)
EAR_openNG <- EAR_open_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
EAR_closeNG <- EAR_close_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
ESR_openNG <- ESR_open_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
ESR_closeNG <- ESR_close_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
ESR_OCNG <- ESR_OC_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
LR_openNG <- LR_open_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
LR_closeNG <- LR_close_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
NR_NG <- NR_list_all %>%
  dplyr::select (Peakid,SYMBOL,dist_to_NG) %>% 
  dplyr::filter (dist_to_NG >-2000&dist_to_NG <2000) %>%
  distinct(SYMBOL)
scale_fill_mrc <-  function(...){
  ggplot2:::manual_scale(
    'fill', 
    values = setNames(c("#F8766D","#f6483c","#7CAE00","#587b00","#6a9500","cornflowerblue","grey60",  "#00BFC4","#008d91", "#C77CFF"), c("EAR_open","EAR_close","ESR_open","ESR_close", "ESR_OC","ESR_opcl","ESR_clop","LR_open","LR_close","NR")), 
    ...
  )
}

summarizing plots:

ggplot_combo_df <-
  rbind(EAR_open_complete_list,
                         EAR_close_complete_list,
                         ESR_open_complete_list,
                          ESR_close_complete_list,
                          ESR_OC_complete_list,
                          LR_open_complete_list,
                          LR_close_complete_list,
                          NR_complete_list) 
ggplot_combo_df %>% 
  mutate(time=factor(time, levels= c("med_3h_lfc", "med_24h_lfc"), labels=c("3 hours","24 hours"))) %>%
     mutate(type= if_else(type=="Promoter-like",type,
                          if_else(type =="Proximal enhancer-like",type,if_else(type=="Distal enhancer-like", type,if_else(type=="CTCF-only",type,if_else(type=="not_cRE_peaks", type, "all")))))) %>%
  mutate(type=factor(type, levels = c("Promoter-like","Proximal enhancer-like","Distal enhancer-like","CTCF-only","not_cRE_peaks","all"))) %>% 
  
  ggplot(., aes(y=type, x=lfc, fill=mrc))+
    geom_boxplot()+
  # geom_pointrange(aes(xmin=min_val, xmax=max_val),position=position_dodge(width =.7),  width=.3,size=0.5,shape=15, fatten=8)+
  geom_vline(xintercept = 0, linetype=2)+
  facet_wrap(~time) + 
  theme_classic()+
  scale_fill_mrc()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
ggplot_combo_df_9 <-
  rbind(EAR_open_complete_list,
                         EAR_close_complete_list,
                         ESR_open_complete_list,
                          ESR_close_complete_list,
                          ESR_opcl_complete_list,
                          ESR_clop_complete_list,
                          LR_open_complete_list,
                          LR_close_complete_list,
                          NR_complete_list) 
ggplot_combo_df_9 %>% 
  mutate(time=factor(time, levels= c("med_3h_lfc", "med_24h_lfc"), labels=c("3 hours","24 hours"))) %>%
     mutate(type= if_else(type=="Promoter-like",type,
                          if_else(type =="Proximal enhancer-like",type,if_else(type=="Distal enhancer-like", type,if_else(type=="CTCF-only",type,if_else(type=="not_cRE_peaks", type, "all")))))) %>%
  mutate(type=factor(type, levels = c("Promoter-like","Proximal enhancer-like","Distal enhancer-like","CTCF-only","not_cRE_peaks","all"))) %>% 
  
  ggplot(., aes(y=type, x=lfc, fill=mrc))+
    geom_boxplot()+
  # geom_pointrange(aes(xmin=min_val, xmax=max_val),position=position_dodge(width =.7),  width=.3,size=0.5,shape=15, fatten=8)+
  geom_vline(xintercept = 0, linetype=2)+
  facet_wrap(~time) + 
  theme_classic()+
  scale_fill_mrc()

Version Author Date
d926a4a reneeisnowhere 2024-10-07
keep_cRE_names <- c("CTCF-only,CTCF-bound" ,"PLS,CTCF-bound","PLS","dELS,CTCF-bound", "pELS","pELS,CTCF-bound","dELS")
is_cRE <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount %in% keep_cRE_names) %>% 
  distinct(Peakid,blockCount) 

is_CTCF <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "CTCF-only,CTCF-bound") %>% 
  distinct(Peakid,blockCount) 

is_dELS <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "dELS,CTCF-bound"|blockCount == "dELS") %>% 
  distinct(Peakid,blockCount) 
is_pELS <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "pELS,CTCF-bound"|blockCount == "pELS") %>% 
  distinct(Peakid,blockCount) 
is_PLS <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "PLS,CTCF-bound"|blockCount == "PLS") %>% 
  distinct(Peakid,blockCount) 
  
 CRE_summary <- col_ng_peak %>% 
   mutate(cRE_status=if_else(Peakid %in% is_cRE$Peakid,"cRE_peak","not_cRE_peak")) %>% 
   mutate(CTCF_status=if_else(Peakid %in% is_CTCF$Peakid,"CTCF_peak","not_CTCF_peak")) %>% 
    mutate(dELS_status=if_else(Peakid %in% is_dELS$Peakid,"dELS_peak","not_dELS_peak")) %>% 
    mutate(pELS_status=if_else(Peakid %in% is_pELS$Peakid,"pELS_peak","not_pELS_peak")) %>% 
    mutate(PLS_status=if_else(Peakid %in% is_PLS$Peakid,"PLS_peak","not_PLS_peak")) %>% 
   mutate(mrc=if_else(Peakid %in% EAR_open$Peakid, "EAR_open",
                      if_else(Peakid %in% EAR_close$Peakid, "EAR_close",
                              if_else(Peakid %in% ESR_open$Peakid,"ESR_open",
                                      if_else(Peakid %in% ESR_close$Peakid,"ESR_close",
                                              if_else(Peakid %in% ESR_C$Peakid,"ESR_opcl",
                                                      if_else(Peakid %in% LR_open$Peakid,"LR_open",
                                                                      if_else(Peakid %in% LR_close$Peakid,"LR_close",
                                                                              if_else(Peakid %in% NR$Peakid,"NR",if_else(Peakid %in% ESR_D$Peakid,"ESR_clop","not_mrc"))))))))) )


cRE_mat<- CRE_summary %>% 
 dplyr::filter(mrc != "not_mrc") %>% 
  group_by(cRE_status, mrc) %>% 
  tally %>% 
  mutate(mrc= factor(mrc, levels = c("EAR_open","EAR_close","ESR_open", "ESR_close", "ESR_opcl", "ESR_clop","LR_open","LR_close","NR"))) %>% 
  pivot_wider(id_cols = mrc, names_from = cRE_status,values_from = n) %>% 
  column_to_rownames("mrc") %>% 
  na.omit(.) %>% 
  as.matrix(.)

CTCF_mat<- CRE_summary %>% 
 dplyr::filter(mrc != "not_mrc") %>% 
  group_by(CTCF_status, mrc) %>% 
  tally %>% 
  mutate(mrc= factor(mrc, levels = c("EAR_open","EAR_close","ESR_open", "ESR_close", "ESR_opcl", "ESR_clop","LR_open","LR_close","NR"))) %>% 
  pivot_wider(id_cols = mrc, names_from = CTCF_status,values_from = n) %>% 
  column_to_rownames("mrc") %>% 
  na.omit(.) %>% 
  as.matrix(.)

dELS_mat<- CRE_summary %>% 
 dplyr::filter(mrc != "not_mrc") %>% 
  group_by(dELS_status, mrc) %>% 
  tally %>% 
  mutate(mrc= factor(mrc, levels = c("EAR_open","EAR_close","ESR_open", "ESR_close", "ESR_opcl", "ESR_clop","LR_open","LR_close","NR"))) %>% 
  pivot_wider(id_cols = mrc, names_from = dELS_status,values_from = n) %>% 
  column_to_rownames("mrc") %>% 
  na.omit(.) %>% 
  as.matrix(.)

pELS_mat<- CRE_summary %>% 
 dplyr::filter(mrc != "not_mrc") %>% 
  group_by(pELS_status, mrc) %>% 
  tally %>% 
  mutate(mrc= factor(mrc, levels = c("EAR_open","EAR_close","ESR_open", "ESR_close", "ESR_opcl", "ESR_clop","LR_open","LR_close","NR"))) %>% 
  pivot_wider(id_cols = mrc, names_from = pELS_status,values_from = n) %>% 
  column_to_rownames("mrc") %>% 
  na.omit(.) %>% 
  as.matrix(.)

PLS_mat<- CRE_summary %>% 
 dplyr::filter(mrc != "not_mrc") %>% 
  group_by(PLS_status, mrc) %>% 
  tally %>% 
  mutate(mrc= factor(mrc, levels = c("EAR_open","EAR_close","ESR_open", "ESR_close", "ESR_opcl", "ESR_clop","LR_open","LR_close","NR"))) %>% 
  pivot_wider(id_cols = mrc, names_from = PLS_status,values_from = n) %>% 
  column_to_rownames("mrc") %>% 
  na.omit(.) %>% 
  as.matrix(.)

chi square results

matrix_list_cre <- list("PLS"=PLS_mat, "dELS"=dELS_mat, "pELS"=pELS_mat,"CTCF"= CTCF_mat,"All cREs"= cRE_mat)
results_cre <- data.frame(Matrix_Name = character(),
                      Row_Compared = character(),
                      Chi_Square_Statistic = numeric(),
                      P_Value = numeric(),
                      stringsAsFactors = FALSE)
names_list_cre <- names(matrix_list_cre)
# Loop through each matrix in the list
for (matrix_name in names_list_cre) {
  current_matrix <- matrix_list_cre[[matrix_name]]
  n_rows <- nrow(current_matrix)
  
  # Print matrix details for debugging
  cat("Processing Matrix:", matrix_name, "\n")
  print(current_matrix)
  
  # Loop through each row of the current matrix (except the last row)
  for (i in 1:(n_rows - 1)) {
    # Print row details for debugging
    cat("Comparing row", i, "with last row:\n")
    print(current_matrix[i, ])
    print(current_matrix[n_rows, ])
    
    # Perform chi-square test between row i and the last row
    test_result <- tryCatch({
      chisq.test(rbind(current_matrix[i, ], current_matrix[n_rows, ]))
    }, error = function(e) {
      cat("Error in chi-square test:", e$message, "\n")
      return(NULL)
    })
    
    # Only store the result if test_result is valid (i.e., not NULL)
    if (!is.null(test_result)) {
      results_cre <- rbind(results_cre, data.frame(Matrix_Name = matrix_name,
                                           Row_Compared = rownames(current_matrix)[i],
                                           Chi_Square_Statistic = test_result$statistic,
                                           P_Value = test_result$p.value))
    }
  }
}
Processing Matrix: PLS 
          PLS_peak not_PLS_peak
EAR_close       48         4248
EAR_open       697         2461
ESR_close      288         9061
ESR_opcl         1           98
ESR_open       158         5114
LR_close       789        13283
LR_open        219        28318
NR            9778        76553
Comparing row 1 with last row:
    PLS_peak not_PLS_peak 
          48         4248 
    PLS_peak not_PLS_peak 
        9778        76553 
Comparing row 2 with last row:
    PLS_peak not_PLS_peak 
         697         2461 
    PLS_peak not_PLS_peak 
        9778        76553 
Comparing row 3 with last row:
    PLS_peak not_PLS_peak 
         288         9061 
    PLS_peak not_PLS_peak 
        9778        76553 
Comparing row 4 with last row:
    PLS_peak not_PLS_peak 
           1           98 
    PLS_peak not_PLS_peak 
        9778        76553 
Comparing row 5 with last row:
    PLS_peak not_PLS_peak 
         158         5114 
    PLS_peak not_PLS_peak 
        9778        76553 
Comparing row 6 with last row:
    PLS_peak not_PLS_peak 
         789        13283 
    PLS_peak not_PLS_peak 
        9778        76553 
Comparing row 7 with last row:
    PLS_peak not_PLS_peak 
         219        28318 
    PLS_peak not_PLS_peak 
        9778        76553 
Processing Matrix: dELS 
          dELS_peak not_dELS_peak
EAR_close       346          3950
EAR_open        125          3033
ESR_clop         31          1030
ESR_close      1354          7995
ESR_opcl          8            91
ESR_open        163          5109
LR_close       1478         12594
LR_open         955         27582
NR             5680         80651
Comparing row 1 with last row:
    dELS_peak not_dELS_peak 
          346          3950 
    dELS_peak not_dELS_peak 
         5680         80651 
Comparing row 2 with last row:
    dELS_peak not_dELS_peak 
          125          3033 
    dELS_peak not_dELS_peak 
         5680         80651 
Comparing row 3 with last row:
    dELS_peak not_dELS_peak 
           31          1030 
    dELS_peak not_dELS_peak 
         5680         80651 
Comparing row 4 with last row:
    dELS_peak not_dELS_peak 
         1354          7995 
    dELS_peak not_dELS_peak 
         5680         80651 
Comparing row 5 with last row:
    dELS_peak not_dELS_peak 
            8            91 
    dELS_peak not_dELS_peak 
         5680         80651 
Comparing row 6 with last row:
    dELS_peak not_dELS_peak 
          163          5109 
    dELS_peak not_dELS_peak 
         5680         80651 
Comparing row 7 with last row:
    dELS_peak not_dELS_peak 
         1478         12594 
    dELS_peak not_dELS_peak 
         5680         80651 
Comparing row 8 with last row:
    dELS_peak not_dELS_peak 
          955         27582 
    dELS_peak not_dELS_peak 
         5680         80651 
Processing Matrix: pELS 
          not_pELS_peak pELS_peak
EAR_close          4214        82
EAR_open           2590       568
ESR_clop           1056         5
ESR_close          8887       462
ESR_opcl             95         4
ESR_open           5058       214
LR_close          13295       777
LR_open           28189       348
NR                78113      8218
Comparing row 1 with last row:
not_pELS_peak     pELS_peak 
         4214            82 
not_pELS_peak     pELS_peak 
        78113          8218 
Comparing row 2 with last row:
not_pELS_peak     pELS_peak 
         2590           568 
not_pELS_peak     pELS_peak 
        78113          8218 
Comparing row 3 with last row:
not_pELS_peak     pELS_peak 
         1056             5 
not_pELS_peak     pELS_peak 
        78113          8218 
Comparing row 4 with last row:
not_pELS_peak     pELS_peak 
         8887           462 
not_pELS_peak     pELS_peak 
        78113          8218 
Comparing row 5 with last row:
not_pELS_peak     pELS_peak 
           95             4 
not_pELS_peak     pELS_peak 
        78113          8218 
Comparing row 6 with last row:
not_pELS_peak     pELS_peak 
         5058           214 
not_pELS_peak     pELS_peak 
        78113          8218 
Comparing row 7 with last row:
not_pELS_peak     pELS_peak 
        13295           777 
not_pELS_peak     pELS_peak 
        78113          8218 
Comparing row 8 with last row:
not_pELS_peak     pELS_peak 
        28189           348 
not_pELS_peak     pELS_peak 
        78113          8218 
Processing Matrix: CTCF 
          CTCF_peak not_CTCF_peak
EAR_close       101          4195
EAR_open         97          3061
ESR_close       377          8972
ESR_opcl          1            98
ESR_open         64          5208
LR_close        592         13480
LR_open         219         28318
NR             5403         80928
Comparing row 1 with last row:
    CTCF_peak not_CTCF_peak 
          101          4195 
    CTCF_peak not_CTCF_peak 
         5403         80928 
Comparing row 2 with last row:
    CTCF_peak not_CTCF_peak 
           97          3061 
    CTCF_peak not_CTCF_peak 
         5403         80928 
Comparing row 3 with last row:
    CTCF_peak not_CTCF_peak 
          377          8972 
    CTCF_peak not_CTCF_peak 
         5403         80928 
Comparing row 4 with last row:
    CTCF_peak not_CTCF_peak 
            1            98 
    CTCF_peak not_CTCF_peak 
         5403         80928 
Comparing row 5 with last row:
    CTCF_peak not_CTCF_peak 
           64          5208 
    CTCF_peak not_CTCF_peak 
         5403         80928 
Comparing row 6 with last row:
    CTCF_peak not_CTCF_peak 
          592         13480 
    CTCF_peak not_CTCF_peak 
         5403         80928 
Comparing row 7 with last row:
    CTCF_peak not_CTCF_peak 
          219         28318 
    CTCF_peak not_CTCF_peak 
         5403         80928 
Processing Matrix: All cREs 
          cRE_peak not_cRE_peak
EAR_close      564         3732
EAR_open      1032         2126
ESR_clop        36         1025
ESR_close     2324         7025
ESR_opcl        13           86
ESR_open       512         4760
LR_close      3128        10944
LR_open       1637        26900
NR           22534        63797
Comparing row 1 with last row:
    cRE_peak not_cRE_peak 
         564         3732 
    cRE_peak not_cRE_peak 
       22534        63797 
Comparing row 2 with last row:
    cRE_peak not_cRE_peak 
        1032         2126 
    cRE_peak not_cRE_peak 
       22534        63797 
Comparing row 3 with last row:
    cRE_peak not_cRE_peak 
          36         1025 
    cRE_peak not_cRE_peak 
       22534        63797 
Comparing row 4 with last row:
    cRE_peak not_cRE_peak 
        2324         7025 
    cRE_peak not_cRE_peak 
       22534        63797 
Comparing row 5 with last row:
    cRE_peak not_cRE_peak 
          13           86 
    cRE_peak not_cRE_peak 
       22534        63797 
Comparing row 6 with last row:
    cRE_peak not_cRE_peak 
         512         4760 
    cRE_peak not_cRE_peak 
       22534        63797 
Comparing row 7 with last row:
    cRE_peak not_cRE_peak 
        3128        10944 
    cRE_peak not_cRE_peak 
       22534        63797 
Comparing row 8 with last row:
    cRE_peak not_cRE_peak 
        1637        26900 
    cRE_peak not_cRE_peak 
       22534        63797 
# Print the resulting dataframe
print(results_cre)
            Matrix_Name Row_Compared Chi_Square_Statistic       P_Value
X-squared           PLS    EAR_close          440.1586065  9.998327e-98
X-squared1          PLS     EAR_open          339.2781306  9.163922e-76
X-squared2          PLS    ESR_close          608.3795659 2.518823e-134
X-squared3          PLS     ESR_opcl            9.4848736  2.071729e-03
X-squared4          PLS     ESR_open          355.5913847  2.567814e-79
X-squared5          PLS     LR_close          419.6860256  2.856187e-93
X-squared6          PLS      LR_open         3008.0307322  0.000000e+00
X-squared7         dELS    EAR_close           14.1010187  1.732499e-04
X-squared8         dELS     EAR_open           34.0740951  5.305287e-09
X-squared9         dELS     ESR_clop           22.3614218  2.258657e-06
X-squared10        dELS    ESR_close          772.4658531 5.231320e-170
X-squared11        dELS     ESR_opcl            0.1595127  6.896056e-01
X-squared12        dELS     ESR_open          100.6132894  1.118150e-23
X-squared13        dELS     LR_close          280.7696601  5.103577e-63
X-squared14        dELS      LR_open          411.2476997  1.961260e-91
X-squared15        pELS    EAR_close          283.9817228  1.018430e-63
X-squared16        pELS     EAR_open          245.7142389  2.232575e-55
X-squared17        pELS     ESR_clop           99.6034670  1.861782e-23
X-squared18        pELS    ESR_close          213.7174103  2.122586e-48
X-squared19        pELS     ESR_opcl            2.8411858  9.187639e-02
X-squared20        pELS     ESR_open          176.5759605  2.710603e-40
X-squared21        pELS     LR_close          236.5801977  2.189762e-53
X-squared22        pELS      LR_open         2139.6174210  0.000000e+00
X-squared23        CTCF    EAR_close          108.8501702  1.750287e-25
X-squared24        CTCF     EAR_open           53.0905639  3.185189e-13
X-squared25        CTCF    ESR_close           73.2456334  1.144782e-17
X-squared26        CTCF     ESR_opcl            3.7947687  5.141298e-02
X-squared27        CTCF     ESR_open          224.3993326  9.927024e-51
X-squared28        CTCF     LR_close           90.3394922  2.006082e-21
X-squared29        CTCF      LR_open         1388.0944201 8.119789e-304
X-squared30    All cREs    EAR_close          362.0022835  1.031801e-80
X-squared31    All cREs     EAR_open           67.5954503  2.007302e-16
X-squared32    All cREs     ESR_clop          280.9720486  4.610746e-63
X-squared33    All cREs    ESR_close            6.7192904  9.537557e-03
X-squared34    All cREs     ESR_opcl            7.9684063  4.760083e-03
X-squared35    All cREs     ESR_open          708.0084840 5.422764e-156
X-squared36    All cREs     LR_close           95.2051750  1.716410e-22
X-squared37    All cREs      LR_open         5352.7289387  0.000000e+00

odds ratio results

results_or_cre <- data.frame(Matrix_Name = character(),
                      Row_Compared = character(),
                      Odds_Ratio = numeric(),
                      Lower_CI = numeric(),
                      Upper_CI = numeric(),
                      P_Value = numeric(),
                      stringsAsFactors = FALSE)

# Loop through each matrix in the list
for (matrix_name in names(matrix_list_cre)) {
  current_matrix <- matrix_list_cre[[matrix_name]]
  n_rows <- nrow(current_matrix)
  
  # Loop through each row of the current matrix (except the last row)
  for (i in 1:(n_rows - 1)) {
    # Perform odds ratio test between row i and the last row using epitools
    test_result <- tryCatch({
      contingency_table <- rbind(current_matrix[i, ], current_matrix[n_rows, ])
      
      # Check if any row in the contingency table contains only zeros
      if (any(rowSums(contingency_table) == 0)) {
        stop("Contingency table contains empty rows.")
      }
      
      oddsratio_result <- oddsratio(contingency_table)
       # Ensure the oddsratio result has at least 2 rows
      if (nrow(oddsratio_result$measure) < 2) {
        stop("oddsratio result does not have enough data.")
      }
      
     
      
      list(oddsratio = oddsratio_result, p.value = oddsratio_result$p.value[2,"chi.square"])
      
    }, error = function(e) {
      cat("Error in odds ratio test for row", i, "in matrix", matrix_name, ":", e$message, "\n")
      return(NULL)
    })
    
    # Only store the result if test_result is valid (i.e., not NULL)
    if (!is.null(test_result)) {
      or_value <- test_result$oddsratio$measure[2, "estimate"]
      lower_ci <- test_result$oddsratio$measure[2, "lower"]
      upper_ci <- test_result$oddsratio$measure[2, "upper"]
      p_value <- test_result$oddsratio$p.value[2,"chi.square"]
      
      # Check if the values are numeric and valid (not NA)
      if (!is.na(or_value) && !is.na(lower_ci) && !is.na(upper_ci) && !is.na(p_value)) {
        # Store the results in the dataframe
        results_or_cre <- rbind(results_or_cre, data.frame(Matrix_Name = matrix_name,
                                             Row_Compared = rownames(current_matrix)[i],
                                             Odds_Ratio = or_value,
                                             Lower_CI = lower_ci,
                                             Upper_CI = upper_ci,
                                             P_Value = p_value))
      }
    }
  }
}
Error in odds ratio test for row 1 in matrix PLS : could not find function "oddsratio" 
Error in odds ratio test for row 2 in matrix PLS : could not find function "oddsratio" 
Error in odds ratio test for row 3 in matrix PLS : could not find function "oddsratio" 
Error in odds ratio test for row 4 in matrix PLS : could not find function "oddsratio" 
Error in odds ratio test for row 5 in matrix PLS : could not find function "oddsratio" 
Error in odds ratio test for row 6 in matrix PLS : could not find function "oddsratio" 
Error in odds ratio test for row 7 in matrix PLS : could not find function "oddsratio" 
Error in odds ratio test for row 1 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 2 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 3 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 4 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 5 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 6 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 7 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 8 in matrix dELS : could not find function "oddsratio" 
Error in odds ratio test for row 1 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 2 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 3 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 4 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 5 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 6 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 7 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 8 in matrix pELS : could not find function "oddsratio" 
Error in odds ratio test for row 1 in matrix CTCF : could not find function "oddsratio" 
Error in odds ratio test for row 2 in matrix CTCF : could not find function "oddsratio" 
Error in odds ratio test for row 3 in matrix CTCF : could not find function "oddsratio" 
Error in odds ratio test for row 4 in matrix CTCF : could not find function "oddsratio" 
Error in odds ratio test for row 5 in matrix CTCF : could not find function "oddsratio" 
Error in odds ratio test for row 6 in matrix CTCF : could not find function "oddsratio" 
Error in odds ratio test for row 7 in matrix CTCF : could not find function "oddsratio" 
Error in odds ratio test for row 1 in matrix All cREs : could not find function "oddsratio" 
Error in odds ratio test for row 2 in matrix All cREs : could not find function "oddsratio" 
Error in odds ratio test for row 3 in matrix All cREs : could not find function "oddsratio" 
Error in odds ratio test for row 4 in matrix All cREs : could not find function "oddsratio" 
Error in odds ratio test for row 5 in matrix All cREs : could not find function "oddsratio" 
Error in odds ratio test for row 6 in matrix All cREs : could not find function "oddsratio" 
Error in odds ratio test for row 7 in matrix All cREs : could not find function "oddsratio" 
Error in odds ratio test for row 8 in matrix All cREs : could not find function "oddsratio" 
# Print the resulting dataframe
print(results_or_cre)
[1] Matrix_Name  Row_Compared Odds_Ratio   Lower_CI     Upper_CI    
[6] P_Value     
<0 rows> (or 0-length row.names)
library(circlize)
col_fun_cre = colorRamp2(c(0,6), c("white", "purple3"))
sig_mat_cre <- results_or_cre %>% 
  as.data.frame() %>% 
  dplyr::select( Matrix_Name,Row_Compared,P_Value) %>% 
  pivot_wider(., id_cols = Matrix_Name, names_from = Row_Compared, values_from = P_Value) %>% 
  column_to_rownames("Matrix_Name") %>% 
  as.matrix() 


results_or_cre %>% 
  as.data.frame() %>% 
  dplyr::select( Matrix_Name,Row_Compared,Odds_Ratio) %>% 
  pivot_wider(., id_cols = Matrix_Name, names_from = Row_Compared, values_from = Odds_Ratio) %>% 
  column_to_rownames("Matrix_Name") %>% 
  as.matrix() %>% 
  ComplexHeatmap::Heatmap(. ,col = col_fun_cre, 
                          cluster_rows=FALSE, 
                          cluster_columns=FALSE, 
                          column_names_side = "top", 
                          column_names_rot = 45,
                          cell_fun = function(j, i, x, y, width, height, fill) {if (!is.na(sig_mat_cre[i, j]) && sig_mat_cre[i, j] < 0.05)
            grid.text("*", x, y, gp = gpar(fontsize = 20))})

Version Author Date
d926a4a reneeisnowhere 2024-10-07

Top2b

to be determined…. ingnore for now

Counts of peaks-


sessionInfo()
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] circlize_0.4.16                         
 [2] gprofiler2_0.2.3                        
 [3] genomation_1.36.0                       
 [4] plyranges_1.24.0                        
 [5] BSgenome.Hsapiens.UCSC.hg38_1.4.5       
 [6] BSgenome_1.72.0                         
 [7] BiocIO_1.14.0                           
 [8] MotifDb_1.46.0                          
 [9] Biostrings_2.72.1                       
[10] XVector_0.44.0                          
[11] TFBSTools_1.42.0                        
[12] JASPAR2022_0.99.8                       
[13] BiocFileCache_2.12.0                    
[14] dbplyr_2.5.0                            
[15] devtools_2.4.5                          
[16] usethis_3.0.0                           
[17] ggpubr_0.6.0                            
[18] BiocParallel_1.38.0                     
[19] scales_1.3.0                            
[20] VennDiagram_1.7.3                       
[21] futile.logger_1.4.3                     
[22] gridExtra_2.3                           
[23] ggfortify_0.4.17                        
[24] edgeR_4.2.1                             
[25] limma_3.60.4                            
[26] rtracklayer_1.64.0                      
[27] org.Hs.eg.db_3.19.1                     
[28] TxDb.Hsapiens.UCSC.hg38.knownGene_3.18.0
[29] GenomicFeatures_1.56.0                  
[30] AnnotationDbi_1.66.0                    
[31] Biobase_2.64.0                          
[32] GenomicRanges_1.56.1                    
[33] GenomeInfoDb_1.40.1                     
[34] IRanges_2.38.1                          
[35] S4Vectors_0.42.1                        
[36] BiocGenerics_0.50.0                     
[37] ChIPseeker_1.40.0                       
[38] RColorBrewer_1.1-3                      
[39] broom_1.0.7                             
[40] kableExtra_1.4.0                        
[41] lubridate_1.9.3                         
[42] forcats_1.0.0                           
[43] stringr_1.5.1                           
[44] dplyr_1.1.4                             
[45] purrr_1.0.2                             
[46] readr_2.1.5                             
[47] tidyr_1.3.1                             
[48] tibble_3.2.1                            
[49] ggplot2_3.5.1                           
[50] tidyverse_2.0.0                         
[51] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] R.methodsS3_1.8.2                      
  [2] vroom_1.6.5                            
  [3] urlchecker_1.0.1                       
  [4] poweRlaw_0.80.0                        
  [5] vctrs_0.6.5                            
  [6] digest_0.6.37                          
  [7] png_0.1-8                              
  [8] shape_1.4.6.1                          
  [9] git2r_0.33.0                           
 [10] ggrepel_0.9.6                          
 [11] magick_2.8.5                           
 [12] MASS_7.3-61                            
 [13] reshape2_1.4.4                         
 [14] httpuv_1.6.15                          
 [15] foreach_1.5.2                          
 [16] qvalue_2.36.0                          
 [17] withr_3.0.1                            
 [18] xfun_0.47                              
 [19] ggfun_0.1.6                            
 [20] ellipsis_0.3.2                         
 [21] memoise_2.0.1                          
 [22] profvis_0.4.0                          
 [23] systemfonts_1.1.0                      
 [24] tidytree_0.4.6                         
 [25] GlobalOptions_0.1.2                    
 [26] gtools_3.9.5                           
 [27] R.oo_1.26.0                            
 [28] Formula_1.2-5                          
 [29] KEGGREST_1.44.1                        
 [30] promises_1.3.0                         
 [31] httr_1.4.7                             
 [32] rstatix_0.7.2                          
 [33] restfulr_0.0.15                        
 [34] ps_1.8.0                               
 [35] rstudioapi_0.16.0                      
 [36] UCSC.utils_1.0.0                       
 [37] miniUI_0.1.1.1                         
 [38] generics_0.1.3                         
 [39] DOSE_3.30.5                            
 [40] processx_3.8.4                         
 [41] curl_5.2.3                             
 [42] zlibbioc_1.50.0                        
 [43] ggraph_2.2.1                           
 [44] polyclip_1.10-7                        
 [45] GenomeInfoDbData_1.2.12                
 [46] SparseArray_1.4.8                      
 [47] xtable_1.8-4                           
 [48] pracma_2.4.4                           
 [49] doParallel_1.0.17                      
 [50] evaluate_1.0.0                         
 [51] S4Arrays_1.4.1                         
 [52] hms_1.1.3                              
 [53] colorspace_2.1-1                       
 [54] filelock_1.0.3                         
 [55] magrittr_2.0.3                         
 [56] later_1.3.2                            
 [57] viridis_0.6.5                          
 [58] ggtree_3.12.0                          
 [59] lattice_0.22-6                         
 [60] getPass_0.2-4                          
 [61] XML_3.99-0.17                          
 [62] shadowtext_0.1.4                       
 [63] cowplot_1.1.3                          
 [64] matrixStats_1.4.1                      
 [65] pillar_1.9.0                           
 [66] nlme_3.1-166                           
 [67] iterators_1.0.14                       
 [68] pwalign_1.0.0                          
 [69] gridBase_0.4-7                         
 [70] caTools_1.18.3                         
 [71] compiler_4.4.1                         
 [72] stringi_1.8.4                          
 [73] SummarizedExperiment_1.34.0            
 [74] GenomicAlignments_1.40.0               
 [75] plyr_1.8.9                             
 [76] crayon_1.5.3                           
 [77] abind_1.4-8                            
 [78] gridGraphics_0.5-1                     
 [79] locfit_1.5-9.10                        
 [80] graphlayouts_1.2.0                     
 [81] bit_4.5.0                              
 [82] fastmatch_1.1-4                        
 [83] whisker_0.4.1                          
 [84] codetools_0.2-20                       
 [85] bslib_0.8.0                            
 [86] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
 [87] GetoptLong_1.0.5                       
 [88] plotly_4.10.4                          
 [89] mime_0.12                              
 [90] splines_4.4.1                          
 [91] Rcpp_1.0.13                            
 [92] knitr_1.48                             
 [93] blob_1.2.4                             
 [94] utf8_1.2.4                             
 [95] clue_0.3-65                            
 [96] seqLogo_1.70.0                         
 [97] fs_1.6.4                               
 [98] pkgbuild_1.4.4                         
 [99] ggsignif_0.6.4                         
[100] ggplotify_0.1.2                        
[101] Matrix_1.7-0                           
[102] callr_3.7.6                            
[103] statmod_1.5.0                          
[104] tzdb_0.4.0                             
[105] svglite_2.1.3                          
[106] tweenr_2.0.3                           
[107] pkgconfig_2.0.3                        
[108] tools_4.4.1                            
[109] cachem_1.1.0                           
[110] RSQLite_2.3.7                          
[111] viridisLite_0.4.2                      
[112] DBI_1.2.3                              
[113] splitstackshape_1.4.8                  
[114] impute_1.78.0                          
[115] fastmap_1.2.0                          
[116] rmarkdown_2.28                         
[117] Rsamtools_2.20.0                       
[118] sass_0.4.9                             
[119] patchwork_1.3.0                        
[120] carData_3.0-5                          
[121] farver_2.1.2                           
[122] tidygraph_1.3.1                        
[123] scatterpie_0.2.4                       
[124] yaml_2.3.10                            
[125] MatrixGenerics_1.16.0                  
[126] cli_3.6.3                              
[127] lifecycle_1.0.4                        
[128] lambda.r_1.2.4                         
[129] sessioninfo_1.2.2                      
[130] backports_1.5.0                        
[131] annotate_1.82.0                        
[132] timechange_0.3.0                       
[133] gtable_0.3.5                           
[134] rjson_0.2.23                           
[135] parallel_4.4.1                         
[136] ape_5.8                                
[137] jsonlite_1.8.9                         
[138] bitops_1.0-8                           
[139] bit64_4.5.2                            
[140] yulab.utils_0.1.7                      
[141] CNEr_1.40.0                            
[142] futile.options_1.0.1                   
[143] jquerylib_0.1.4                        
[144] highr_0.11                             
[145] GOSemSim_2.30.2                        
[146] R.utils_2.12.3                         
[147] lazyeval_0.2.2                         
[148] shiny_1.9.1                            
[149] htmltools_0.5.8.1                      
[150] enrichplot_1.24.4                      
[151] GO.db_3.19.1                           
[152] rappdirs_0.3.3                         
[153] formatR_1.14                           
[154] glue_1.8.0                             
[155] TFMPvalue_0.0.9                        
[156] httr2_1.0.5                            
[157] RCurl_1.98-1.16                        
[158] rprojroot_2.0.4                        
[159] treeio_1.28.0                          
[160] boot_1.3-31                            
[161] igraph_2.0.3                           
[162] R6_2.5.1                               
[163] gplots_3.1.3.1                         
[164] labeling_0.4.3                         
[165] cluster_2.1.6                          
[166] pkgload_1.4.0                          
[167] aplot_0.2.3                            
[168] DirichletMultinomial_1.46.0            
[169] DelayedArray_0.30.1                    
[170] tidyselect_1.2.1                       
[171] plotrix_3.8-4                          
[172] ggforce_0.4.2                          
[173] xml2_1.3.6                             
[174] car_3.1-3                              
[175] seqPattern_1.36.0                      
[176] munsell_0.5.1                          
[177] KernSmooth_2.23-24                     
[178] data.table_1.16.0                      
[179] htmlwidgets_1.6.4                      
[180] fgsea_1.30.0                           
[181] ComplexHeatmap_2.20.0                  
[182] rlang_1.1.4                            
[183] remotes_2.5.0                          
[184] fansi_1.0.6