1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use std::hash::Hash;
use std::cmp::Eq;
use std::fmt::{self, Debug};
use std::collections::hash_map;
use std::ops::DerefMut;
use std::mem;
use stable_deref_trait::StableDeref;
use vec_drain_where::*;
use utils::DebugIterableOpaque;
use super::{TotalOrderMultiMap, EntryValues, EntryValuesMut};
impl<K, V> TotalOrderMultiMap<K, V>
where K: Hash + Eq + Copy,
V: StableDeref + DerefMut
{
pub fn entry(&mut self, key: K) -> Entry<K, V> {
let vec_data_ref = &mut self.vec_data;
let map_access_entry = self.map_access.entry(key);
Entry { vec_data_ref, map_access_entry }
}
}
pub struct Entry<'a, K, V>
where K: 'a,
V: StableDeref + DerefMut + 'a,
{
vec_data_ref: &'a mut Vec<(K, V)>,
map_access_entry: hash_map::Entry<'a, K, Vec<*mut V::Target>>
}
impl<'a, K, V> Debug for Entry<'a, K, V>
where K: Hash + Eq + Copy + Debug + 'a,
V: StableDeref + DerefMut + 'a,
V::Target: Debug
{
fn fmt(&self, fter: &mut fmt::Formatter) -> fmt::Result {
use self::hash_map::Entry::*;
let dio: Box<Debug> = match self.map_access_entry {
Occupied(ref o) => {
Box::new(DebugIterableOpaque::new(o.get().iter().map(|&ptr| unsafe { &*ptr })))
},
Vacant(..) => Box::new("[]")
} ;
fter.debug_struct("Entry")
.field("key", &self.key())
.field("values", &*dio)
.finish()
}
}
impl<'a, K, V> Entry<'a, K, V>
where K: Hash + Eq + Copy + 'a,
V: StableDeref + DerefMut + 'a
{
pub fn key(&self) -> K {
*self.map_access_entry.key()
}
pub fn value_count(&self) -> usize {
self.values().len()
}
pub fn values(&self) -> EntryValues<V::Target> {
use self::hash_map::Entry::*;
match self.map_access_entry {
Occupied(ref o) => EntryValues::new(o.get().iter()),
Vacant(..) => EntryValues::empty()
}
}
pub fn values_mut(&mut self) -> EntryValuesMut<V::Target> {
use self::hash_map::Entry::*;
match self.map_access_entry {
Occupied(ref mut o) => EntryValuesMut::new(o.get_mut().iter_mut()),
Vacant(..) => EntryValuesMut::empty()
}
}
pub fn add(self, val: V) -> EntryValuesMut<'a, V::Target> {
use self::hash_map::Entry::*;
let mut val = val;
let Entry { vec_data_ref, map_access_entry } = self;
let ptr: *mut V::Target = val.deref_mut();
let key = *map_access_entry.key();
vec_data_ref.push((key, val));
let vals = match map_access_entry {
Occupied(mut oe) => {
let mut mut_vec = oe.into_mut();
mut_vec.push(ptr);
mut_vec
},
Vacant(ve) => {
ve.insert(vec![ptr])
}
};
EntryValuesMut::new(vals.iter_mut())
}
pub fn set(self, val: V) -> Vec<V> {
use self::hash_map::Entry::*;
let mut val = val;
let Entry { vec_data_ref, map_access_entry } = self;
let ptr: *mut V::Target = val.deref_mut();
let key = *map_access_entry.key();
vec_data_ref.push((key, val));
let mut nr_of_old_vals =
match map_access_entry {
Occupied(mut oe) => {
mem::replace(oe.get_mut(), vec![ptr]).len()
},
Vacant(ve) => {
ve.insert(vec![ptr]);
0
}
};
vec_data_ref.e_drain_where(move |&mut (ref k, _)| {
if nr_of_old_vals > 0 && k == &key {
nr_of_old_vals -= 1;
true
} else {
false
}
}).map(|(_k,v)| v).collect()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn iter_entry_values() {
let mut map = TotalOrderMultiMap::new();
map.add("k1", "v1".to_owned());
map.add("k2", "v2".to_owned());
map.add("k1", "v3".to_owned());
map.add("k3", "v4".to_owned());
assert_eq!(
vec!["v1", "v3"],
map.entry("k1").values().collect::<Vec<_>>()
);
}
#[test]
fn entry_set_with_prev_vals() {
let mut map = TotalOrderMultiMap::new();
map.add("k1", "v1".to_owned());
map.add("k2", "v2".to_owned());
map.add("k1", "v3".to_owned());
map.add("k3", "v4".to_owned());
let res = map.entry("k1").set("xx".to_owned());
assert_eq!(vec!["v1".to_owned(), "v3".to_owned()], res);
assert_eq!(
vec![ ("k2", "v2"), ("k3", "v4"), ("k1" , "xx") ],
map.iter().collect::<Vec<_>>()
);
}
#[test]
fn entry_set_with_no_prev_vals() {
let mut map = TotalOrderMultiMap::new();
map.entry("k1").set("xx".to_owned());
assert_eq!(
vec![ ("k1" , "xx") ],
map.iter().collect::<Vec<_>>()
);
}
#[test]
fn base() {
let mut map = TotalOrderMultiMap::new();
map.add("k1", "v1".to_owned());
map.add("k2", "b".to_owned());
map.add("k1", "v2".to_owned());
{
let entry = map.entry("k1");
assert_eq!("k1", entry.key());
assert_eq!(2, entry.value_count());
entry.add("vX".to_owned());
}
assert_eq!(
["v1", "b", "v2", "vX"],
map.values().collect::<Vec<_>>().as_slice()
);
assert_eq!(
["v1", "v2", "vX"],
map.get("k1").collect::<Vec<_>>().as_slice()
);
{
let entry = map.entry("k99");
assert_eq!("k99", entry.key());
assert_eq!(0, entry.value_count());
}
{
let entry = map.entry("k88");
assert_eq!("k88", entry.key());
assert_eq!(0, entry.value_count());
entry.add("end.".to_owned());
}
assert_eq!(
[("k1", "v1"), ("k2", "b"), ("k1", "v2"), ("k1", "vX"), ("k88", "end.")],
map.iter().collect::<Vec<_>>().as_slice()
);
}
}