Files
base64
byteorder
bytes
cfg_if
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
fnv
futures
futures_cpupool
httparse
hyper
iovec
language_tags
lazy_static
libc
lock_api
log
maybe_uninit
memoffset
mime
mio
mio_uds
net2
num_cpus
parking_lot
parking_lot_core
percent_encoding
proc_macro2
quote
rand
relay
rfsapi
safemem
scoped_tls
scopeguard
serde
serde_derive
slab
smallvec
syn
take
time
tokio
tokio_codec
tokio_core
tokio_current_thread
tokio_executor
tokio_fs
tokio_io
tokio_proto
tokio_reactor
tokio_service
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
tokio_udp
tokio_uds
try_lock
unicase
unicode_xid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use super::{Frame, RequestId, StreamingMultiplex, Transport};
use super::advanced::{Multiplex, MultiplexMessage};

use BindClient;
use streaming::{Body, Message};
use util::client_proxy::{self, ClientProxy, Receiver};
use futures::{Future, IntoFuture, Poll, Async, Stream};
use futures::sync::oneshot;
use tokio_core::reactor::Handle;
use std::io;
use std::collections::HashMap;

/// A streaming, multiplexed client protocol.
///
/// The `T` parameter is used for the I/O object used to communicate, which is
/// supplied in `bind_transport`.
///
/// For simple protocols, the `Self` type is often a unit struct. In more
/// advanced cases, `Self` may contain configuration information that is used
/// for setting up the transport in `bind_transport`.
pub trait ClientProto<T: 'static>: 'static {
    /// Request headers.
    type Request: 'static;

    /// Request body chunks.
    type RequestBody: 'static;

    /// Response headers.
    type Response: 'static;

    /// Response body chunks.
    type ResponseBody: 'static;

    /// Errors, which are used both for error frames and for the service itself.
    type Error: From<io::Error> + 'static;

    /// The frame transport, which usually take `T` as a parameter.
    type Transport:
        Transport<Self::ResponseBody,
                  Item = Frame<Self::Response, Self::ResponseBody, Self::Error>,
                  SinkItem = Frame<Self::Request, Self::RequestBody, Self::Error>>;

    /// A future for initializing a transport from an I/O object.
    ///
    /// In simple cases, `Result<Self::Transport, Self::Error>` often suffices.
    type BindTransport: IntoFuture<Item = Self::Transport, Error = io::Error>;

    /// Build a transport from the given I/O object, using `self` for any
    /// configuration.
    fn bind_transport(&self, io: T) -> Self::BindTransport;
}

impl<P, T, B> BindClient<StreamingMultiplex<B>, T> for P where
    P: ClientProto<T>,
    T: 'static,
    B: Stream<Item = P::RequestBody, Error = P::Error> + 'static,
{
    type ServiceRequest = Message<P::Request, B>;
    type ServiceResponse = Message<P::Response, Body<P::ResponseBody, P::Error>>;
    type ServiceError = P::Error;

    type BindClient = ClientProxy<Self::ServiceRequest, Self::ServiceResponse, Self::ServiceError>;

    fn bind_client(&self, handle: &Handle, io: T) -> Self::BindClient {
        let (client, rx) = client_proxy::pair();

        let task = self.bind_transport(io).into_future().and_then(|transport| {
            let dispatch: Dispatch<P, T, B> = Dispatch {
                transport: transport,
                requests: rx,
                in_flight: HashMap::new(),
                next_request_id: 0,
            };
            Multiplex::new(dispatch)
        }).map_err(|e| {
            // TODO: where to punt this error to?
            debug!("multiplex task failed with error; err={:?}", e);
        });

        // Spawn the task
        handle.spawn(task);

        // Return the client
        client
    }
}

struct Dispatch<P, T, B> where
    P: ClientProto<T> + BindClient<StreamingMultiplex<B>, T>,
    T: 'static,
    B: Stream<Item = P::RequestBody, Error = P::Error> + 'static,
{
    transport: P::Transport,
    requests: Receiver<P::ServiceRequest, P::ServiceResponse, P::Error>,
    in_flight: HashMap<RequestId, oneshot::Sender<Result<P::ServiceResponse, P::Error>>>,
    next_request_id: u64,
}

impl<P, T, B> super::advanced::Dispatch for Dispatch<P, T, B> where
    P: ClientProto<T>,
    T: 'static,
    B: Stream<Item = P::RequestBody, Error = P::Error> + 'static,
{
    type Io = T;
    type In = P::Request;
    type BodyIn = P::RequestBody;
    type Out = P::Response;
    type BodyOut = P::ResponseBody;
    type Error = P::Error;
    type Stream = B;
        type Transport = P::Transport;

    fn transport(&mut self) -> &mut Self::Transport {
        &mut self.transport
    }

    fn dispatch(&mut self, message: MultiplexMessage<Self::Out, Body<Self::BodyOut, Self::Error>, Self::Error>) -> io::Result<()> {
        let MultiplexMessage { id, message, solo } = message;

        assert!(!solo);

        if let Some(complete) = self.in_flight.remove(&id) {
            drop(complete.send(message));
        } else {
            return Err(io::Error::new(io::ErrorKind::Other, "request / response mismatch"));
        }

        Ok(())
    }

    fn poll(&mut self) -> Poll<Option<MultiplexMessage<Self::In, B, Self::Error>>, io::Error> {
        trace!("Dispatch::poll");
        // Try to get a new request frame
        match self.requests.poll() {
            Ok(Async::Ready(Some(Ok((request, complete))))) => {
                trace!("   --> received request");

                let request_id = self.next_request_id;
                self.next_request_id += 1;

                trace!("   --> assigning request-id={:?}", request_id);

                // Track complete handle
                self.in_flight.insert(request_id, complete);

                Ok(Async::Ready(Some(MultiplexMessage::new(request_id, request))))

            }
            Ok(Async::Ready(None)) => {
                trace!("   --> client dropped");
                Ok(Async::Ready(None))
            }
            Ok(Async::Ready(Some(Err(e)))) => {
                trace!("   --> error");
                // An error on receive can only happen when the other half
                // disconnected. In this case, the client needs to be
                // shutdown
                panic!("unimplemented error handling: {:?}", e);
            }
            Ok(Async::NotReady) => {
                trace!("   --> not ready");
                Ok(Async::NotReady)
            }
            Err(()) => panic!(),
        }
    }

    fn poll_ready(&self) -> Async<()> {
        // Not capping the client yet
        Async::Ready(())
    }

    fn cancel(&mut self, _request_id: RequestId) -> io::Result<()> {
        // TODO: implement
        Ok(())
    }
}

impl<P, T, B> Drop for Dispatch<P, T, B> where
    P: ClientProto<T> + BindClient<StreamingMultiplex<B>, T>,
    T: 'static,
    B: Stream<Item = P::RequestBody, Error = P::Error> + 'static,
{
    fn drop(&mut self) {
        if !self.in_flight.is_empty() {
            warn!("multiplex client dropping with in-flight exchanges");
        }

        // Complete any pending requests with an error
        for (_, complete) in self.in_flight.drain() {
            drop(complete.send(Err(broken_pipe().into())));
        }
    }
}

fn broken_pipe() -> io::Error {
    io::Error::new(io::ErrorKind::BrokenPipe, "broken pipe")
}