Last updated: 2023-03-05

Checks: 7 0

Knit directory: dgrp-starve/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221101) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 05bbee2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData

Untracked files:
    Untracked:  analysis/linearReg.Rmd
    Untracked:  code/PCA/
    Untracked:  code/data-prep/
    Untracked:  code/fabio/
    Untracked:  code/intro-starve/
    Untracked:  code/regress/
    Untracked:  code/stepwise/
    Untracked:  data/corLoop-f.rds
    Untracked:  data/corLoop-m.rds
    Untracked:  data/eQTL_traits_females.csv
    Untracked:  data/eQTL_traits_males.csv
    Untracked:  data/fRegress.txt
    Untracked:  data/fRegress_adj.txt
    Untracked:  data/gbayesC-f.Rds
    Untracked:  data/gbayesC-m.Rds
    Untracked:  data/gbayesC.Rds
    Untracked:  data/goGroups.txt
    Untracked:  data/mPart.txt
    Untracked:  data/mRegress.txt
    Untracked:  data/mRegress_adj.txt
    Untracked:  data/multiReg.rData
    Untracked:  data/starve-f.txt
    Untracked:  data/starve-m.txt
    Untracked:  data/xp-f.txt
    Untracked:  data/xp-m.txt
    Untracked:  data/y_save.txt
    Untracked:  figure/
    Untracked:  notes/

Unstaged changes:
    Deleted:    analysis/gremlo.R
    Modified:   analysis/index.Rmd
    Modified:   analysis/recap.Rmd
    Deleted:    analysis/stepwise-f.Rmd
    Deleted:    analysis/stepwise-m.Rmd
    Deleted:    analysis/testing.R
    Deleted:    code/baseScript-lineComp.R
    Deleted:    code/combineSNP.R
    Deleted:    code/four-comp.76979.err
    Deleted:    code/four-comp.76979.out
    Deleted:    code/four-comp.sbatch
    Deleted:    code/fourLinePrep.R
    Deleted:    code/line_avgMinus.R
    Deleted:    code/line_avgPlus.R
    Deleted:    code/line_difMinus.R
    Deleted:    code/line_difPlus.R
    Deleted:    code/snpGene.R
    Deleted:    code/starveDataPrep.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/methodComp-m.Rmd) and HTML (docs/methodComp-m.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 05bbee2 nklimko 2023-03-05 wflow_publish("analysis/methodComp-m.Rmd")

#loop count and data limit
iter <- 48

#Parallel core count
#registerDoParallel(cores = 8)

#ggplot holder list
gg <- vector(mode='list', length=12)

# result storage elements
fit_greml <- vector(mode='list', length=iter)
fit_gbayesC <- vector(mode='list', length=iter)
fit_varbvs <- vector(mode='list', length=iter)
fit_glmnet <- vector(mode='list', length=iter)
dataFlag <- TRUE

if(dataFlag){

 #wolb infection and inversion status data with phenotype adjustment function
load("/data2/morgante_lab/data/dgrp/misc/adjustData.RData")

  
  #expression data matched to line and starvation phenotype
  #xp_f <- fread("data/xp-f.txt")
  
  xp_m <- fread("data/xp-m.txt")
  
  #setwd("C:/Users/noahk/OneDrive/Desktop/amogus")
  #getwd()
  
  #create matrix of only gene expression, trims line and starvation
  X <- as.matrix(xp_m[,3:13577])
  rownames(X) <- xp_m[,line]
  W <- scale(X)
  
  y_temp <- xp_m[,starvation]
  dat <- data.frame(id=xp_m[,line], y=y_temp)
  y <- adjustPheno(dat, "starvation")

} else{
  
  # Toy Data set, 200x100 matrix
  W <- matrix(rnorm(20000), ncol = 100)
  colnames(W) <- paste0("gene", 1:ncol(W))
  rownames(W) <- paste0("line", 1:nrow(W))
  
  #model uses genes 1:5 and 10:20
  y <- rowSums(W[, 1:5]) + rowSums(W[, 10:20]) + rnorm(nrow(W))

}
Type III ANOVA table for covariates: starvation
                 Df Sum of Sq   RSS    AIC F value Pr(>F)
<none>                        15975 893.32               
factor(wolba)     1     3.041 15978 891.35  0.0354 0.8509
factor(In_2L_t)   2   299.141 16274 892.99  1.7415 0.1781
factor(In_2R_NS)  2   243.044 16218 892.31  1.4149 0.2455
factor(In_3R_P)   2   230.105 16205 892.15  1.3396 0.2645
factor(In_3R_K)   2   288.050 16263 892.85  1.6770 0.1898
factor(In_3R_Mo)  2   207.445 16182 891.87  1.2077 0.3012


Estimated effects
                    Estimate Std. Error    t value     Pr(>|t|)
(Intercept)       45.6614374   1.157976 39.4321227 2.909220e-92
factor(wolba)y    -0.2574606   1.368248 -0.1881681 8.509500e-01
factor(In_2L_t)1   1.7198329   2.311372  0.7440744 4.577704e-01
factor(In_2L_t)2  -3.7780449   2.348592 -1.6086422 1.093906e-01
factor(In_2R_NS)1 -1.0811449   3.443957 -0.3139252 7.539297e-01
factor(In_2R_NS)2  5.8594026   3.595753  1.6295343 1.048923e-01
factor(In_3R_P)1  -2.0731924   3.879580 -0.5343858 5.937128e-01
factor(In_3R_P)2   7.1994131   4.718118  1.5259077 1.287315e-01
factor(In_3R_K)1   5.3513957   3.043456  1.7583284 8.033635e-02
factor(In_3R_K)2   3.7673764   6.668091  0.5649857 5.727643e-01
factor(In_3R_Mo)1 -3.0569154   3.189101 -0.9585510 3.390293e-01
factor(In_3R_Mo)2 -3.0977753   2.402719 -1.2892793 1.989020e-01
### qgg_greml

#model to solve for, vector of ones
mu <- matrix(rep(1, length(y)), ncol=1)
#names(mu) <- paste0("line", 1:length(mu))
rownames(mu) <- xp_m[,line]
TRM <- tcrossprod(W)/ncol(W)

# k-fold parameters
n <- length(y)
fold <- 10

iter <- 48
### sample analysis of gbayesC to show that convergence is working as expected 

test_IDs <- sample(1:n, as.integer(n / fold))
  
  W_train <- W[-test_IDs,]
  W_test <- W[test_IDs,]
  y_train <- y[-test_IDs]
  y_test <- y[test_IDs]
  

  ### GBAYES-C
  
  
  fitC <- qgg::gbayes(y=y_train, W=W_train, method="bayesC", scaleY=FALSE, nit=10000, nburn=5000)
plotCustomBayes <- function(rdsPath){

# data read in is a gBayes fit object from qgg
#fitC <- readRDS("gbayesC-f.Rds")
fitC <- readRDS(rdsPath)

# calculate column narrow heritability
fitC$h2 <- fitC$vgs/(fitC$vgs+fitC$ves)

# data is extracted and stored
fitData <- data.table(iter=1:10000, ves=fitC$ves, vbs=fitC$vbs, vgs=fitC$vgs, h2=fitC$h2)

gg <- vector(mode='list', length=4)

gg[[1]] <- ggplot(fitData, aes(x=iter, y=ves)) +
  geom_point(size=0.5) + 
  labs(x="Iteration", y="Ve") + 
  ggtitle("Posterior Mean for Residual Variance")

gg[[2]] <- ggplot(fitData, aes(x=iter, y=vbs)) +
  geom_point(size=0.5) + 
  labs(x="Iteration", y="Vb") + 
  ggtitle("Posterior Mean for Marker Variance")

gg[[3]] <- ggplot(fitData, aes(x=iter, y=vgs)) +
  geom_point(size=0.5) + 
  labs(x="Iteration", y="Vg") + 
  ggtitle("Posterior Mean for Genomic Variance")

gg[[4]] <- ggplot(fitData, aes(x=iter, y=ves)) +
  geom_point(size=0.5) + 
  labs(x="Iteration", y="h^2") + 
  ggtitle("Posterior Mean for Narrow-sense Heritability")

  return(gg) 
}

    # fit taken from one iteration, restored from Rds using code chunk shown above
    #fitC <- readRDS("data/gbayesC-m.Rds")
    
    plotHold <- plotCustomBayes("data/gbayesC-m.Rds")

    plot_grid(plotHold[[1]],plotHold[[2]], ncol=2)

    plot_grid(plotHold[[3]],plotHold[[4]], ncol=2)

    #plotBayes(fit=fitC, what="trace")
#this runs on the same data sets as greml

### qgg_gBayesC
### https://www.rdocumentation.org/packages/qgg/versions/1.1.1/topics/gbayes

# Bayes C: uses a “rounded spike” (low-variance Gaussian) at origin many small effects can contribute to polygenic component, reduces the dimensionality of the model (makes Gibbs sampling feasible).

#Parallel Header
#tempResult <- 

iter <- 1
corLoop <- foreach(i=1:iter) %dopar% {

#Linear Header
#for(i in 1:iter){
  
  corResult <- (1:4)
  
  
  
  #setup train and test sets with trait vectors
  test_IDs <- sample(1:n, as.integer(n / fold))
  
  W_train <- W[-test_IDs,]
  W_test <- W[test_IDs,]
  y_train <- y[-test_IDs]
  y_test <- y[test_IDs]
  
  
  ### GREML, qgg package
  fitGreml <- qgg::greml(y=y, X=mu, GRM=list(A=TRM), validate = matrix(test_IDs,ncol=1), verbose=FALSE)
  
  #Store coeff directly
  fit_greml[[i]] <- fitGreml$accuracy$Corr
  
  corResult[1] <- fitGreml$accuracy$Corr

  
  
  ### GBAYES-C
  
  
  fitC <- qgg::gbayes(y=y_train, W=W_train, method="bayesC", scaleY=FALSE, nit=10000, nburn=5000)
  
  # expected/calculated value for y_test
  # \hat{y}_test = W_{test} * \hat{b} + \hat{mu}
  y_calc <- W_test %*% fitC$b + mean(y_train)
  
  # store coeff
  fit_gbayesC[[i]] <- cor(y_test, y_calc)
  
  corResult[2] <- cor(y_test, y_calc)
  
  if(i==1){
    print(paste0("gbayesC trace plots from validate set ",i))
    plotBayes(fit=list(fitC), what = "trace")
  }
    
  
  ### VARBVS
  fitVarb <- varbvs::varbvs(X = W_train, NULL, y=y_train, family = "gaussian", logodds=seq(-3.5,-1,0.1), sa = 1, verbose=FALSE)
  
  # \hat{y}_test = W_{test} * \hat{b} + \hat{mu}
  y_calc <- W_test %*% fitVarb$beta + mean(y_train)
  
  fit_varbvs[[i]] <- cor(y_test, y_calc)
  
  corResult[3] <- cor(y_test, y_calc)
  
  
  
  
  ### GLMNET  
  fitlm <- glmnet::cv.glmnet(x=W_train, y=y_train, alpha=1)
  

  b_hat <- glmnet::coef.glmnet(fitlm, s="lambda.min")


  y_int <- b_hat[1]

  b_hat <- b_hat[2:length(b_hat)]

  y_calc <- W_test %*% b_hat + y_int

  fit_glmnet[[i]] <- cor(y_test, y_calc)
  
  corResult[4] <- cor(y_test, y_calc)
  
  
  corResult

}
# results loaded from correlation loop structure
corLoop <- readRDS("data/corLoop-m.rds")



for(i in 1:iter){
  fit_greml[[i]] <- corLoop[[i]][1]
  fit_gbayesC[[i]] <- corLoop[[i]][2]
  fit_varbvs[[i]] <- corLoop[[i]][3]
  fit_glmnet[[i]] <- corLoop[[i]][4]
}
iter <- 48

bint <- 10

### qgg_greml

qgg_greml_data <- as.data.table(fit_greml)
qgg_greml_data <- transpose(qgg_greml_data)
colnames(qgg_greml_data) <- "cor"

#print(paste0("GREML"))
#print(paste0("Mean correlation coefficient: ", mean(qgg_greml_data[,cor])))
#print(paste0("Variance of correlation coefficient: ", var(qgg_greml_data)))

gg[[1]] <- ggplot(qgg_greml_data, aes(x=cor)) +
  geom_histogram(bins=bint, fill='red') +
  labs(x="Corr Coeff") +
  ggtitle("GREML CV Correlations Histogram")


### qgg_gbayesC

qgg_gbayesC_data <- as.data.table(fit_gbayesC)
qgg_gbayesC_data <- transpose(qgg_gbayesC_data)
colnames(qgg_gbayesC_data) <- "cor"

#print(paste0("gBayesC"))
#print(paste0("Mean correlation coefficient: ", mean(qgg_gbayesC_data[,cor])))
#print(paste0("Variance of correlation coefficient: ", var(qgg_gbayesC_data)))

gg[[2]] <- ggplot(qgg_gbayesC_data, aes(x=cor)) +
  geom_histogram(bins=bint, fill='red') +
  labs(x="Corr Coeff") +
  ggtitle("gBayesC Prediction Corr Histogram")


### VARBVS

varbvs_data <- as.data.table(fit_varbvs)
varbvs_data <- transpose(varbvs_data)
colnames(varbvs_data) <- "cor"

#print(paste0("VARBVS"))
#print(paste0("Mean correlation coefficient: ", mean(varbvs_data[,cor])))
#print(paste0("Variance of correlation coefficient: ", var(varbvs_data)))

gg[[3]] <- ggplot(varbvs_data, aes(x=cor)) +
  geom_histogram(bins=bint, fill='red') +
  labs(x="Corr Coeff") +
  ggtitle("varbvs Prediction Corr Histogram")


### GLMNET

glmnet_data <- as.data.table(fit_glmnet)
glmnet_data <- transpose(glmnet_data)
colnames(glmnet_data) <- "cor"

#print(paste0("GLMNET"))
#print(paste0("Mean correlation coefficient: ", mean(glmnet_data[,cor])))
#print(paste0("Variance of correlation coefficient: ", var(glmnet_data)))

gg[[4]] <- ggplot(glmnet_data, aes(x=cor)) +
  geom_histogram(bins=bint, fill='red') +
  labs(x="Corr Coeff") +
  ggtitle("glmnet Prediction Corr Histogram")
result <- data.table(method="greml", meanCoeff=mean(qgg_greml_data[,cor])) 
result[,varCoeff := var(qgg_greml_data)]
                    
temp <- data.table(method="gBayesC", meanCoeff=mean(qgg_gbayesC_data[,cor]))
temp[,varCoeff := var(qgg_gbayesC_data)]
result <- rbind(result, temp)

temp <- data.table(method="varbvs", meanCoeff=mean(varbvs_data[,cor]))
temp[,varCoeff := var(varbvs_data)]
result <- rbind(result, temp)

temp <- data.table(method="glmnet", meanCoeff=mean(glmnet_data[,cor]))
temp[,varCoeff := var(glmnet_data)]
result <- rbind(result, temp)

# Map the time of day to different fill colors
#gg[[5]] <- ggplot(data=result, aes(x=method, y=meanCoeff, fill=method)) +
    #geom_bar(stat="identity")

#boxplot(result$meanCoeff)

gg[[5]] <- ggplot(data=result, aes(x=method, y=meanCoeff, fill=method)) +
    geom_bar(stat="identity") +
    ggtitle("Mean Correlation Coefficient by Method")

gg[[6]] <- ggplot(data=result, aes(x=method, y=varCoeff, fill=method)) +
    geom_bar(stat="identity") +
    ggtitle("Variance of Coefficients by Method")



#gg[[5]] <- ggplot(result, aes(x=meanCoeff)) + 
#  geom_boxplot() + 
#  coord_flip()

#gg[[6]] <- ggplot(result, aes(x=varCoeff)) + 
#  geom_boxplot() + 
#  coord_flip()

Correlation Coefficient Histograms

print("Correlation coefficient histograms")
[1] "Correlation coefficient histograms"
plot_grid(gg[[1]],gg[[2]],gg[[3]],gg[[4]], ncol=2)

Method Comparison Summary

plot_grid(gg[[5]],gg[[6]], ncol=2)


sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Rocky Linux 8.5 (Green Obsidian)

Matrix products: default
BLAS/LAPACK: /opt/ohpc/pub/Software/openblas_0.3.10/lib/libopenblas_haswellp-r0.3.10.dev.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] glmnet_4.1-6      Matrix_1.5-3      varbvs_2.5-16     qgg_1.1.1        
 [5] doParallel_1.0.17 iterators_1.0.14  foreach_1.5.2     qqman_0.1.8      
 [9] cowplot_1.1.1     ggplot2_3.4.1     data.table_1.14.8 dplyr_1.1.0      
[13] workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3        lattice_0.20-45     png_0.1-7          
 [4] getPass_0.2-2       ps_1.6.0            rprojroot_2.0.3    
 [7] digest_0.6.29       utf8_1.2.2          R6_2.5.1           
[10] MatrixModels_0.5-1  evaluate_0.15       coda_0.19-4        
[13] highr_0.9           httr_1.4.2          pillar_1.7.0       
[16] rlang_1.0.6         rstudioapi_0.13     SparseM_1.81       
[19] whisker_0.4         callr_3.7.0         jquerylib_0.1.4    
[22] rmarkdown_2.17      labeling_0.4.2      splines_4.0.3      
[25] statmod_1.5.0       stringr_1.4.0       munsell_0.5.0      
[28] compiler_4.0.3      httpuv_1.6.5        xfun_0.30          
[31] pkgconfig_2.0.3     shape_1.4.6         mcmc_0.9-7         
[34] htmltools_0.5.2     tidyselect_1.2.0    tibble_3.1.6       
[37] codetools_0.2-18    fansi_1.0.3         calibrate_1.7.7    
[40] crayon_1.5.1        withr_2.5.0         later_1.3.0        
[43] MASS_7.3-56         grid_4.0.3          jsonlite_1.8.0     
[46] gtable_0.3.0        lifecycle_1.0.3     git2r_0.30.1       
[49] magrittr_2.0.3      scales_1.2.0        cli_3.6.0          
[52] stringi_1.7.6       farver_2.1.0        fs_1.5.2           
[55] promises_1.2.0.1    latticeExtra_0.6-29 bslib_0.3.1        
[58] ellipsis_0.3.2      generics_0.1.2      vctrs_0.5.2        
[61] nor1mix_1.3-0       RColorBrewer_1.1-3  tools_4.0.3        
[64] glue_1.6.2          jpeg_0.1-9          survival_3.3-1     
[67] processx_3.5.3      fastmap_1.1.0       yaml_2.3.5         
[70] colorspace_2.0-3    knitr_1.38          sass_0.4.1         
[73] quantreg_5.94       MCMCpack_1.6-3