Last updated: 2024-01-30

Checks: 7 0

Knit directory: dgrp-starve/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221101) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d373edf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .snakemake/
    Ignored:    code/methodComp/bglr/err-bglr-f.5381.err
    Ignored:    code/methodComp/bglr/err-bglr-m.5382.err
    Ignored:    code/methodComp/m/meth-m.4676.err
    Ignored:    code/methodComp/m/meth-m.4685.err
    Ignored:    code/methodComp/method-f.4751.out
    Ignored:    data/fb/
    Ignored:    data/snake/
    Ignored:    snake/.snakemake/
    Ignored:    snake/GOfile.yaml
    Ignored:    snake/ReadMe.md
    Ignored:    snake/code/bayesC/
    Ignored:    snake/code/misc/
    Ignored:    snake/customL.Rds
    Ignored:    snake/data/
    Ignored:    snake/datafile.yaml
    Ignored:    snake/dgrp.yaml
    Ignored:    snake/fig/
    Ignored:    snake/fullGO.yaml
    Ignored:    snake/gofig.yaml
    Ignored:    snake/guide/
    Ignored:    snake/logs/
    Ignored:    snake/pbs_smake.pbs
    Ignored:    snake/pbsmake.sbatch
    Ignored:    snake/slurm/
    Ignored:    snake/smake.sbatch
    Ignored:    snake/snubnose.sbatch
    Ignored:    snake/zz_lost/
    Ignored:    zz_lost/

Untracked files:
    Untracked:  analysis/allotter.R
    Untracked:  analysis/old_index.Rmd.Rmd
    Untracked:  analysis/sparseComp.Rmd
    Untracked:  forester.R
    Untracked:  malegofind.R
    Untracked:  moarnotes.R
    Untracked:  pippinRMDbackup.R
    Untracked:  snake/code/binner.R
    Untracked:  snake/code/combine_GO.R
    Untracked:  snake/code/dataFinGO.R
    Untracked:  snake/code/datafile.yaml
    Untracked:  snake/code/filterNcombine_GO.R
    Untracked:  snake/code/filter_GO.R
    Untracked:  snake/code/go/
    Untracked:  snake/code/idTEMP.R
    Untracked:  snake/code/imstuff.R
    Untracked:  snake/code/method/bayesHome.R
    Untracked:  snake/code/method/multiplotGO.Rmd
    Untracked:  snake/code/scheming.R
    Untracked:  snake/code/scripts/
    Untracked:  snake/code/srfile.yaml
    Untracked:  teno.R

Unstaged changes:
    Modified:   analysis/Method/BayesC.Rmd
    Modified:   analysis/bigGO.Rmd
    Modified:   snake/code/method/bayesGO.R
    Modified:   snake/code/method/goFish.R
    Modified:   snake/code/method/varbvs.R
    Modified:   snake/temp.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/enrich.Rmd) and HTML (docs/enrich.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d373edf nklimko 2024-01-30 wflow_publish(“analysis/enrich.Rmd”)
html 8e39493 nklimko 2024-01-23 Build site.
Rmd 2683f74 nklimko 2024-01-23 wflow_publish(“analysis/enrich.Rmd”)
html 991d04c nklimko 2024-01-23 Build site.
Rmd 7c20291 nklimko 2024-01-23 wflow_publish(“analysis/enrich.Rmd”)
html 02fdd7e nklimko 2024-01-23 Build site.
Rmd c5835d5 nklimko 2024-01-23 wflow_publish(“analysis/enrich.Rmd”)
html 8f35a08 nklimko 2024-01-23 Build site.
Rmd dd3c95c nklimko 2024-01-23 wflow_publish(“analysis/enrich.Rmd”)

Dive back in:

We left off looking to modify the selection cutoff for top terms. While various ideas were floated(standard devs, percentiles, flat cutoff), there was not a consistently most useful method for looking at both male and female data. As such, I opted to run a series of flat cutoffs(100, 50, 25) for both complete methods per sex.

I first looked at the top terms ordered to look for patterns in the data. While I’m unsure of the significance, the clustering of correlations for top terms shares a shape within sexes across methods. Notably, female data had a sharper increase(negative slope) for top results

load('snake/data/go/50_tables/enrichment.Rdata')

topGrid <- function(data, sex, psize, custom.title, custom.Xlab, custom.Ylab){
  plothole <- ggplot(data, aes(x=index, y=cor, label=term))+
    geom_point(color=viridis(1, begin=0.5), size=psize)+
    theme_minimal() +
    labs(x=custom.Xlab, y=custom.Ylab, tag=sex, title=custom.title) +
    theme(text=element_text(size=10), plot.tag = element_text(size=15))
  return(plothole)
}

gg[[1]] <- topGrid(blupF, 'F', 1, 'Top Female Results: TBLUP', 'Rank', 'Correlation')
gg[[2]] <- topGrid(blupM, 'M', 1, 'Top Male Results: TBLUP', 'Rank', 'Correlation')
gg[[3]] <- topGrid(bayesF, 'F', 1, 'Top Female Results: BayesC', 'Rank', 'Correlation')
gg[[4]] <- topGrid(bayesM, 'M', 1, 'Top Male Results: BayesC', 'Rank', 'Correlation')

plot_grid(gg[[1]], gg[[2]], gg[[3]], gg[[4]], ncol=2)

Version Author Date
8f35a08 nklimko 2024-01-23

After this, I found the correlation between the two methods to see how similar generated results are.

print(cor(blupF$cor, bayesF$cor))
[1] 0.9490421

Female Overall

print(cor(blupF[1:200,cor], bayesF[1:200, cor]))
[1] 0.9937145

Female Top 200

print(cor(blupM$cor, bayesM$cor))
[1] 0.9598015

Male Overall

print(cor(blupM[1:200,cor], bayesM[1:200, cor]))
[1] 0.9967979

Male Top 100

Moving past this, I wanted to assess the effect of term count on enrichment

load("snake/data/go/50_tables/enrich/kables.Rdata")

percentModder <- function(dataKable, custom.caption){
  
  dataKable[,5] <- dataKable[,5]*2
  dataKable[,8] <- dataKable[,8]*2
  
  colnames(dataKable) <- rep(c('Flybase Gene', 'Percent', 'Gene'), 3)

  kabled <- kable(dataKable, caption=custom.caption, "simple", header = c('Top 100 GO Terms' = 3, 'Top 50 GO Terms' = 3, 'Top 25 GO Terms' = 3))

  return(kabled)
  
}
bayesF_KableMod <- percentModder(bayesF_Kable, 'Female BayesC')

print(bayesF_KableMod)


Table: Female BayesC

Flybase Gene    Percent  Gene        Flybase Gene    Percent  Gene      Flybase Gene    Percent  Gene    
-------------  --------  ----------  -------------  --------  --------  -------------  --------  --------
FBgn0262738          15  norpA       FBgn0025595          18  AkhR      FBgn0025595          16  AkhR    
FBgn0003731          13  Egfr        FBgn0003731          18  Egfr      FBgn0000575          12  emc     
FBgn0004635          13  rho         FBgn0003205          18  Ras85D    FBgn0004552           8  Akh     
FBgn0003205          10  Ras85D      FBgn0004635          18  rho       FBgn0283499           8  InR     
FBgn0025595           9  AkhR        FBgn0000575          14  emc       FBgn0000490           8  dpp     
FBgn0003310           8  NULL        FBgn0262738          14  norpA     FBgn0010303           6  hep     
FBgn0000575           7  emc         FBgn0004552          10  Akh       FBgn0015279           6  Pi3K92E 
FBgn0015795           7  Rab7        FBgn0015279          10  Pi3K92E   FBgn0033799           6  GLaz    
FBgn0283499           6  InR         FBgn0283499          10  InR       FBgn0036449           6  bmm     
FBgn0039114           6  Lsd-1       FBgn0003310          10  NULL      FBgn0003731           6  Egfr    
FBgn0004552           5  Akh         FBgn0035586           8  CG10671   FBgn0003205           6  Ras85D  
FBgn0015279           5  Pi3K92E     FBgn0026252           8  msk       FBgn0003463           6  sog     
FBgn0035586           5  CG10671     FBgn0000490           8  dpp       FBgn0003719           6  tld     
FBgn0003463           5  sog         FBgn0261648           8  salm      FBgn0262738           6  norpA   
FBgn0003719           5  tld         FBgn0010303           6  hep                                        
FBgn0036545           5  GXIVsPLA2   FBgn0036046           6  Ilp2                                       
FBgn0039655           5  CG14507     FBgn0024248           6  chico                                      
FBgn0003118           5  pnt         FBgn0033799           6  GLaz                                       
FBgn0005672           5  spi         FBgn0036449           6  bmm                                        
FBgn0036046           4  Ilp2        FBgn0036260           6  Rh7                                        
FBgn0003651           4  svp         FBgn0003463           6  sog                                        
FBgn0010379           4  Akt1        FBgn0003719           6  tld                                        
FBgn0024248           4  chico       FBgn0003984           6  vn                                         
FBgn0036449           4  bmm         FBgn0038197           6  foxo                                       
FBgn0026252           4  msk         FBgn0039114           6  Lsd-1                                      
FBgn0036260           4  Rh7         FBgn0003218           6  rdgB                                       
FBgn0000490           4  dpp         FBgn0026207           6  mbo                                        
FBgn0003984           4  vn          FBgn0027537           6  Nup93-1                                    
FBgn0261648           4  salm        FBgn0031078           6  Nup205                                     
FBgn0029720           4  CG3009      FBgn0033737           6  Nup54                                      
FBgn0030013           4  GIIIspla2   FBgn0033766           6  CG8771                                     
FBgn0033170           4  sPLA2       FBgn0038274           6  Nup93-2                                    
FBgn0050503           4  CG30503     FBgn0061200           6  Nup153                                     
FBgn0250862           4  CG42237     FBgn0003256           6  rl                                         
FBgn0003218           4  rdgB        FBgn0034140           6  Lst                                        
FBgn0030608           4  Lsd-2       FBgn0015795           6  Rab7                                       
FBgn0035206           4  CG9186      FBgn0002940           6  ninaE                                      
FBgn0040336           4  Seipin      FBgn0003295           6  ru                                         
FBgn0026207           4  mbo                                                                             
FBgn0004435           4  Galphaq                                                                         
FBgn0000257           4  car                                                                             
FBgn0000482           4  dor                                                                             
FBgn0003256           4  rl                                                                              
FBgn0035871           4  BI-1                                                                            
FBgn0052350           4  Vps11                                                                           
FBgn0285911           4  NULL                                                                            
FBgn0015754           4  Lis-1                                                                           
FBgn0004647           4  NULL                                                                            
FBgn0002940           4  ninaE                                                                           
FBgn0003295           4  ru                                                                              
FBgn0020386           4  Pdk1                                                                            
FBgn0262451           4  ban                                                                             
FBgn0004784           4  inaC                                                                            
FBgn0003169           3  put                                                                             
FBgn0010303           3  hep                                                                             
FBgn0028717           3  Lnk                                                                             
FBgn0010051           3  Itp-r83A                                                                        
FBgn0030607           3  dob                                                                             
FBgn0033226           3  CG1882                                                                          
FBgn0033799           3  GLaz                                                                            
FBgn0262103           3  Sik3                                                                            
FBgn0002576           3  lz                                                                              
FBgn0004885           3  tok                                                                             
FBgn0050418           3  nord                                                                            
FBgn0039152           3  Root                                                                            
FBgn0038197           3  foxo                                                                            
FBgn0028741           3  fab1                                                                            
FBgn0029870           3  Marf                                                                            
FBgn0052703           3  Erk7                                                                            
FBgn0027537           3  Nup93-1                                                                         
FBgn0031078           3  Nup205                                                                          
FBgn0033737           3  Nup54                                                                           
FBgn0033766           3  CG8771                                                                          
FBgn0038274           3  Nup93-2                                                                         
FBgn0061200           3  Nup153                                                                          
FBgn0261549           3  rdgA                                                                            
FBgn0002566           3  lt                                                                              
FBgn0034140           3  Lst                                                                             
FBgn0038659           3  EndoA                                                                           
FBgn0086676           3  spin                                                                            
FBgn0015721           3  ktub                                                                            
FBgn0086687           3  Desat1                                                                          
FBgn0014010           3  Rab5                                                                            
FBgn0025680           3  cry                                                                             
FBgn0038167           3  Lkb1                                                                            
FBgn0004611           3  Plc21C                                                                          
FBgn0001263           3  inaD                                                                            
FBgn0052699           3  LPCAT                                                                           
FBgn0265048           3  cv-d                                                                            
if(0){
bayesF_KableMod <- percentModder(bayesF_Kable)
bayesM_KableMod <- percentModder(bayesM_Kable)
blupF_KableMod <- percentModder(blupF_Kable )
blupM_KableMod <- percentModder(blupM_Kable )

kable(bayesF_KableMod, caption="Female BayesC", "simple")
kable(bayesM_KableMod, caption="Male BayesC", "simple")
kable(blupF_KableMod, caption="Female TBLUP", "simple")
kable(blupM_KableMod, caption="Male TBLUP", "simple")
}

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Rocky Linux 8.5 (Green Obsidian)

Matrix products: default
BLAS/LAPACK: /opt/ohpc/pub/libs/gnu9/openblas/0.3.7/lib/libopenblasp-r0.3.7.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] DT_0.31            kableExtra_1.3.4   knitr_1.43         reshape2_1.4.4    
 [5] melt_1.10.0        ggcorrplot_0.1.4.1 lubridate_1.9.3    forcats_1.0.0     
 [9] stringr_1.5.0      purrr_1.0.1        readr_2.1.4        tidyr_1.3.0       
[13] tibble_3.2.1       tidyverse_2.0.0    scales_1.2.1       viridis_0.6.4     
[17] viridisLite_0.4.2  qqman_0.1.9        cowplot_1.1.1      ggplot2_3.4.4     
[21] data.table_1.14.8  dplyr_1.1.3        workflowr_1.7.1   

loaded via a namespace (and not attached):
 [1] httr_1.4.7        sass_0.4.7        jsonlite_1.8.7    bslib_0.5.0      
 [5] getPass_0.2-2     highr_0.10        yaml_2.3.7        pillar_1.9.0     
 [9] glue_1.6.2        digest_0.6.33     promises_1.2.0.1  rvest_1.0.3      
[13] colorspace_2.1-0  htmltools_0.5.5   httpuv_1.6.12     plyr_1.8.9       
[17] pkgconfig_2.0.3   calibrate_1.7.7   webshot_0.5.5     processx_3.8.2   
[21] svglite_2.1.2     whisker_0.4.1     later_1.3.1       tzdb_0.4.0       
[25] timechange_0.2.0  git2r_0.32.0      generics_0.1.3    farver_2.1.1     
[29] cachem_1.0.8      withr_2.5.0       cli_3.6.1         magrittr_2.0.3   
[33] evaluate_0.21     ps_1.7.5          fs_1.6.3          fansi_1.0.4      
[37] MASS_7.3-60       xml2_1.3.3        tools_4.1.2       hms_1.1.3        
[41] lifecycle_1.0.3   munsell_0.5.0     callr_3.7.3       compiler_4.1.2   
[45] jquerylib_0.1.4   systemfonts_1.0.5 rlang_1.1.1       grid_4.1.2       
[49] rstudioapi_0.15.0 htmlwidgets_1.6.2 labeling_0.4.3    rmarkdown_2.23   
[53] gtable_0.3.4      R6_2.5.1          gridExtra_2.3     fastmap_1.1.1    
[57] utf8_1.2.3        rprojroot_2.0.3   stringi_1.7.12    Rcpp_1.0.11      
[61] vctrs_0.6.4       tidyselect_1.2.0  xfun_0.39