Last updated: 2023-11-28

Checks: 7 0

Knit directory: dgrp-starve/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221101) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2e7171f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .snakemake/
    Ignored:    code/methodComp/bglr/err-bglr-f.5381.err
    Ignored:    code/methodComp/bglr/err-bglr-m.5382.err
    Ignored:    code/methodComp/m/meth-m.4676.err
    Ignored:    code/methodComp/m/meth-m.4685.err
    Ignored:    code/methodComp/method-f.4751.out
    Ignored:    data/fb/
    Ignored:    data/snake/
    Ignored:    snake/.snakemake/
    Ignored:    snake/GOfile.yaml
    Ignored:    snake/ReadMe.md
    Ignored:    snake/Snakefile.yaml
    Ignored:    snake/bayesCheck.R
    Ignored:    snake/bayesTest.Rds
    Ignored:    snake/binner2.R
    Ignored:    snake/code/misc/
    Ignored:    snake/data/
    Ignored:    snake/datafile.yaml
    Ignored:    snake/dgrp.yaml
    Ignored:    snake/f_file.yaml
    Ignored:    snake/goNames.sh
    Ignored:    snake/goPost/
    Ignored:    snake/gofig.yaml
    Ignored:    snake/gospace.R
    Ignored:    snake/h2_synth.R
    Ignored:    snake/labMake.R
    Ignored:    snake/logs/
    Ignored:    snake/meta.sh
    Ignored:    snake/metaList
    Ignored:    snake/newlines
    Ignored:    snake/note1
    Ignored:    snake/pipelines/
    Ignored:    snake/rawHits
    Ignored:    snake/s1.sh
    Ignored:    snake/s2.sh
    Ignored:    snake/s3.sh
    Ignored:    snake/slurm/
    Ignored:    snake/smake.sbatch
    Ignored:    snake/snubnose.sbatch
    Ignored:    snake/srfile.yaml
    Ignored:    snake/temp9/
    Ignored:    snake/temporaire-rewrite.R
    Ignored:    snake/trimHits
    Ignored:    snake/vavrfile.yaml
    Ignored:    snake/vavrmake
    Ignored:    snake/zz_lost/
    Ignored:    zz_lost/

Untracked files:
    Untracked:  analysis/old_index.Rmd.Rmd
    Untracked:  forester.R
    Untracked:  malegofind.R
    Untracked:  snake/code/binner.R
    Untracked:  snake/code/combine_GO.R
    Untracked:  snake/code/dataFinGO.R
    Untracked:  snake/code/datafile.yaml
    Untracked:  snake/code/filterNcombine_GO.R
    Untracked:  snake/code/filter_GO.R
    Untracked:  snake/code/go/
    Untracked:  snake/code/method/bayesHome.R
    Untracked:  snake/code/method/multiplotGO.Rmd
    Untracked:  snake/code/srfile.yaml

Unstaged changes:
    Modified:   analysis/Method/BayesC.Rmd
    Modified:   analysis/bigGO.Rmd
    Modified:   snake/code/method/bayesGO.R
    Modified:   snake/code/method/goFish.R
    Modified:   snake/code/method/varbvs.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/goReport.Rmd) and HTML (docs/goReport.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2e7171f nklimko 2023-11-28 wflow_publish(“analysis/goReport.Rmd”)

#setwd("..")

#Correlation Coefficient Paths
uniF <- readRDS('snake/data/go/40_all/sexf/partData.Rds')
uniM <- readRDS('snake/data/go/40_all/sexm/partData.Rds')
#reorders 50 X m table to a (50*m) X 2 table 
#converts method into factor to retain order
ggTidy <- function(data){
  
  for(i in 1:dim(data)[2]){
    
    name <- colnames(data)[i]
    temp <- cbind(rep(name, dim(data)[1]), data[,i, with=FALSE])
    
    if(i==1){
      hold <- temp
    } else{
      hold <- rbind(hold, temp, use.names=FALSE)
    }
  }
  colnames(hold) <- c("method", "cor")
  hold$method <- factor(hold$method, levels=unique(hold$method))
  
  
  return(hold)
}

#wrapper for ggplot call to custom fill sex, title, and y axis label
ggMake <- function(data, sex, custom.title, custom.Ylab){
  
  plothole <- ggplot(data, aes(x=method, y=cor, fill=method)) +
    geom_violin(color = NA, width = 0.65) +
    geom_boxplot(color='#440154FF', width = 0.15) +
    theme_minimal() +
    stat_summary(fun=mean, color='#440154FF', geom='point', 
                 shape=18, size=3, show.legend=FALSE) +
    labs(x=NULL,y=custom.Ylab, tag=sex, title=custom.title) +
    theme(legend.position='none',
          axis.text.x = element_text(angle = -45, size=10),
          text=element_text(size=10),
          plot.tag = element_text(size=15)) +
    scale_fill_viridis(begin = 0.4, end=0.9,discrete=TRUE)
  
  return(plothole)
  
}

corSummary <- function(dataList, outPath){
  
  hold <- readRDS(dataList[1])
  
  for (i in 2:length(dataList)) {
    #print(i)
    hold <- rbind(hold, readRDS(dataList[i]))
  }
  
  colnames(hold) <- c('sex', 'rmax', 'rgo', 'term', 'cor')
  
  saveRDS(hold, outPath)
  
}
partMake <- function(data, sex, yint1, cutoff, lower, custom.title, custom.Xlab, custom.Ylab){
  plothole <- ggplot(data,aes(y=cor,x=term))+
    geom_point(color=viridis(1, begin=0.5))+
    geom_text(aes(label=ifelse(cor>cutoff, as.character(term),'')), hjust=-0.1, size=2, angle=90)+
    geom_text(aes(label=ifelse(cor<lower, as.character(term),'')), hjust=-0.1, size=2, angle=90)+
    geom_hline(yintercept = yint1) +
    geom_hline(yintercept = cutoff) +
    theme_minimal() +
    labs(x=custom.Xlab,y=custom.Ylab, tag=sex, title=custom.title) +
    theme(text=element_text(size=10),
          plot.tag = element_text(size=15))
  return(plothole)
}


dMake <- function(data, sex, custom.title, custom.Xlab, custom.Ylab){
  plothole <- ggplot(data, aes(x= index, y=cor, label=gene))+
    geom_point(color=viridis(1, begin=0.5))+
    geom_text(aes(label=ifelse(cor>0.5, as.character(gene),'')),hjust=1,vjust=0, angle=90)+
    theme_minimal() +
    labs(x=custom.Xlab,y=custom.Ylab, tag=sex, title=custom.title) +
    theme(text=element_text(size=10),
          plot.tag = element_text(size=15))
  return(plothole)
}
allNames <- read.table(file="snake/goPost/dataList", sep="\n")
dataList <- allNames[,1]

front <- 'snake/data/go/33_metric/sexf/rmax0.8/rgo0.01/'
end <- '/rowData.Rds'

finalList <- paste0(front, dataList, end)

outPath <- 'snake/data/go/40_all/sexf/partData.Rds'

temp <- na.omit(readRDS(outPath))

facs <- matrix(as.factor(unlist(temp[,1:4])), ncol=4)
cors <- as.numeric(unlist(temp[,5]))

data <- data.table(facs, cors)
colnames(data) <- c('sex', 'rmax', 'rgo', 'term', 'cor')

dataF <- data[data$sex=='f',]

yintData1 <- readRDS('snake/data/sr/33_metric/go/sexf/rmax0.8/rgo0/term1/rowData.Rds')
yF <- as.numeric(yintData1[5])

#
gg[[1]] <- partMake(dataF, 'F', yF, 0.36, 0.27, 'Effect of GO Annotations in Bayesian models', 'GO Term', 'Prediction Accuracy')

dataFOF <- dataF[order(cor),]
#post processing
temp99 <- readRDS("snake/data/go/40_all/sexf/partData.Rds")

subF <- dataF[cor>0.36,4:5]

subF <- subF[order(-cor),]

plot(x=1:dim(dataFOF)[1], y=dataFOF$cor)

#snake/

allNames <- read.table(file="snake/goPost/dataList", sep="\n")
dataList <- allNames[,1]

front <- 'snake/data/go/33_metric/sexm/rmax0.8/rgo0.01/'
end <- '/rowData.Rds'

finalList <- paste0(front, dataList, end)

outPath <- 'snake/data/go/40_all/sexm/partData.Rds'

temp <- na.omit(readRDS(outPath))

facs <- matrix(as.factor(unlist(temp[,1:4])), ncol=4)
cors <- as.numeric(unlist(temp[,5]))

data <- data.table(facs, cors)
colnames(data) <- c('sex', 'rmax', 'rgo', 'term', 'cor')

dataM <- data[data$sex=='m',]

yintData1 <- readRDS('snake/data/sr/33_metric/go/sexm/rmax0.8/rgo0/term1/rowData.Rds')
yM <- as.numeric(yintData1[5])

#
gg[[2]] <- partMake(dataM, 'M', yF, 0.48, 0.40, 'Effect of GO Annotations in Bayesian models', 'GO Term', 'Prediction Accuracy')

dataMOM <- dataM[order(cor),]
#post processing
#temp99 <- readRDS("snake/data/go/40_all/sexm/partData.Rds")

subM <- dataM[cor>0.48,4:5]

subM <- subM[order(-cor),]

#plot(x=1:dim(dataFOF)[1], y=dataFOF$cor)
#ftop 
#0045819
#0033500
#0055088
#
#mtop
#0035008
#0140042
#0007485



term <- 'GO.0045819'

idPath <- paste0('snake/data/go/03_goterms/sexf/', term, '.Rds')
fitPath <- paste0('snake/data/go/25_fit/sexf/', term, '/bayesFull.Rds')
xp <- readRDS('snake/data/01_matched/f_starvation.Rds')
genes <- colnames(xp[,-1])


id1 <- readRDS(idPath)
model1 <- readRDS(fitPath)

fit1 <- model1$fit

inlay <- fit1$ETA[[1]]$d
outlay <- fit1$ETA[[2]]$d

#genes[id1]

fitDataF <- data.table(index=c(1:length(inlay)), cor=inlay, gene=genes[id1])

gg[[3]] <- dMake(fitDataF, 'F', "Effect...", 'Index', 'PIP')
#ftop 
#0045819
#0033500
#0055088
#
#mtop
#0035008
#0140042
#0007485


termReader <- function(term, sex)
{
  
  idPath <- paste0('snake/data/go/03_goterms/sex', sex,'/', term, '.Rds')
  fitPath <- paste0('snake/data/go/25_fit/sex', sex,'/', term, '/bayesFull.Rds')
  xpPath <- paste0('snake/data/01_matched/', sex,'_starvation.Rds')
  
  xp <- readRDS(xpPath)
  genes <- colnames(xp[,-1])
  
  id1 <- readRDS(idPath)
  model1 <- readRDS(fitPath)
  
  fit1 <- model1$fit
  
  inlay <- fit1$ETA[[1]]$d
  outlay <- fit1$ETA[[2]]$d
  
  fitDataM <- data.table(index=c(1:length(inlay)), cor=inlay, gene=genes[id1])
  plothole <- dMake(fitDataM, toupper(sex), paste0("Posterior Inclusion Probability of Genes in ", term), 'Index', 'PIP')
  return(plothole)
}



f1 <- termReader('GO.0045819', 'f')
f2 <- termReader('GO.0033500', 'f')
f3 <- termReader('GO.0055088', 'f')
f4 <- termReader('GO.0042675', 'f')

m1 <- termReader('GO.0035008', 'm')
m2 <- termReader('GO.0140042', 'm')
m3 <- termReader('GO.0007485', 'm')
m4 <- termReader('GO.0005811', 'm')

Female

plot_grid(gg[[1]], ncol=1)

plot_grid(f1, f2, f3, f4, ncol=2)

The low female outlier is GO:0031408 responsible for oxylipin synthesis.

We then translated the top GO terms into human readable categories to assess our findings. Below are the top ten ordered by correlation:

id: GO:0045819 name: positive regulation of glycogen catabolic process – id: GO:0033500 name: carbohydrate homeostasis – id: GO:0055088 name: lipid homeostasis – id: GO:0042675 name: compound eye cone cell differentiation – id: GO:0042277 name: peptide binding – id: GO:0008586 name: imaginal disc-derived wing vein morphogenesis – id: GO:0016042 name: lipid catabolic process – id: GO:0007368 name: determination of left/right symmetry – id: GO:0007638 name: mechanosensory behavior – id: GO:0006644 name: phospholipid metabolic process

Male

plot_grid(gg[[2]], ncol=1)

plot_grid(m1, m2, m3, m4, ncol=2)

No extreme outlier was found in males.

We then translated the top GO terms into human readable categories to assess our findings. Below are the top ten ordered by correlation:

id: GO:0035008 name: positive regulation of melanization defense response – id: GO:0140042 name: lipid droplet formation – id: GO:0007485 name: imaginal disc-derived male genitalia development – id: GO:0005811 name: lipid droplet – id: GO:0045819 name: positive regulation of glycogen catabolic process – id: GO:0042461 name: photoreceptor cell development – id: GO:0033500 name: carbohydrate homeostasis – id: GO:0016327 name: apicolateral plasma membrane – id: GO:0045186 name: zonula adherens assembly – id: GO:0006044 name: N-acetylglucosamine metabolic process

geneMatchF <- readRDS('snake/goPost/finalDataF.Rds')
geneMatchM <- readRDS('snake/goPost/finalDataM.Rds')



hitF <- geneMatchF[which(count>2),]
hitM <- geneMatchM[which(count>2),]

d1 <- hitF
d2 <- hitM
knitr::kable(
  list(d1, d2),
  caption = 'Top Female and Male Genes',
  booktabs = TRUE, valign = 't', "simple"
)
flybase count gene
FBgn0025595 8 AkhR
FBgn0000575 7 emc
FBgn0004552 4 Akh
FBgn0283499 4 InR
FBgn0003731 4 Egfr
FBgn0000490 4 dpp
FBgn0003205 4 Ras85D
FBgn0262738 4 norpA
FBgn0010303 3 hep
FBgn0015279 3 Pi3K92E
FBgn0033799 3 GLaz
FBgn0036449 3 bmm
FBgn0003463 3 sog
FBgn0003719 3 tld
flybase count gene
FBgn0265778 5 PDZ-GEF
FBgn0025595 5 AkhR
FBgn0261873 5 sdt
FBgn0036046 5 Ilp2
FBgn0283499 5 InR
FBgn0086687 4 Desat1
FBgn0036449 3 bmm
FBgn0004552 3 Akh
FBgn0003205 3 Ras85D
FBgn0015279 3 Pi3K92E
FBgn0067864 3 Patj
FBgn0261854 3 aPKC
FBgn0263289 3 scrib
FBgn0024248 3 chico

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Rocky Linux 8.5 (Green Obsidian)

Matrix products: default
BLAS/LAPACK: /opt/ohpc/pub/libs/gnu9/openblas/0.3.7/lib/libopenblasp-r0.3.7.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] knitr_1.43         reshape2_1.4.4     melt_1.10.0        ggcorrplot_0.1.4.1
 [5] lubridate_1.9.3    forcats_1.0.0      stringr_1.5.0      purrr_1.0.1       
 [9] readr_2.1.4        tidyr_1.3.0        tibble_3.2.1       tidyverse_2.0.0   
[13] scales_1.2.1       viridis_0.6.4      viridisLite_0.4.2  qqman_0.1.9       
[17] cowplot_1.1.1      ggplot2_3.4.4      data.table_1.14.8  dplyr_1.1.3       
[21] workflowr_1.7.1   

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.11       getPass_0.2-2     ps_1.7.5          rprojroot_2.0.3  
 [5] digest_0.6.33     utf8_1.2.3        plyr_1.8.9        R6_2.5.1         
 [9] evaluate_0.21     highr_0.10        httr_1.4.7        pillar_1.9.0     
[13] rlang_1.1.1       rstudioapi_0.15.0 whisker_0.4.1     callr_3.7.3      
[17] jquerylib_0.1.4   rmarkdown_2.23    labeling_0.4.3    munsell_0.5.0    
[21] compiler_4.1.2    httpuv_1.6.12     xfun_0.39         pkgconfig_2.0.3  
[25] htmltools_0.5.5   tidyselect_1.2.0  gridExtra_2.3     fansi_1.0.4      
[29] calibrate_1.7.7   tzdb_0.4.0        withr_2.5.0       later_1.3.1      
[33] MASS_7.3-60       grid_4.1.2        jsonlite_1.8.7    gtable_0.3.4     
[37] lifecycle_1.0.3   git2r_0.32.0      magrittr_2.0.3    cli_3.6.1        
[41] stringi_1.7.12    cachem_1.0.8      farver_2.1.1      fs_1.6.3         
[45] promises_1.2.0.1  bslib_0.5.0       generics_0.1.3    vctrs_0.6.4      
[49] tools_4.1.2       glue_1.6.2        hms_1.1.3         processx_3.8.2   
[53] fastmap_1.1.1     yaml_2.3.7        timechange_0.2.0  colorspace_2.1-0 
[57] sass_0.4.7