Last updated: 2022-11-02

Checks: 6 1

Knit directory: myTidyTuesday/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210907) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ede7222. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    data/.Rhistory
    Ignored:    data/2022_11_01.png
    Ignored:    data/CNHI_Excel_Chart.xlsx
    Ignored:    data/Chicago.rds
    Ignored:    data/CommunityTreemap.jpeg
    Ignored:    data/Community_Roles.jpeg
    Ignored:    data/ELL.zip
    Ignored:    data/SeriesReport-20220414171148_6c3b18.xlsx
    Ignored:    data/Weekly_Chicago_IL_Regular_Reformulated_Retail_Gasoline_Prices.csv
    Ignored:    data/YammerDigitalDataScienceMembership.xlsx
    Ignored:    data/YammerMemberPage.rds
    Ignored:    data/YammerMembers.rds
    Ignored:    data/df.rds
    Ignored:    data/fit_cohesion.rds
    Ignored:    data/fit_grammar.rds
    Ignored:    data/fit_phraseology.rds
    Ignored:    data/fit_syntax.rds
    Ignored:    data/fit_vocabulary.rds
    Ignored:    data/grainstocks.rds
    Ignored:    data/hike_data.rds
    Ignored:    data/lm_res.rds
    Ignored:    data/raw_weather.RData
    Ignored:    data/sample_submission.csv
    Ignored:    data/submission.csv
    Ignored:    data/test.csv
    Ignored:    data/train.csv
    Ignored:    data/us_states.rds
    Ignored:    data/us_states_hexgrid.geojson
    Ignored:    data/weatherstats_toronto_daily.csv

Untracked files:
    Untracked:  analysis/2022_09_01_kaggle_tabular_playground.qmd
    Untracked:  code/YammerReach.R
    Untracked:  code/autokeras.R
    Untracked:  code/chicago.R
    Untracked:  code/glmnet_test.R
    Untracked:  code/googleCompute.R
    Untracked:  code/work list batch targets.R
    Untracked:  environment.yml
    Untracked:  report.html

Unstaged changes:
    Modified:   analysis/2021_01_19_tidy_tuesday.Rmd
    Modified:   analysis/2021_03_24_tidy_tuesday.Rmd
    Deleted:    analysis/2021_04_20.Rmd
    Deleted:    analysis/2022_02_11_tabular_playground.Rmd
    Deleted:    analysis/2022_04_18.qmd
    Modified:   analysis/2022_11_01.Rmd
    Modified:   analysis/EnglishLanguageLearning.Rmd
    Modified:   analysis/Survival.Rmd
    Modified:   analysis/_site.yml
    Modified:   code/_common.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/2022_11_01.Rmd) and HTML (docs/2022_11_01.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ede7222 opus1993 2022-11-02 initial commit

blogdown::shortcode('tweet', '1587245920604897284')
{{% tweet "1587245920604897284" %}}
library(tidyverse, quietly = TRUE)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.3.6      ✔ purrr   0.3.5 
✔ tibble  3.1.8      ✔ dplyr   1.0.10
✔ tidyr   1.2.1      ✔ stringr 1.4.1 
✔ readr   2.1.3      ✔ forcats 0.5.2 
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(rtweet)

Attaching package: 'rtweet'

The following object is masked from 'package:purrr':

    flatten
library(lubridate)

Attaching package: 'lubridate'

The following objects are masked from 'package:base':

    date, intersect, setdiff, union
library(ggdist)
library(ggimage)

source(here::here("code","_common.R"))

sysfonts::font_add_google("Creepster", "creepster")
showtext::showtext_auto()

scales::show_col(paletteer::palettes_d$DresdenColor$foolmoon)

base_url <- "https://www.themoviedb.org/t/p/w1280/"

movies_raw <- tidytuesdayR::tt_load("2022-11-01")$horror_movies |> 
  mutate(poster = paste0(base_url, poster_path))
--- Compiling #TidyTuesday Information for 2022-11-01 ----
--- There is 1 file available ---
--- Starting Download ---

    Downloading file 1 of 1: `horror_movies.csv`
--- Download complete ---
skimr::skim(movies_raw)
Data summary
Name movies_raw
Number of rows 32540
Number of columns 21
_______________________
Column type frequency:
character 11
Date 1
logical 1
numeric 8
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
original_title 0 1.00 1 191 0 30296 0
title 0 1.00 1 191 0 29563 0
original_language 0 1.00 2 2 0 97 0
overview 1286 0.96 1 1000 0 31020 0
tagline 19833 0.39 1 237 0 12515 2
poster_path 4474 0.86 30 32 0 28048 0
status 0 1.00 7 15 0 4 0
backdrop_path 18995 0.42 29 32 0 13536 0
genre_names 0 1.00 6 144 0 772 0
collection_name 30234 0.07 4 56 0 815 0
poster 0 1.00 39 69 0 28049 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
release_date 0 1 1950-01-01 2022-12-31 2012-12-09 10999

Variable type: logical

skim_variable n_missing complete_rate mean count
adult 0 1 0 FAL: 32540

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
id 0 1.00 445910.83 305744.67 17 146494.8 426521.00 707534.00 1033095.00 ▇▆▆▅▅
popularity 0 1.00 4.01 37.51 0 0.6 0.84 2.24 5088.58 ▇▁▁▁▁
vote_count 0 1.00 62.69 420.89 0 0.0 2.00 11.00 16900.00 ▇▁▁▁▁
vote_average 0 1.00 3.34 2.88 0 0.0 4.00 5.70 10.00 ▇▂▆▃▁
budget 0 1.00 543126.59 4542667.81 0 0.0 0.00 0.00 200000000.00 ▇▁▁▁▁
revenue 0 1.00 1349746.73 14430479.15 0 0.0 0.00 0.00 701842551.00 ▇▁▁▁▁
runtime 0 1.00 62.14 41.00 0 14.0 80.00 91.00 683.00 ▇▁▁▁▁
collection 30234 0.07 481534.88 324498.16 656 155421.0 471259.00 759067.25 1033032.00 ▇▅▅▅▅

There’s a lot of good material in this dataset. Let’s plot some time series

movies_raw |>
  mutate(original_language = fct_lump(original_language,
    5,
    other_level = "Other"
  )) |>
  group_by(
    release_date = floor_date(release_date,
      unit = "year",
    ),
    original_language
  ) |>
  summarise(
    sum = sum(revenue, na.rm = TRUE),
    .groups = "keep"
  ) |>
  mutate(original_language = fct_reorder(
    original_language,
    sum, max
  )) |>
  ggplot(aes(x = release_date, sum, fill = original_language)) +
  geom_col(show.legend = FALSE) +
  scale_y_continuous(labels = scales::dollar) +
  paletteer::scale_fill_paletteer_d("DresdenColor::foolmoon") +
  labs(
    title = "Global Annual Horror Movie Box Office Revenue",
    subtitle = "A growing genre, in <span style='color:#532026'>English,</span> <span style='color:#BA141E'>German,</span> <span style='color:#E2E3E7'>Spanish,</span> <span style='color:#61829C'>Japanese,</span> <span style='color:#354C6A'>Portuguese,</span> <span style='color:#050505'>and Other</span> languages<br><br>",
    x = NULL, y = NULL, fill = "Language",
    caption = "Plot: @jim_gruman Data: The Movie Database via github.com/tashapiro/horror-movies"
  ) +
  theme(
    panel.background = element_rect(fill = "gray10"),
    legend.text = element_text(color = "gray80"),
    plot.title = element_text(
      color = "gray80",
      size = 60,
      family = "creepster"
    ),
    plot.subtitle = ggtext::element_markdown(
      color = "gray80",
      size = 25
    ),
    plot.caption = element_text(color = "gray80"),
    axis.text = element_text(color = "gray80"),
    panel.grid = element_line(color = "gray5"),
    plot.background = element_rect(fill = "gray10")
  )

Bar Chart of Global Annual Horror Movie Box Office Revenue

movies_raw |>
  filter(budget > 1e6) |>
  mutate(
    image = case_when(
      budget > 100000000 ~ poster,
      release_date < as.Date("1960-01-01") &
        budget > 10000000 ~ poster,
      TRUE ~ NA_character_
    ),
    profitable = if_else(
      revenue > budget,
      TRUE, FALSE
    )
  ) |>
  ggplot(aes(release_date, budget / 1e6)) +
  geom_point(aes(color = profitable),
    show.legend = FALSE,
    size = 2,
    shape = 21
  ) +
  geom_image(aes(
    x = release_date + years(3),
    image = image
  )) +
  geom_text(
    data = count(movies_raw, release_date = floor_date(release_date, unit = "year")),
    aes(y = if_else(year(release_date) %% 2 == 0,
      -2, -6
    ), label = n),
    color = "gray80"
  ) +
  scale_y_continuous(
    labels = scales::dollar,
    position = "right"
  ) +
  scale_x_date(expand = expansion(mult = c(0, 0))) +
  scale_color_manual(values = c(
    paletteer::palettes_d$DresdenColor$foolmoon[[5]],
    paletteer::palettes_d$DresdenColor$foolmoon[[2]]
  )) +
  labs(
    title = "Horror Movie Budgets",
    subtitle = "There have been more and more massive productions since the 1980s.  <span style='color:#354C6A'>Revenue > Budget</span> and <span style='color:#BA141E'>Revenue < Budget</span>",
    x = NULL, y = NULL, fill = "Language",
    caption = "Numbers are the annual counts of releases with budgets over $1M by year. Budgets in Millions $US. Plot: @jim_gruman Data: The Movie Database via github.com/tashapiro/horror-movies"
  ) +
  theme(
    panel.background = element_rect(fill = "gray7"),
    plot.title = element_text(
      color = "#532026",
      size = 100,
      vjust = -50,
      hjust = 0.1,
      family = "creepster"
    ),
    plot.subtitle = ggtext::element_markdown(
      color = "gray80",
      size = 20
    ),
    plot.caption = element_text(color = "gray80"),
    axis.ticks = element_blank(),
    axis.ticks.length = unit(c(0, 0, 0, 0), "cm"),
    axis.text = element_text(
      color = "gray80",
      size = 20
    ),
    axis.line = element_blank(),
    panel.grid = element_line(color = "gray5"),
    plot.background = element_rect(
      fill = "gray7",
      color = "gray7"
    ),
    plot.margin = unit(c(0, 0.2, 0.1, 0), "cm"),
  )

Horror Movie Budgets by year

ggsave(here::here("data", "2022_11_01.png"),
  width = 6, height = 5, dpi = 300, bg = "black",
  device = "png"
)
post_tweet(
  status = "#TidyTuesday on Horror Movie Budgets. Special thanks to @tanya_shapiro for the dataset. #rstats #r4ds",
  media = here::here("data", "2022_11_01.png"),
  token = NULL,
  in_reply_to_status_id = NULL,
  destroy_id = NULL,
  retweet_id = NULL,
  auto_populate_reply_metadata = FALSE,
  media_alt_text = "The Horror Movie Budgets by Year in points, with movie posters for the largest",
  lat = NULL,
  long = NULL,
  display_coordinates = FALSE
)
blogdown::shortcode("tweet", "1587245920604897284")
{{% tweet "1587245920604897284" %}}

sessionInfo()
R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22621)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggimage_0.3.1   ggdist_3.2.0    lubridate_1.8.0 rtweet_1.0.2   
 [5] forcats_0.5.2   stringr_1.4.1   dplyr_1.0.10    purrr_0.3.5    
 [9] readr_2.1.3     tidyr_1.2.1     tibble_3.1.8    ggplot2_3.3.6  
[13] tidyverse_1.3.2 workflowr_1.7.0

loaded via a namespace (and not attached):
  [1] readxl_1.4.1         backports_1.4.1      systemfonts_1.0.4   
  [4] workflows_1.1.0      selectr_0.4-2        repr_1.1.4          
  [7] tidytuesdayR_1.0.2   splines_4.2.2        listenv_0.8.0       
 [10] usethis_2.1.6        digest_0.6.29        foreach_1.5.2       
 [13] yulab.utils_0.0.5    htmltools_0.5.3      yardstick_1.1.0     
 [16] viridis_0.6.2        magick_2.7.3         parsnip_1.0.2.9001  
 [19] fansi_1.0.3          magrittr_2.0.3       memoise_2.0.1       
 [22] tune_1.0.1           paletteer_1.5.0      googlesheets4_1.0.1 
 [25] tzdb_0.3.0           recipes_1.0.2        globals_0.16.1      
 [28] modelr_0.1.9         gower_1.0.0          R.utils_2.12.0      
 [31] vroom_1.6.0          sysfonts_0.8.8       hardhat_1.2.0       
 [34] rsample_1.1.0        dials_1.0.0          colorspace_2.0-3    
 [37] skimr_2.1.4          rvest_1.0.3          textshaping_0.3.6   
 [40] haven_2.5.1          xfun_0.33            prismatic_1.1.1     
 [43] callr_3.7.2          crayon_1.5.2         jsonlite_1.8.3      
 [46] survival_3.4-0       iterators_1.0.14     glue_1.6.2          
 [49] gtable_0.3.1         gargle_1.2.1         ipred_0.9-13        
 [52] distributional_0.3.1 R.cache_0.16.0       future.apply_1.9.1  
 [55] scales_1.2.1         infer_1.0.3          DBI_1.1.3           
 [58] showtextdb_3.0       Rcpp_1.0.9           gridtext_0.1.5      
 [61] viridisLite_0.4.1    gridGraphics_0.5-1   bit_4.0.4           
 [64] GPfit_1.0-8          lava_1.7.0           prodlim_2019.11.13  
 [67] httr_1.4.4           ellipsis_0.3.2       R.methodsS3_1.8.2   
 [70] pkgconfig_2.0.3      farver_2.1.1         nnet_7.3-18         
 [73] sass_0.4.2           dbplyr_2.2.1         utf8_1.2.2          
 [76] here_1.0.1           labeling_0.4.2       ggplotify_0.1.0     
 [79] tidyselect_1.2.0     rlang_1.0.6          DiceDesign_1.9      
 [82] later_1.3.0          munsell_0.5.0        cellranger_1.1.0    
 [85] tools_4.2.2          cachem_1.0.6         cli_3.4.0           
 [88] generics_0.1.3       broom_1.0.1          evaluate_0.17       
 [91] fastmap_1.1.0        ragg_1.2.4           yaml_2.3.5          
 [94] rematch2_2.1.2       bit64_4.0.5          processx_3.7.0      
 [97] knitr_1.40           fs_1.5.2             workflowsets_1.0.0  
[100] showtext_0.9-5       future_1.28.0        whisker_0.4         
[103] R.oo_1.25.0          xml2_1.3.3           compiler_4.2.2      
[106] rstudioapi_0.14      curl_4.3.3           reprex_2.0.2        
[109] lhs_1.1.5            bslib_0.4.0          stringi_1.7.8       
[112] highr_0.9            ps_1.7.1             blogdown_1.13       
[115] lattice_0.20-45      Matrix_1.5-1         markdown_1.2        
[118] styler_1.8.0         conflicted_1.1.0     vctrs_0.5.0         
[121] tidymodels_1.0.0     pillar_1.8.1         lifecycle_1.0.3     
[124] furrr_0.3.1          jquerylib_0.1.4      httpuv_1.6.6        
[127] R6_2.5.1             promises_1.2.0.1     gridExtra_2.3       
[130] parallelly_1.32.1    codetools_0.2-18     MASS_7.3-58.1       
[133] assertthat_0.2.1     rprojroot_2.0.3      withr_2.5.0         
[136] ggtext_0.1.2         parallel_4.2.2       hms_1.1.2           
[139] grid_4.2.2           rpart_4.1.19         ggfun_0.0.7         
[142] timeDate_4021.106    class_7.3-20         rmarkdown_2.17      
[145] googledrive_2.0.0    git2r_0.30.1         getPass_0.2-2       
[148] base64enc_0.1-3     
LS0tDQp0aXRsZTogIjIwMjItMTEtMDEiDQphdXRob3I6ICJKaW0gR3J1bWFuIg0KZGF0ZTogIk5vdmVtYmVyIDEsIDIwMjIiDQpvdXRwdXQ6DQogIHdvcmtmbG93cjo6d2Zsb3dfaHRtbDoNCiAgICB0b2M6IG5vDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIGRmX3ByaW50OiBwYWdlZA0KZWRpdG9yX29wdGlvbnM6DQogIGNodW5rX291dHB1dF90eXBlOiBjb25zb2xlDQotLS0NCg0KYGBge3J9DQpibG9nZG93bjo6c2hvcnRjb2RlKCd0d2VldCcsICcxNTg3MjQ1OTIwNjA0ODk3Mjg0JykNCmBgYA0KDQpgYGB7cn0NCiN8IGxhYmVsOiBzZXR1cCBhbmQgbG9hZCBkYXRhDQpsaWJyYXJ5KHRpZHl2ZXJzZSwgcXVpZXRseSA9IFRSVUUpDQpsaWJyYXJ5KHJ0d2VldCkNCmxpYnJhcnkobHVicmlkYXRlKQ0KbGlicmFyeShnZ2Rpc3QpDQpsaWJyYXJ5KGdnaW1hZ2UpDQoNCnNvdXJjZShoZXJlOjpoZXJlKCJjb2RlIiwiX2NvbW1vbi5SIikpDQoNCnN5c2ZvbnRzOjpmb250X2FkZF9nb29nbGUoIkNyZWVwc3RlciIsICJjcmVlcHN0ZXIiKQ0Kc2hvd3RleHQ6OnNob3d0ZXh0X2F1dG8oKQ0KDQpzY2FsZXM6OnNob3dfY29sKHBhbGV0dGVlcjo6cGFsZXR0ZXNfZCREcmVzZGVuQ29sb3IkZm9vbG1vb24pDQoNCmJhc2VfdXJsIDwtICJodHRwczovL3d3dy50aGVtb3ZpZWRiLm9yZy90L3AvdzEyODAvIg0KDQptb3ZpZXNfcmF3IDwtIHRpZHl0dWVzZGF5Ujo6dHRfbG9hZCgiMjAyMi0xMS0wMSIpJGhvcnJvcl9tb3ZpZXMgfD4gDQogIG11dGF0ZShwb3N0ZXIgPSBwYXN0ZTAoYmFzZV91cmwsIHBvc3Rlcl9wYXRoKSkNCg0Kc2tpbXI6OnNraW0obW92aWVzX3JhdykNCmBgYA0KDQpUaGVyZSdzIGEgbG90IG9mIGdvb2QgbWF0ZXJpYWwgaW4gdGhpcyBkYXRhc2V0LiAgTGV0J3MgcGxvdCBzb21lIHRpbWUgc2VyaWVzDQoNCmBgYHtyfQ0KI3wgbGFiZWw6IEFubnVhbCBSZXZlbnVlDQojfCBmaWctYWx0OiAiQmFyIENoYXJ0IG9mIEdsb2JhbCBBbm51YWwgSG9ycm9yIE1vdmllIEJveCBPZmZpY2UgUmV2ZW51ZSINCg0KbW92aWVzX3JhdyB8PiANCiAgbXV0YXRlKG9yaWdpbmFsX2xhbmd1YWdlID0gZmN0X2x1bXAob3JpZ2luYWxfbGFuZ3VhZ2UsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDUsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG90aGVyX2xldmVsID0gIk90aGVyIikpIHw+IA0KICBncm91cF9ieShyZWxlYXNlX2RhdGUgPSBmbG9vcl9kYXRlKHJlbGVhc2VfZGF0ZSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdW5pdCA9ICJ5ZWFyIiwpLA0KICAgICAgICAgICAgb3JpZ2luYWxfbGFuZ3VhZ2UpIHw+IA0KICBzdW1tYXJpc2Uoc3VtID0gc3VtKHJldmVudWUsIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgLmdyb3VwcyA9ICJrZWVwIikgfD4gDQogIG11dGF0ZShvcmlnaW5hbF9sYW5ndWFnZSA9IGZjdF9yZW9yZGVyKG9yaWdpbmFsX2xhbmd1YWdlLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdW0sIG1heCkpIHw+IA0KICBnZ3Bsb3QoYWVzKHggPSByZWxlYXNlX2RhdGUsIHN1bSwgZmlsbCA9IG9yaWdpbmFsX2xhbmd1YWdlICAgICAgICAgKSkgKw0KICBnZW9tX2NvbChzaG93LmxlZ2VuZCA9IEZBTFNFKSArDQogIHNjYWxlX3lfY29udGludW91cyhsYWJlbHMgPSBzY2FsZXM6OmRvbGxhcikgKw0KICBwYWxldHRlZXI6OnNjYWxlX2ZpbGxfcGFsZXR0ZWVyX2QoIkRyZXNkZW5Db2xvcjo6Zm9vbG1vb24iKSArDQogIGxhYnModGl0bGUgPSAiR2xvYmFsIEFubnVhbCBIb3Jyb3IgTW92aWUgQm94IE9mZmljZSBSZXZlbnVlIiwNCiAgICAgICBzdWJ0aXRsZSA9ICJBIGdyb3dpbmcgZ2VucmUsIGluIDxzcGFuIHN0eWxlPSdjb2xvcjojNTMyMDI2Jz5FbmdsaXNoLDwvc3Bhbj4gPHNwYW4gc3R5bGU9J2NvbG9yOiNCQTE0MUUnPkdlcm1hbiw8L3NwYW4+IDxzcGFuIHN0eWxlPSdjb2xvcjojRTJFM0U3Jz5TcGFuaXNoLDwvc3Bhbj4gPHNwYW4gc3R5bGU9J2NvbG9yOiM2MTgyOUMnPkphcGFuZXNlLDwvc3Bhbj4gPHNwYW4gc3R5bGU9J2NvbG9yOiMzNTRDNkEnPlBvcnR1Z3Vlc2UsPC9zcGFuPiA8c3BhbiBzdHlsZT0nY29sb3I6IzA1MDUwNSc+YW5kIE90aGVyPC9zcGFuPiBsYW5ndWFnZXM8YnI+PGJyPiIsDQogICAgICAgeCA9IE5VTEwsIHkgPSBOVUxMLCBmaWxsID0gIkxhbmd1YWdlIiwNCiAgICAgICBjYXB0aW9uID0gIlBsb3Q6IEBqaW1fZ3J1bWFuIERhdGE6IFRoZSBNb3ZpZSBEYXRhYmFzZSB2aWEgZ2l0aHViLmNvbS90YXNoYXBpcm8vaG9ycm9yLW1vdmllcyIpICsNCiAgdGhlbWUocGFuZWwuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChmaWxsID0gImdyYXkxMCIpLA0KICAgICAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChjb2xvciA9ICJncmF5ODAiKSwNCiAgICAgICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChjb2xvciA9ICJncmF5ODAiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpemUgPSA2MCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmYW1pbHkgPSAiY3JlZXBzdGVyIiksDQogICAgICAgIHBsb3Quc3VidGl0bGUgPSBnZ3RleHQ6OmVsZW1lbnRfbWFya2Rvd24oY29sb3IgPSAiZ3JheTgwIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzaXplID0gMjUpLA0KICAgICAgICBwbG90LmNhcHRpb24gPSBlbGVtZW50X3RleHQoY29sb3IgPSAiZ3JheTgwIiksDQogICAgICAgIGF4aXMudGV4dCA9IGVsZW1lbnRfdGV4dChjb2xvciA9ICJncmF5ODAiKSwNCiAgICAgICAgcGFuZWwuZ3JpZCA9IGVsZW1lbnRfbGluZShjb2xvciA9ICJncmF5NSIpLA0KICAgICAgICBwbG90LmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJncmF5MTAiKSkNCg0KYGBgDQoNCmBgYHtyfQ0KI3wgbGFiZWw6IFR5cGljYWwgQ29zdA0KI3wgZmlnLWFsdDogIkhvcnJvciBNb3ZpZSBCdWRnZXRzIGJ5IHllYXIiDQoNCm1vdmllc19yYXcgfD4gDQogIGZpbHRlcihidWRnZXQgPiAxZTYpIHw+IA0KICBtdXRhdGUoDQogICAgaW1hZ2UgPSBjYXNlX3doZW4oDQogICAgICBidWRnZXQgPiAxMDAwMDAwMDAgfiBwb3N0ZXIsDQogICAgICByZWxlYXNlX2RhdGUgPCBhcy5EYXRlKCIxOTYwLTAxLTAxIikgJg0KICAgICAgICBidWRnZXQgPiAxMDAwMDAwMCB+IHBvc3RlciwNCiAgICAgVFJVRSB+IE5BX2NoYXJhY3Rlcl8NCiAgICApLA0KICAgIHByb2ZpdGFibGUgPSBpZl9lbHNlKA0KICAgICAgcmV2ZW51ZSA+IGJ1ZGdldCwNCiAgICAgIFRSVUUsIEZBTFNFDQogICAgKQ0KICApIHw+IA0KICBnZ3Bsb3QoYWVzKHJlbGVhc2VfZGF0ZSwgYnVkZ2V0LzFlNikpICsNCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBwcm9maXRhYmxlKSwNCiAgICAgICAgICAgICBzaG93LmxlZ2VuZCA9IEZBTFNFLA0KICAgICAgICAgICAgICAgICAgICBzaXplID0gMiwNCiAgICAgICAgICAgICAgICAgICAgc2hhcGUgPSAyMSkgKw0KICBnZW9tX2ltYWdlKGFlcyh4ID0gcmVsZWFzZV9kYXRlICsgeWVhcnMoMyksIA0KICAgICAgICAgICAgICAgICBpbWFnZSA9IGltYWdlKSkgKw0KICBnZW9tX3RleHQoDQogICAgZGF0YSA9IGNvdW50KG1vdmllc19yYXcsIHJlbGVhc2VfZGF0ZSA9IGZsb29yX2RhdGUocmVsZWFzZV9kYXRlLCB1bml0ID0gInllYXIiKSksDQogICAgYWVzKHkgPSBpZl9lbHNlKHllYXIocmVsZWFzZV9kYXRlKSAlJSAyID09IDAsDQogICAgICAgICAgICAgICAgICAgIC0yLCAtNiksIGxhYmVsID0gbiksDQogICAgY29sb3IgPSAiZ3JheTgwIg0KICApICsNCiAgc2NhbGVfeV9jb250aW51b3VzKGxhYmVscyA9IHNjYWxlczo6ZG9sbGFyLA0KICAgICAgICAgICAgICAgICAgICAgcG9zaXRpb24gPSAicmlnaHQiKSArDQogIHNjYWxlX3hfZGF0ZShleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMCwgMCkpKSArDQogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKA0KICAgIHBhbGV0dGVlcjo6cGFsZXR0ZXNfZCREcmVzZGVuQ29sb3IkZm9vbG1vb25bWzVdXSwNCiAgICBwYWxldHRlZXI6OnBhbGV0dGVzX2QkRHJlc2RlbkNvbG9yJGZvb2xtb29uW1syXV0NCiAgKSkgKw0KICBsYWJzKHRpdGxlID0gIkhvcnJvciBNb3ZpZSBCdWRnZXRzIiwNCiAgICAgICBzdWJ0aXRsZSA9ICJUaGVyZSBoYXZlIGJlZW4gbW9yZSBhbmQgbW9yZSBtYXNzaXZlIHByb2R1Y3Rpb25zIHNpbmNlIHRoZSAxOTgwcy4gIDxzcGFuIHN0eWxlPSdjb2xvcjojMzU0QzZBJz5SZXZlbnVlID4gQnVkZ2V0PC9zcGFuPiBhbmQgPHNwYW4gc3R5bGU9J2NvbG9yOiNCQTE0MUUnPlJldmVudWUgPCBCdWRnZXQ8L3NwYW4+IiwNCiAgICAgICB4ID0gTlVMTCwgeSA9IE5VTEwsIGZpbGwgPSAiTGFuZ3VhZ2UiLA0KICAgICAgIGNhcHRpb24gPSAiTnVtYmVycyBhcmUgdGhlIGFubnVhbCBjb3VudHMgb2YgcmVsZWFzZXMgd2l0aCBidWRnZXRzIG92ZXIgJDFNIGJ5IHllYXIuIEJ1ZGdldHMgaW4gTWlsbGlvbnMgJFVTLiBQbG90OiBAamltX2dydW1hbiBEYXRhOiBUaGUgTW92aWUgRGF0YWJhc2UgdmlhIGdpdGh1Yi5jb20vdGFzaGFwaXJvL2hvcnJvci1tb3ZpZXMiKSArDQogIHRoZW1lKHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJncmF5NyIpLA0KICAgICAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGNvbG9yID0gIiM1MzIwMjYiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpemUgPSAxMDAsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmp1c3QgPSAtNTAsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaGp1c3QgPSAwLjEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmFtaWx5ID0gImNyZWVwc3RlciIpLA0KICAgICAgICBwbG90LnN1YnRpdGxlID0gZ2d0ZXh0OjplbGVtZW50X21hcmtkb3duKGNvbG9yID0gImdyYXk4MCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IDIwKSwNCiAgICAgICAgcGxvdC5jYXB0aW9uID0gZWxlbWVudF90ZXh0KGNvbG9yID0gImdyYXk4MCIpLA0KICAgICAgICBheGlzLnRpY2tzID0gZWxlbWVudF9ibGFuaygpLA0KICAgICAgICBheGlzLnRpY2tzLmxlbmd0aCA9IHVuaXQoYygwLDAsMCwwKSwgJ2NtJyksDQogICAgICAgIGF4aXMudGV4dCA9IGVsZW1lbnRfdGV4dChjb2xvciA9ICJncmF5ODAiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IDIwKSwNCiAgICAgICAgYXhpcy5saW5lID0gZWxlbWVudF9ibGFuaygpLA0KICAgICAgICBwYW5lbC5ncmlkID0gZWxlbWVudF9saW5lKGNvbG9yID0gImdyYXk1IiksDQogICAgICAgIHBsb3QuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChmaWxsID0gImdyYXk3IiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbG9yID0gImdyYXk3IiksDQogICAgICAgIHBsb3QubWFyZ2luID0gdW5pdChjKDAsMC4yLDAuMSwwKSwgJ2NtJyksKQ0KYGBgDQoNCg0KYGBge3J9DQojfCBsYWJlbDogc2F2ZSB0aGUgaW1hZ2Ugb3V0DQojfCBldmFsOiBmYWxzZQ0KZ2dzYXZlKGhlcmU6OmhlcmUoImRhdGEiLCIyMDIyXzExXzAxLnBuZyIpLA0KICAgICAgd2lkdGggPSA2LCBoZWlnaHQgPSA1LCBkcGkgPSAzMDAsIGJnID0gImJsYWNrIiwNCiAgICAgIGRldmljZSA9ICJwbmciKQ0KYGBgDQoNCg0KYGBge3J9DQojfCBsYWJlbDogcG9zdCB0aGUgdHdlZXQNCiN8IGV2YWw6IGZhbHNlDQoNCnBvc3RfdHdlZXQoDQogIHN0YXR1cyA9ICIjVGlkeVR1ZXNkYXkgb24gSG9ycm9yIE1vdmllIEJ1ZGdldHMuIFNwZWNpYWwgdGhhbmtzIHRvIEB0YW55YV9zaGFwaXJvIGZvciB0aGUgZGF0YXNldC4gI3JzdGF0cyAjcjRkcyIsDQogIG1lZGlhID0gaGVyZTo6aGVyZSgiZGF0YSIsIjIwMjJfMTFfMDEucG5nIiksDQogIHRva2VuID0gTlVMTCwNCiAgaW5fcmVwbHlfdG9fc3RhdHVzX2lkID0gTlVMTCwNCiAgZGVzdHJveV9pZCA9IE5VTEwsDQogIHJldHdlZXRfaWQgPSBOVUxMLA0KICBhdXRvX3BvcHVsYXRlX3JlcGx5X21ldGFkYXRhID0gRkFMU0UsDQogIG1lZGlhX2FsdF90ZXh0ID0gIlRoZSBIb3Jyb3IgTW92aWUgQnVkZ2V0cyBieSBZZWFyIGluIHBvaW50cywgd2l0aCBtb3ZpZSBwb3N0ZXJzIGZvciB0aGUgbGFyZ2VzdCIsDQogIGxhdCA9IE5VTEwsDQogIGxvbmcgPSBOVUxMLA0KICBkaXNwbGF5X2Nvb3JkaW5hdGVzID0gRkFMU0UNCikNCg0KYGBgDQoNCmBgYHtyfQ0KYmxvZ2Rvd246OnNob3J0Y29kZSgndHdlZXQnLCAnMTU4NzI0NTkyMDYwNDg5NzI4NCcpDQpgYGANCg0KDQo=