Last updated: 2019-10-29

Checks: 6 1

Knit directory: fgf_alldata/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish or wflow_build to ensure that the code is always run in an empty environment.

The following objects were defined in the global environment when these results were created:

Name Class Size
data environment 56 bytes
env environment 56 bytes

The command set.seed(20191021) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    test_files/

Untracked files:
    Untracked:  code/sc_functions.R
    Untracked:  data/fgf_filtered_nuclei.RDS
    Untracked:  data/filtglia.RDS
    Untracked:  data/glia/
    Untracked:  data/lps1.txt
    Untracked:  data/mcao1.txt
    Untracked:  data/mcao_d3.txt
    Untracked:  data/mcaod7.txt
    Untracked:  data/neur_astro_induce.xlsx
    Untracked:  data/neuron/
    Untracked:  data/synaptic_activity_induced.xlsx
    Untracked:  dge_resample.pdf
    Untracked:  docs/figure/1_initial_processing.Rmd/
    Untracked:  docs/figure/9_wc_processing.Rmd/
    Untracked:  gotermdown.pdf
    Untracked:  gotermup.pdf
    Untracked:  olig_ttest_padj.csv
    Untracked:  output/agrp_pcgenes.csv
    Untracked:  output/all_wc_markers.csv
    Untracked:  output/allglia_wgcna_genemodules.csv
    Untracked:  output/glia/
    Untracked:  output/glial_markergenes.csv
    Untracked:  output/integrated_all_markergenes.csv
    Untracked:  output/integrated_neuronmarkers.csv
    Untracked:  output/neuron/
    Untracked:  wc_de.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html 3b5cbe7 Full Name 2019-10-28 Build site.
Rmd 650ab6b Full Name 2019-10-28 wflow_git_commit(all = T)

Load Libraries

library(Seurat)
library(WGCNA)
library(cluster)
library(parallelDist)
library(ggsci)
library(emmeans)
library(lme4)
library(ggbeeswarm)
library(genefilter)
library(tidyverse)
library(reshape2)
library(igraph)
library(gProfileR)
library(ggpubr)
library(princurve)
library(here)
library(cowplot)

Extract Cells for WGCNA

Calculate Pseudoventricle Scores

pcembed <- as.matrix(Embeddings(ventric, reduction = "pca")[,c(1:2)])
y <- principal_curve(pcembed)
color <- as.factor(ventric$predicted.id)
levels(color) <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3")
df = data.frame(y$s[order(y$lambda), ])
colnames(df) = c("x", "y")
points <- data.frame(id = ventric$predicted.id, Embeddings(ventric, reduction = "pca")[,c(1:2)])
rand <- sample(nrow(points), 3000)
princ_plot <- ggplot(data = df, aes(x, y)) +
  geom_point(data = points[rand,], aes(x=PC_1, y=PC_2, colour=factor(id)), size = 2, inherit.aes = F, alpha=0.5) + 
  geom_line(size = 2, color = "black") + 
  theme_pubr(legend = "none") + 
  xlim(c(-20,10)) + coord_flip() + xlab("PC_1") + ylab("PC_2") + theme( axis.text.x = element_text(angle=45, hjust=1))
ventric$height <- y$lambda
princ_plot
Warning: Removed 37 rows containing missing values (geom_point).
Warning: Removed 122 rows containing missing values (geom_path).

Version Author Date
3b5cbe7 Full Name 2019-10-28

Calculate softpower

enableWGCNAThreads()
Allowing parallel execution with up to 79 working processes.
datExpr<-as.matrix(t(ventric[["SCT"]]@scale.data[ventric[["SCT"]]@var.features,]))
gsg = goodSamplesGenes(datExpr, verbose = 3)
 Flagging genes and samples with too many missing values...
  ..step 1
powers = c(c(1:10), seq(from = 12, to=40, by=2))
sft=pickSoftThreshold(datExpr,dataIsExpr = TRUE, powerVector = powers, corOptions = list(use = 'p'), 
                      networkType = "signed")
   Power SFT.R.sq  slope truncated.R.sq  mean.k. median.k.   max.k.
1      1  0.25800 164.00          0.536 2.50e+03  2.50e+03 2.53e+03
2      2  0.19200  73.30          0.572 1.25e+03  1.25e+03 1.28e+03
3      3  0.12600  38.60          0.604 6.26e+02  6.26e+02 6.46e+02
4      4  0.09260  24.20          0.644 3.13e+02  3.13e+02 3.28e+02
5      5  0.04690  14.10          0.664 1.57e+02  1.57e+02 1.66e+02
6      6  0.02260   8.43          0.662 7.86e+01  7.85e+01 8.45e+01
7      7  0.00326   2.68          0.666 3.93e+01  3.93e+01 4.30e+01
8      8  0.01880  -5.74          0.627 1.97e+01  1.97e+01 2.19e+01
9      9  0.06610  -9.63          0.614 9.87e+00  9.85e+00 1.12e+01
10    10  0.20800 -14.80          0.560 4.94e+00  4.93e+00 5.74e+00
11    12  0.67700 -22.60          0.614 1.24e+00  1.24e+00 1.56e+00
12    14  0.54100 -27.90          0.410 3.12e-01  3.10e-01 4.66e-01
13    16  0.55300 -22.30          0.439 7.85e-02  7.79e-02 1.54e-01
14    18  0.48400 -15.00          0.398 1.98e-02  1.96e-02 5.76e-02
15    20  0.42200  -9.40          0.311 5.00e-03  4.92e-03 2.47e-02
16    22  0.44500  -7.06          0.311 1.27e-03  1.24e-03 1.19e-02
17    24  0.44300  -6.08          0.360 3.24e-04  3.11e-04 6.21e-03
18    26  0.44600  -4.65          0.291 8.42e-05  7.83e-05 3.43e-03
19    28  0.48400  -4.19          0.341 2.25e-05  1.97e-05 1.96e-03
20    30  0.49100  -3.41          0.370 6.36e-06  4.97e-06 1.15e-03
21    32  0.42700  -2.89          0.264 1.97e-06  1.25e-06 6.79e-04
22    34  0.46400  -2.72          0.320 7.00e-07  3.16e-07 4.07e-04
23    36  0.47200  -2.50          0.326 2.90e-07  7.98e-08 2.46e-04
24    38  0.47800  -2.29          0.355 1.38e-07  2.02e-08 1.49e-04
25    40  0.50000  -2.25          0.357 7.18e-08  5.10e-09 9.10e-05
cex1=0.9
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit, signed R^2",type="n", main = paste("Scale independence"))
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],labels=powers ,cex=cex1,col="red")
abline(h=0.80,col="red")

Version Author Date
3b5cbe7 Full Name 2019-10-28
#Mean Connectivity Plot
plot(sft$fitIndices[,1], sft$fitIndices[,5],xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")

Version Author Date
3b5cbe7 Full Name 2019-10-28

Generate TOM

softPower <- 12
SubGeneNames <- colnames(datExpr)
adj <- adjacency(datExpr, type = "signed", power = softPower)
diag(adj) <- 0
TOM <- TOMsimilarityFromExpr(datExpr, networkType = "signed", TOMType = "signed", power = softPower, maxPOutliers = 0.05)
TOM calculation: adjacency..
..will use 79 parallel threads.
 Fraction of slow calculations: 0.000000
..connectivity..
..matrix multiplication (system BLAS)..
..normalization..
..done.
colnames(TOM) <- rownames(TOM) <- SubGeneNames
dissTOM <- 1 - TOM
geneTree <- hclust(as.dist(dissTOM), method = "complete") # use complete for method rather than average (gives better results)
plot(geneTree, xlab = "", sub = "", cex = .5, main = "Gene clustering", hang = .001)

Version Author Date
3b5cbe7 Full Name 2019-10-28

Identify Modules

minModuleSize = 15
x = 2
dynamicMods = cutreeDynamic(dendro = geneTree, distM = as.matrix(dissTOM), 
                            method="hybrid", pamStage = F, deepSplit = x, 
                            minClusterSize = minModuleSize)
 ..cutHeight not given, setting it to 1  ===>  99% of the (truncated) height range in dendro.
 ..done.
dynamicColors = labels2colors(dynamicMods) #label each module with a unique color
plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut",
                    dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05, 
                    main = "Gene dendrogram and module colors") #plot the modules with colors

Version Author Date
3b5cbe7 Full Name 2019-10-28

Calculate Eigengenes and Merge Close Modules

MEs = moduleEigengenes(datExpr, dynamicColors)$eigengenes #this matrix gives correlations between cells and module eigengenes (a high value indicates that the cell is highly correlated with the genes in that module)
ME1<-MEs
row.names(ME1)<-row.names(datExpr)
# Calculate dissimilarity of module eigengenes
MEDiss = 1-cor(MEs);
# Cluster module eigengenes
METree = hclust(as.dist(MEDiss), method = "average");
# Plot the result
plot(METree, main = "Clustering of module eigengenes",xlab = "", sub = "")
MEDissThres = 0.2
# Plot the cut line into the dendrogram
abline(h=MEDissThres, col = "red")

Version Author Date
3b5cbe7 Full Name 2019-10-28

The merged module colors

merge = mergeCloseModules(datExpr, dynamicColors, cutHeight = MEDissThres, verbose = 3)
 mergeCloseModules: Merging modules whose distance is less than 0.2
   multiSetMEs: Calculating module MEs.
     Working on set 1 ...
     moduleEigengenes: Calculating 35 module eigengenes in given set.
   Calculating new MEs...
   multiSetMEs: Calculating module MEs.
     Working on set 1 ...
     moduleEigengenes: Calculating 35 module eigengenes in given set.
mergedColors = merge$colors
mergedMEs = merge$newMEs
moduleColors = mergedColors
MEs = mergedMEs
modulekME = signedKME(datExpr,MEs)

Plot merged modules

plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors),
c("Dynamic Tree Cut", "Merged dynamic"),
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05)

Version Author Date
3b5cbe7 Full Name 2019-10-28
# Rename to moduleColors
moduleColors = mergedColors
# Construct numerical labels corresponding to the colors
# colorOrder = c("grey", standardColors(50));
# moduleLabels = match(moduleColors, colorOrder)-1
MEs = mergedMEs
modulekME = signedKME(datExpr,MEs)
#type gene name, prints out gene names also in that module
modules<-MEs
c_modules<-data.frame(moduleColors)
row.names(c_modules)<-colnames(datExpr) #assign gene names as row names
module.list.set1<-substring(colnames(modules),3) #removes ME from start of module names
index.set1<-0
Network=list() #create lists of genes for each module
for (i in 1:length(module.list.set1)){index.set1<-which(c_modules==module.list.set1[i])
Network[[i]]<-row.names(c_modules)[index.set1]}
names(Network)<-module.list.set1
lookup<-function(gene,network){return(network[names(network)[grep(gene,network)]])} #load function

Filter metadata table and correlate with eigengenes

nGenes = ncol(datExpr)
nSamples = nrow(datExpr)
MEs = orderMEs(MEs)
MEs %>% select(-MEgrey) -> MEs
var<-model.matrix(~0+ventric$trt)
moduleTraitCor <- cor(MEs, var, use="p")
cor<-moduleTraitCor[abs(moduleTraitCor[,1])>.2,]
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)
cor<-melt(cor)
ggplot(cor, aes(Var2, Var1)) + geom_tile(aes(fill = value), 
     colour = "white") + scale_fill_gradient2(midpoint = 0, low = "blue", mid = "white",
                            high = "red", space = "Lab", name="Correlation \nStrength") + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + xlab("Treatment") + ylab(NULL)

Version Author Date
3b5cbe7 Full Name 2019-10-28
hubgenes<-lapply(seq_len(length(Network)), function(x) {
  dat<-modulekME[Network[[x]],]
  dat<-dat[order(-dat[paste0("kME",names(Network)[x])]),]
  gene<-rownames(dat)
  return(gene)
})

names(hubgenes)<-names(Network)
d <- unlist(hubgenes)
d <- data.frame(gene = d, 
           vec = names(d))

write_csv(d, path=here("output/glia/wgcna/wc_tany_wgcna_genemodules.csv"))

#Function to calculate SEM and Average

summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
                      conf.interval=.95, .drop=TRUE) {
    library(plyr)

    # New version of length which can handle NA's: if na.rm==T, don't count them
    length2 <- function (x, na.rm=FALSE) {
        if (na.rm) sum(!is.na(x))
        else       length(x)
    }

    # This does the summary. For each group's data frame, return a vector with
    # N, mean, and sd
    datac <- ddply(data, groupvars, .drop=.drop,
      .fun = function(xx, col) {
        c(N    = length2(xx[[col]], na.rm=na.rm),
          mean = mean   (xx[[col]], na.rm=na.rm),
          sd   = sd     (xx[[col]], na.rm=na.rm)
        )
      },
      measurevar
    )

    # Rename the "mean" column    
    datac$se <- datac$sd / sqrt(datac$N)  # Calculate standard error of the mean

    # Confidence interval multiplier for standard error
    # Calculate t-statistic for confidence interval: 
    # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
    ciMult <- qt(conf.interval/2 + .5, datac$N-1)
    datac$ci <- datac$se * ciMult

    return(datac)
}
data<-data.frame(MEs, trt = ventric$trt, 
                 sample = as.factor(ventric$sample),
                 batch = as.factor(ventric$batch), 
                 height = ventric$height,
                 bin = cut(ventric$height, seq_len(max(ventric$height))),
                 type = ventric$predicted.id)

levels(data$bin) <- c(1:74)
data$bin <- as.numeric(as.character(data$bin))
data %>% filter(bin>=12 & bin <= 40) %>% mutate(bin=factor(bin)) -> data

plot <- lapply(colnames(MEs), function(x) {
  x <- data.frame(scale(data[,x]))
  x$bin<-data$bin
  x$trt<-as.factor(data$trt)
  x$type<-as.factor(data$type)
  x<-melt(x, id.vars=c("trt","bin","type"))
  x<-x[complete.cases(x),]
  plotval <- summarySE(x, measurevar="value", groupvars = c("trt","bin"))
  return(plotval)
})

names(plot) <- colnames(MEs)
plot_df <- bind_rows(plot, .id="id")
mod <- lapply(colnames(MEs)[grepl("^ME", colnames(MEs))], function(me) {
  tryCatch({
    mod <- lmer(data[[me]] ~ trt*bin + (1 | batch) + (1 | sample), data = data)
    pairwise <- emmeans(mod, pairwise ~ trt|bin)
    plot <- data.frame(plot(pairwise, plotIt = F)$data)
    sig <- as.data.frame(pairwise$contrasts)
    return(sig) }, error = function(err) {
    print(err)
  }
  )
})
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
control$checkConv, : Model failed to converge with max|grad| = 0.0025552
(tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
control$checkConv, : Model failed to converge with max|grad| = 0.00659419
(tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
control$checkConv, : Model failed to converge with max|grad| = 0.00506122
(tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
control$checkConv, : Model failed to converge with max|grad| = 0.00202572
(tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
control$checkConv, : Model failed to converge with max|grad| = 0.00372838
(tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
control$checkConv, : Model failed to converge with max|grad| = 0.00204838
(tol = 0.002, component 1)
names(mod) <- colnames(MEs)
mod_df <- bind_rows(mod, .id="id")
mod_df$p.adj<-p.adjust(mod_df$p.value)
plot_df %>% filter(trt=="FGF") %>% mutate(p.adj = mod_df$p.adj) -> plot_f_df
plot_df %>% filter(trt=="PF") %>% mutate(p.adj = mod_df$p.adj) -> plot_p_df
plot_df <- rbind(plot_f_df, plot_p_df)
plot_df%>%mutate(signif=ifelse(p.adj>.05, "ns",
                                     ifelse(p.adj<.05&p.adj>.01, "*",
                                            ifelse(p.adj<.01&p.adj>.001, "**",
                                                   "***")))) -> plotval_frame

plotval_frame$signif[plotval_frame$signif=="ns"]<-NA
plotval_frame$signif[plotval_frame$trt!="FGF"]<-NA

detach("package:here", unload = T)
library(here)
write_csv(as.data.frame(plotval_frame), path = here("output/glia/wgcna/wc_tany_pseudovent_linmod.csv"))

mod_df %>% filter(p.adj<0.05) -> sig_df
sig_mods <- names(which(table(sig_df$id) > 5))
height_type <- ggplot() + geom_density(data=data, aes(x=(-height), fill=type), inherit.aes = F, alpha=0.25) + coord_flip() + 
  theme_pubr(legend = "none") + xlab("Pseudo-ventrivcle Height") + ylab(NULL) + theme(axis.text.x = element_blank(),  axis.text.y = element_blank())
mod <- ggplot(plotval_frame[plotval_frame$id%in%c(sig_mods),], aes(x=(-as.numeric(as.character(bin))), y=mean, color=trt, label=signif)) + 
  geom_errorbar(aes(ymin=mean-se, ymax=mean+se, width=.1)) +
  geom_line() + geom_point() + scale_color_manual(values=c("#000000","#999999")) +
  geom_text(color="black",size=3,aes(y= mean + .5), position=position_dodge(.9), angle=90) + coord_flip() +
  facet_wrap(vars(id), scales="free", nrow=1) + theme_pubr() + ylab("Scaled ME Expression") + xlab(NULL) +
  theme(legend.position="none", axis.text.y = element_blank(), axis.text.x = element_text(angle=45, hjust=1)) 
ventric_umap <- as.data.frame(Embeddings(ventric, reduction="umap"))
ventric_umap$`Cell Type` <- ventric$predicted.id
umap <- ggplot(ventric_umap, aes(x=UMAP_1, y=UMAP_2, color=`Cell Type`)) + geom_point(alpha=0.5) + theme_void() + theme(legend.position = "top")
tany_day5 <- plot_grid(umap, princ_plot, height_type, mod, rel_widths = c(2,1,1,2.5), align = "hv", axis="tb", nrow=1, scale=0.9)
Warning: Removed 37 rows containing missing values (geom_point).
Warning: Removed 122 rows containing missing values (geom_path).
Warning: Removed 174 rows containing missing values (geom_text).
tany_day5

Version Author Date
3b5cbe7 Full Name 2019-10-28
goterms<-lapply(hubgenes[gsub(sig_mods,pattern = "ME",replacement = "")], function(x) { 
  x<-gprofiler(x, ordered_query = T, organism = "mmusculus", significant = T, custom_bg = colnames(datExpr),
                           src_filter = c("GO:BP","REAC","KEGG"), hier_filtering = "strong",
                           min_isect_size = 2, 
                           sort_by_structure = T,exclude_iea = T, 
                           min_set_size = 10, max_set_size = 300,correction_method = "fdr")
  x<-x[order(x$p.value),]
  return(x)
})

goterms %>% bind_rows(.id="id") %>%
  mutate(padj=p.adjust(p.value, "fdr")) -> godat

write_csv(godat, path=here("output/glia/wgcna/wc_wgcna_tany_goterms.csv"))
save.image(file = here("output/glia/wgcna/wc_tany_results.RData"))

sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Storage

Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.3.so

locale:
 [1] LC_CTYPE=en_DK.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_DK.UTF-8        LC_COLLATE=en_DK.UTF-8    
 [5] LC_MONETARY=en_DK.UTF-8    LC_MESSAGES=en_DK.UTF-8   
 [7] LC_PAPER=en_DK.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] here_0.1              plyr_1.8.4            cowplot_1.0.0        
 [4] princurve_2.1.4       ggpubr_0.2.1          magrittr_1.5         
 [7] gProfileR_0.6.7       igraph_1.2.4.1        reshape2_1.4.3       
[10] forcats_0.4.0         stringr_1.4.0         dplyr_0.8.3          
[13] purrr_0.3.2           readr_1.3.1.9000      tidyr_0.8.3          
[16] tibble_2.1.3          tidyverse_1.2.1       genefilter_1.64.0    
[19] ggbeeswarm_0.6.0      ggplot2_3.2.1         lme4_1.1-21          
[22] Matrix_1.2-17         emmeans_1.3.5.1       ggsci_2.9            
[25] parallelDist_0.2.4    cluster_2.1.0         WGCNA_1.68           
[28] fastcluster_1.1.25    dynamicTreeCut_1.63-1 Seurat_3.0.3.9036    

loaded via a namespace (and not attached):
  [1] reticulate_1.13       R.utils_2.9.0         tidyselect_0.2.5     
  [4] robust_0.4-18.1       RSQLite_2.1.1         AnnotationDbi_1.44.0 
  [7] htmlwidgets_1.3       grid_3.5.3            Rtsne_0.15           
 [10] munsell_0.5.0         codetools_0.2-16      ica_1.0-2            
 [13] preprocessCore_1.44.0 future_1.14.0         withr_2.1.2          
 [16] colorspace_1.4-1      Biobase_2.42.0        highr_0.8            
 [19] knitr_1.23            rstudioapi_0.10       stats4_3.5.3         
 [22] ROCR_1.0-7            robustbase_0.93-5     ggsignif_0.5.0       
 [25] gbRd_0.4-11           listenv_0.7.0         labeling_0.3         
 [28] Rdpack_0.11-0         git2r_0.25.2          bit64_0.9-7          
 [31] rprojroot_1.3-2       vctrs_0.2.0           coda_0.19-3          
 [34] generics_0.0.2        TH.data_1.0-10        xfun_0.8             
 [37] R6_2.4.0              doParallel_1.0.14     rsvd_1.0.2           
 [40] bitops_1.0-6          assertthat_0.2.1      SDMTools_1.1-221.1   
 [43] scales_1.0.0          multcomp_1.4-10       nnet_7.3-12          
 [46] beeswarm_0.2.3        gtable_0.3.0          npsurv_0.4-0         
 [49] globals_0.12.4        sandwich_2.5-1        workflowr_1.4.0      
 [52] rlang_0.4.0           zeallot_0.1.0         splines_3.5.3        
 [55] lazyeval_0.2.2        acepack_1.4.1         impute_1.56.0        
 [58] broom_0.5.2           checkmate_1.9.4       modelr_0.1.4         
 [61] yaml_2.2.0            backports_1.1.4       Hmisc_4.2-0          
 [64] tools_3.5.3           gplots_3.0.1.1        RColorBrewer_1.1-2   
 [67] BiocGenerics_0.28.0   ggridges_0.5.1        Rcpp_1.0.2           
 [70] base64enc_0.1-3       RCurl_1.95-4.12       rpart_4.1-15         
 [73] pbapply_1.4-1         S4Vectors_0.20.1      zoo_1.8-6            
 [76] haven_2.1.0           ggrepel_0.8.1         fs_1.3.1             
 [79] data.table_1.12.2     lmtest_0.9-37         RANN_2.6.1           
 [82] mvtnorm_1.0-11        whisker_0.3-2         fitdistrplus_1.0-14  
 [85] matrixStats_0.54.0    hms_0.5.0             lsei_1.2-0           
 [88] evaluate_0.14         xtable_1.8-4          XML_3.98-1.20        
 [91] readxl_1.3.1          IRanges_2.16.0        gridExtra_2.3        
 [94] compiler_3.5.3        KernSmooth_2.23-15    crayon_1.3.4         
 [97] minqa_1.2.4           R.oo_1.22.0           htmltools_0.3.6      
[100] pcaPP_1.9-73          Formula_1.2-3         rrcov_1.4-7          
[103] RcppParallel_4.4.3    lubridate_1.7.4       DBI_1.0.0            
[106] MASS_7.3-51.4         boot_1.3-22           cli_1.1.0            
[109] R.methodsS3_1.7.1     gdata_2.18.0          parallel_3.5.3       
[112] metap_1.1             pkgconfig_2.0.2       fit.models_0.5-14    
[115] foreign_0.8-71        plotly_4.9.0          xml2_1.2.0           
[118] foreach_1.4.4         annotate_1.60.1       vipor_0.4.5          
[121] estimability_1.3      rvest_0.3.4           bibtex_0.4.2         
[124] digest_0.6.20         sctransform_0.2.0     RcppAnnoy_0.0.12     
[127] tsne_0.1-3            cellranger_1.1.0      rmarkdown_1.13       
[130] leiden_0.3.1          htmlTable_1.13.1      uwot_0.1.3           
[133] gtools_3.8.1          nloptr_1.2.1          nlme_3.1-140         
[136] jsonlite_1.6          viridisLite_0.3.0     pillar_1.4.2         
[139] lattice_0.20-38       httr_1.4.1            DEoptimR_1.0-8       
[142] survival_2.44-1.1     GO.db_3.7.0           glue_1.3.1           
[145] png_0.1-7             iterators_1.0.10      bit_1.1-14           
[148] stringi_1.4.3         blob_1.1.1            latticeExtra_0.6-28  
[151] caTools_1.17.1.2      memoise_1.1.0         irlba_2.3.3          
[154] future.apply_1.3.0    ape_5.3