Last updated: 2019-12-02
Checks: 6 1
Knit directory: bentsen-rausch-2019/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish
or wflow_build
to ensure that the code is always run in an empty environment.
The following objects were defined in the global environment when these results were created:
Name | Class | Size |
---|---|---|
data | environment | 56 bytes |
env | environment | 56 bytes |
The command set.seed(20191021)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: analysis/figure/
Ignored: test_files/
Untracked files:
Untracked: Rplots.pdf
Untracked: analysis/dge_resample.pdf
Untracked: analysis/figure_6.Rmd
Untracked: analysis/figure_7.Rmd
Untracked: analysis/supp1.Rmd
Untracked: code/sc_functions.R
Untracked: data/bulk/
Untracked: data/fgf_filtered_nuclei.RDS
Untracked: data/figures/
Untracked: data/filtglia.RDS
Untracked: data/glia/
Untracked: data/lps1.txt
Untracked: data/mcao1.txt
Untracked: data/mcao_d3.txt
Untracked: data/mcaod7.txt
Untracked: data/mouse_data/
Untracked: data/neur_astro_induce.xlsx
Untracked: data/neuron/
Untracked: data/synaptic_activity_induced.xlsx
Untracked: neuron_clusters.csv
Untracked: olig_ttest_padj.csv
Untracked: output/agrp_pcgenes.csv
Untracked: output/all_wc_markers.csv
Untracked: output/allglia_wgcna_genemodules.csv
Untracked: output/bulk/
Untracked: output/fig.RData
Untracked: output/fig4_part2.RData
Untracked: output/glia/
Untracked: output/glial_markergenes.csv
Untracked: output/integrated_all_markergenes.csv
Untracked: output/integrated_neuronmarkers.csv
Untracked: output/neuron/
Unstaged changes:
Modified: analysis/10_wc_pseudobulk.Rmd
Modified: analysis/11_wc_astro_wgcna.Rmd
Modified: analysis/13_olig_pseudotime.Rmd
Modified: analysis/15_tany_wgcna_pseudo.Rmd
Modified: analysis/6_glial_dge.Rmd
Modified: analysis/7_ventricular_wgcna.Rmd
Modified: analysis/8_astro_wgcna.Rmd
Modified: analysis/9_wc_processing.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | acd3c85 | Full Name | 2019-12-02 | wflow_publish(c(“analysis/figure_1.Rmd”, “analysis/figure_2.Rmd”)) |
#Load Libraries
library(Seurat)
library(tidyverse)
library(DESeq2)
library(here)
library(future)
library(cluster)
library(parallelDist)
library(ggplot2)
library(cowplot)
library(ggrepel)
library(future.apply)
library(reshape2)
library(gProfileR)
library(ggsignif)
plan("multiprocess", workers = 40)
options(future.globals.maxSize = 4000 * 1024^2)
# seur.sub <- readRDS(here("data/fgf_filtered_nuclei.RDS"))
# ```
#
# # Food Intake and BG of mice
# ```{r FI_BG}
# #Read in excel file of FI
# fi_v <- readxl::read_xlsx(here("data/mouse_data/fig1/191120_FIBG.xlsx"), range = "C7:N24")
# colnames(fi_v) <- c(paste0("V_D", seq_len(6)), paste0("F_D", seq_len(6)))
# melt(fi_v, id.vars = NULL) %>%
# na.omit() %>%
# mutate(value = as.numeric(value)) %>%
# dplyr::group_by(variable) %>%
# dplyr::summarise(
# mean = mean(value, na.rm = T),
# sd = sd(value, na.rm = T),
# se = sd / sqrt(length(variable))
# ) %>%
# mutate(day = rep(c(0:5), 2)) %>%
# separate(variable, sep = "_", into = "trt") %>%
# ggplot(aes(x = day, y = mean, color = trt)) + geom_point(size = 1) +
# geom_line(size = 1) +
# geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = .2) +
# ggpubr::theme_pubr() +
# scale_color_manual(name = NULL, labels = c(expression(icv ~ hFGF1 ~ 3 * mu * g), "icv Vehicle pair-fed"),
# values = c("gray30", "gray80")) +
# scale_x_continuous(breaks = c(0, 1, 2, 3, 4, 5)) +
# ylab("Daily food intake (g)") +
# xlab("Days") + ylim(c(0, 10)) +
# theme(legend.position = "none", legend.background = element_blank()) +
# theme_figure -> fi_fig1
#
# #Read in excel file of BG
# bg <- readxl::read_xlsx(here("data/mouse_data/fig1/191120_FIBG.xlsx"), range = "B27:O44")
# colnames(bg) <- c(paste0("V_D", seq_len(7)), paste0("F_D", seq_len(7)))
# melt(bg, id.vars = NULL) %>%
# na.omit() %>%
# mutate(value = as.numeric(value)) %>%
# dplyr::group_by(variable) %>%
# dplyr::summarise(
# mean = mean(value, na.rm = T),
# sd = sd(value, na.rm = T),
# se = sd / sqrt(length(variable))
# ) %>%
# mutate(day = rep(c(0:6), 2)) %>%
# separate(variable, sep = "_", into = "trt") %>%
# ggplot(aes(x = day, y = mean, color = trt)) +
# geom_point(size = 1) + geom_line(size = 1) +
# geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = .2) +
# ggpubr::theme_pubr() +
# scale_color_manual(name = NULL, labels = c(expression(icv ~ hFGF1 ~ 3 * mu * g),
# "icv Vehicle pair-fed"), values = c("gray30", "gray80")) +
# scale_x_continuous(breaks = c(0, 1, 2, 3, 4, 5, 6),
# label = c("Pre", "0", "1", "2", "3", "4", "5")) +
# ylab("BG levels (mg/dl)") + xlab("Days") +
# theme(legend.direction = "vertical", legend.position = "none", legend.background = element_blank()) +
# theme_figure -> bg_fig1
#
# blank <- plot_grid("")
# bg_fi <- plot_grid(fi_fig1, bg_fig1)
# ```
#
# # Publication figures of clustering (all nuclei)
# ```{r fig1 panel b}
# seur.sub <- RenameIdents(seur.sub, "Agrp" = "Neuron")
# seur.sub <- RenameIdents(seur.sub, "Hist" = "Neuron")
# seur.sub <- RenameIdents(seur.sub, "Neur" = "Neuron")
# seur.sub <- RenameIdents(seur.sub, "Glia" = "Astro/Tany/Epend")
# seur.sub <- RenameIdents(seur.sub, "COP" = "OPC/COP")
# seur.sub <- RenameIdents(seur.sub, "Endo" = "Endothelial")
# seur.sub <- RenameIdents(seur.sub, "Micro" = "Microglia")
#
# data.frame(Embeddings(seur.sub, reduction = "umap")) %>%
# mutate(group = seur.sub$group) %>%
# mutate(celltype = Idents(seur.sub)) %>%
# .[sample(nrow(.)),] %>%
# mutate(group = replace(group, group == "FGF_Day-5", "FGF_d5")) %>%
# mutate(group = replace(group, group == "FGF_Day-1", "FGF_d1")) %>%
# mutate(group = replace(group, group == "PF_Day-1", "Veh_d1")) %>%
# mutate(group = replace(group, group == "PF_Day-5", "Veh_d5")) -> umap_embed
#
# label.df <- data.frame(cluster=levels(umap_embed$celltype),label=levels(umap_embed$celltype))
# label.df_2 <- umap_embed %>%
# dplyr::group_by(celltype) %>%
# dplyr::summarize(x = median(UMAP_1), y = median(UMAP_2))
#
# prop_seur_byclus <- ggplot(umap_embed, aes(x=UMAP_1, y=UMAP_2, color=celltype)) +
# geom_point(size=1, alpha=0.5) +
# geom_text_repel(data = label.df_2, aes(label = celltype, x=x, y=y),
# size=3, fontface="bold", inherit.aes = F, bg.colour="white") +
# xlab("UMAP1") + ylab("UMAP2") +
# ggpubr::theme_pubr() + ggsci::scale_color_igv() + theme_figure + theme(legend.position = "none", legend.title=NULL)
#
# prop_seur_group <- ggplot(umap_embed, aes(x=UMAP_1, y=UMAP_2, color=group)) +
# geom_point(size=1, alpha=0.5) + guides(color = guide_legend(override.aes = list(size = 3))) +
# ggpubr::theme_pubr() + ggsci::scale_color_jco(name = "Treatment Group") +
# xlab("UMAP1") + ylab("UMAP2") +
# theme_figure + theme(legend.position = c(.9,.3), legend.title = element_blank(),
# legend.text = element_text(size=12, face="bold"))
# plot_grid(prop_seur_group, prop_seur_byclus)
# ```
#
# ```{r recluster neurons, fig.width=10, fig.height=4}
# subset(seur.sub, ident="Neuron") %>%
# reprocess_subset(., dims = 30, resolution = 0.1) -> fgf.neur
# DimPlot(fgf.neur, label = T)
# ```
#
# # Load Datasets
# ```{r load mapping datasets}
# load("/projects/mludwig/Dataset_alignment/Data_preprocessing/Campbell_neurons_preprocessed.RData")
# campbell <- UpdateSeuratObject(campbell)
# Idents(campbell) <- "cell_type"
# subset(campbell, idents = c("n34.unassigned(2)", "n33.unassigned(1)"), invert = T) %>%
# NormalizeData(verbose = FALSE) %>%
# FindVariableFeatures(
# selection.method = "vst",
# nfeatures = 2000, verbose = FALSE
# ) %>%
# ScaleData(verbose = FALSE) %>%
# RunPCA(npcs = 30, verbose = FALSE) -> campbell
#
# # Load Chen Data
# load("/projects/mludwig/Dataset_alignment/Data_preprocessing/Chen_neurons_preprocessed.RData")
# chen <- UpdateSeuratObject(chen)
# Idents(chen) <- "cell_type"
# chen %>%
# NormalizeData(verbose = FALSE) %>%
# FindVariableFeatures(
# selection.method = "vst",
# nfeatures = 2000, verbose = FALSE
# ) %>%
# ScaleData(verbose = FALSE) %>%
# RunPCA(npcs = 30, verbose = FALSE) -> chen
#
# # Load Romanov Data
# load("/projects/mludwig/Dataset_alignment/Data_preprocessing/Romanov_neurons_preprocessed.RData")
# romanov <- UpdateSeuratObject(romanov)
# Idents(romanov) <- "cell_type"
# romanov %>%
# NormalizeData(verbose = FALSE) %>%
# FindVariableFeatures(
# selection.method = "vst",
# nfeatures = 2000, verbose = FALSE
# ) %>%
# ScaleData(verbose = FALSE) %>%
# RunPCA(npcs = 30, verbose = FALSE) -> romanov
# ```
#
# #Propagate Labels
# ```{r iterative label propagation, warning=FALSE, message=FALSE}
# #propagate Campbell labels
# fgf.neur <- prop_function(reference = campbell, query = fgf.neur)
# hist(fgf.neur$pred_CONF)
# fgf.neur.camp <- subset(fgf.neur, pred_CONF > 0.75)
#
# #propagate Chen labels
# subset(fgf.neur, pred_CONF < 0.75) %>%
# FindVariableFeatures(selection.method = "vst", nfeatures = 2000, verbose = FALSE) %>%
# prop_function(reference = chen, query = .) -> fgf.neur.relab_chen
# hist(fgf.neur.relab_chen$pred_CONF)
# fgf.neur.chen <- subset(fgf.neur.relab_chen, pred_CONF > 0.75)
#
# #propagate Romanov labels
# subset(fgf.neur.relab_chen, pred_CONF < 0.75) %>%
# FindVariableFeatures(selection.method = "vst", nfeatures = 2000, verbose = FALSE) %>%
# prop_function(reference = romanov, query = .) -> fgf.neur.relab_rom
# hist(fgf.neur.relab_rom$pred_CONF)
# fgf.neur.rom <- subset(fgf.neur.relab_rom, pred_CONF > 0.75)
#
# #transfer labels to fgf object
# prop_lab <- data.frame(
# cell.names = c(colnames(fgf.neur.camp), colnames(fgf.neur.chen), colnames(fgf.neur.rom)),
# labels = c(fgf.neur.camp$pred_ID, fgf.neur.chen$pred_ID, fgf.neur.rom$pred_ID))
# fgf.neur$ref <- as.character(prop_lab[match(colnames(fgf.neur), prop_lab$cell.names), "labels"])
# fgf.neur$ref[is.na(fgf.neur$ref)] <- "unmap"
#
# #save object with labels
# saveRDS(fgf.neur, file = here("data/neuron/fgf_neur_mappingscores.RDS"))
# ```
#
# #Filter and recluster dataset
# ```{r reclustering of mapped neurons}
# fgf.neur.prop <- subset(fgf.neur, ref != "unmap")
# fgf.neur.prop <- reprocess_subset(fgf.neur.prop, dims = 30, resolution = 0.1)
# DefaultAssay(fgf.neur.prop) <- "SCT"
# lab.mark <- FindAllMarkers(fgf.neur.prop, only.pos = T, logfc.threshold = 0.5)
# table(fgf.neur.prop@active.ident, fgf.neur.prop$ref) %>%
# as.data.frame() %>%
# group_by(Var1) %>%
# top_n(1, Freq) %>%
# select(Var1, Var2) -> label_mapping
# lab.mark$prop_label <- as.character(pull(label_mapping[match(lab.mark$cluster, label_mapping$Var1), "Var2"]))
# write_csv(x = lab.mark, here("neuron_clusters.csv"))
# ```
#
# #Rename clusters
# ```{r find specific markers for both Glu5 populations}
# rename <- c("Hcrt (Chen_Glu12)","Tcf7l2 (Chen_Glu4)","Grm7/Foxb1 (Chen_Glu5)","Nxph1/Foxb1 (Chen_Glu5)",
# "Tac1/Htr2c (Chen_Glu6)","Hist (Camp_n1)","Tac1/Gad2 (Camp_n2)",
# "Avp/Oxt (Camp_n6)","Agrp (Camp_n13)",
# "Vip (Camp_n16)","Tac2 (Camp_n20)","Sst (Camp_n23)","Hs3st4/Nr5a1 (Camp_n29)",
# "Fam19a2 (Camp_n31)","Pmch (Roma_Pmch)")
# rename <- rename
# names(rename) <- as.character(label_mapping$Var1)
# ```
#
#
# # Neuron specific clustering
# ```{r fig1 panel c}
# fgf.neur.prop[["recluster_0.1"]] <- Idents(object = fgf.neur.prop)
# fgf.neur.prop <- RenameIdents(fgf.neur.prop, rename)
#
# data.frame(Embeddings(fgf.neur.prop, reduction = "umap")) %>%
# mutate(group = fgf.neur.prop$group) %>%
# mutate(celltype = Idents(fgf.neur.prop)) %>%
# sample_frac(1L) -> umap_embed
# colnames(umap_embed)[1:2] <- c("UMAP 1", "UMAP 2")
#
# label.df <- data.frame(cluster=levels(umap_embed$celltype),label=levels(umap_embed$celltype))
# label.df_2 <- umap_embed %>%
# group_by(celltype) %>%
# dplyr::summarize(x = median(`UMAP 1`), y = median(`UMAP 2`))
#
# prop_neur_byclus <- ggplot(umap_embed, aes(x=`UMAP 1`, y=`UMAP 2`, color=celltype)) +
# geom_point(size=0.5, alpha=0.5) +
# geom_text_repel(data = label.df_2, aes(label = celltype, x=x, y=y),
# size=2,
# inherit.aes = F, bg.colour="white", fontface="bold",
# force=1, min.segment.length = unit(0, 'lines')) +
# xlab("UMAP1") + ylab("UMAP2") +
# ggpubr::theme_pubr(legend="none") + ggsci::scale_color_igv() + theme_figure
# ```
#
# #Extract color scheme
# ```{r}
# g <- ggplot_build(prop_neur_byclus)
# cols<-data.frame(colours = as.character(unique(g$data[[1]]$colour)),
# label = as.character(unique(g$plot$data[, g$plot$labels$colour])))
# colvec<-as.character(cols$colours)
# names(colvec)<-as.character(cols$label)
# ```
#
# #Resampling DEG
# ```{r pseudobulk resampling, message=F, warning=FALSE}
# #Generate matrices
# split_mats<-splitbysamp(fgf.neur.prop, split_by="sample")
# names(split_mats)<-unique(Idents(fgf.neur.prop))
# pb<-replicate(100, gen_pseudo_counts(split_mats, ncells=10))
# names(pb)<-paste0(rep(names(split_mats)),"_",rep(1:100, each=length(names(split_mats))))
#
# # Generate DESeq2 Objects
# res<-rundeseq(pb)
# ```
#
# # Identify neuronal populations with most DE genes at 24 hr
# ```{r plot resampling, message=F, warning=FALSE}
# degenes<-lapply(res, function(x) {
# tryCatch({
# y<-x[[2]]
# y<-na.omit(y)
# data.frame(y)%>%filter(padj<0.1)%>%nrow()},
# error=function(err) {NA})
# })
#
# boxplot<-lapply(unique(Idents(fgf.neur.prop)), function(x) {
# z<-unlist(degenes[grep(as.character(x), names(degenes), fixed = T)])
# })
#
# names(boxplot)<-unique(Idents(fgf.neur.prop))
# boxplot<-t(as.data.frame(do.call(rbind, boxplot)))
# rownames(boxplot)<-1:100
# genenum<-melt(boxplot)
# write_csv(genenum, path = here("output/neuron/genenum.csv"))
#Figure 1 Panel C
genenum <- read_csv(here("output/neuron/genenum.csv"))
ggplot(genenum,aes(x=reorder(Var2, -value), y=value, fill=factor(Var2))) +
geom_boxplot(notch = T, alpha=0.75) +
#scale_fill_manual(values = colvec) +
ggpubr::theme_pubr() +
theme(axis.text.x = element_text(angle=45, hjust=1), legend.position = "none") +
ylab("Number DEG") + xlab(NULL) + theme_figure
#deboxplot
sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Storage
Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.3.so
locale:
[1] LC_CTYPE=en_DK.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_DK.UTF-8 LC_COLLATE=en_DK.UTF-8
[5] LC_MONETARY=en_DK.UTF-8 LC_MESSAGES=en_DK.UTF-8
[7] LC_PAPER=en_DK.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] ggsignif_0.5.0 gProfileR_0.6.7
[3] reshape2_1.4.3 future.apply_1.3.0
[5] ggrepel_0.8.0.9000 cowplot_1.0.0
[7] parallelDist_0.2.4 cluster_2.1.0
[9] future_1.14.0 here_0.1
[11] DESeq2_1.22.2 SummarizedExperiment_1.12.0
[13] DelayedArray_0.8.0 BiocParallel_1.16.6
[15] matrixStats_0.54.0 Biobase_2.42.0
[17] GenomicRanges_1.34.0 GenomeInfoDb_1.18.2
[19] IRanges_2.16.0 S4Vectors_0.20.1
[21] BiocGenerics_0.28.0 forcats_0.4.0
[23] stringr_1.4.0 dplyr_0.8.3
[25] purrr_0.3.2 readr_1.3.1.9000
[27] tidyr_0.8.3 tibble_2.1.3
[29] ggplot2_3.2.1 tidyverse_1.2.1
[31] Seurat_3.0.3.9036
loaded via a namespace (and not attached):
[1] reticulate_1.13 R.utils_2.9.0 tidyselect_0.2.5
[4] RSQLite_2.1.1 AnnotationDbi_1.44.0 htmlwidgets_1.3
[7] grid_3.5.3 Rtsne_0.15 munsell_0.5.0
[10] codetools_0.2-16 ica_1.0-2 withr_2.1.2
[13] colorspace_1.4-1 highr_0.8 knitr_1.23
[16] rstudioapi_0.10 ROCR_1.0-7 gbRd_0.4-11
[19] listenv_0.7.0 Rdpack_0.11-0 git2r_0.25.2
[22] GenomeInfoDbData_1.2.0 bit64_0.9-7 rprojroot_1.3-2
[25] vctrs_0.2.0 generics_0.0.2 xfun_0.8
[28] R6_2.4.0 rsvd_1.0.2 locfit_1.5-9.1
[31] bitops_1.0-6 assertthat_0.2.1 SDMTools_1.1-221.1
[34] scales_1.0.0 nnet_7.3-12 gtable_0.3.0
[37] npsurv_0.4-0 globals_0.12.4 workflowr_1.4.0
[40] rlang_0.4.0 zeallot_0.1.0 genefilter_1.64.0
[43] splines_3.5.3 lazyeval_0.2.2 acepack_1.4.1
[46] broom_0.5.2 checkmate_1.9.4 yaml_2.2.0
[49] modelr_0.1.4 backports_1.1.4 Hmisc_4.2-0
[52] tools_3.5.3 gplots_3.0.1.1 RColorBrewer_1.1-2
[55] ggridges_0.5.1 Rcpp_1.0.2 plyr_1.8.4
[58] base64enc_0.1-3 zlibbioc_1.28.0 RCurl_1.95-4.12
[61] rpart_4.1-15 pbapply_1.4-1 zoo_1.8-6
[64] haven_2.1.0 fs_1.3.1 magrittr_1.5
[67] data.table_1.12.2 lmtest_0.9-37 RANN_2.6.1
[70] whisker_0.3-2 fitdistrplus_1.0-14 hms_0.5.0
[73] lsei_1.2-0 evaluate_0.14 xtable_1.8-4
[76] XML_3.98-1.20 readxl_1.3.1 gridExtra_2.3
[79] compiler_3.5.3 KernSmooth_2.23-15 crayon_1.3.4
[82] R.oo_1.22.0 htmltools_0.3.6 Formula_1.2-3
[85] geneplotter_1.60.0 RcppParallel_4.4.3 lubridate_1.7.4
[88] DBI_1.0.0 MASS_7.3-51.4 Matrix_1.2-17
[91] cli_1.1.0 R.methodsS3_1.7.1 gdata_2.18.0
[94] metap_1.1 igraph_1.2.4.1 pkgconfig_2.0.2
[97] foreign_0.8-71 plotly_4.9.0 xml2_1.2.0
[100] annotate_1.60.1 XVector_0.22.0 bibtex_0.4.2
[103] rvest_0.3.4 digest_0.6.20 sctransform_0.2.0
[106] RcppAnnoy_0.0.12 tsne_0.1-3 rmarkdown_1.13
[109] cellranger_1.1.0 leiden_0.3.1 htmlTable_1.13.1
[112] uwot_0.1.3 gtools_3.8.1 nlme_3.1-140
[115] jsonlite_1.6 viridisLite_0.3.0 pillar_1.4.2
[118] lattice_0.20-38 httr_1.4.1 survival_2.44-1.1
[121] glue_1.3.1 png_0.1-7 bit_1.1-14
[124] stringi_1.4.3 blob_1.1.1 latticeExtra_0.6-28
[127] caTools_1.17.1.2 memoise_1.1.0 irlba_2.3.3
[130] ape_5.3