Last updated: 2019-10-29
Checks: 6 1
Knit directory: fgf_alldata/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish
or wflow_build
to ensure that the code is always run in an empty environment.
The following objects were defined in the global environment when these results were created:
Name | Class | Size |
---|---|---|
data | environment | 56 bytes |
env | environment | 56 bytes |
The command set.seed(20191021)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: test_files/
Untracked files:
Untracked: code/sc_functions.R
Untracked: data/fgf_filtered_nuclei.RDS
Untracked: data/filtglia.RDS
Untracked: data/glia/
Untracked: data/lps1.txt
Untracked: data/mcao1.txt
Untracked: data/mcao_d3.txt
Untracked: data/mcaod7.txt
Untracked: data/neur_astro_induce.xlsx
Untracked: data/neuron/
Untracked: data/synaptic_activity_induced.xlsx
Untracked: dge_resample.pdf
Untracked: docs/figure/1_initial_processing.Rmd/
Untracked: docs/figure/9_wc_processing.Rmd/
Untracked: gotermdown.pdf
Untracked: gotermup.pdf
Untracked: olig_ttest_padj.csv
Untracked: output/agrp_pcgenes.csv
Untracked: output/all_wc_markers.csv
Untracked: output/allglia_wgcna_genemodules.csv
Untracked: output/glia/
Untracked: output/glial_markergenes.csv
Untracked: output/integrated_all_markergenes.csv
Untracked: output/integrated_neuronmarkers.csv
Untracked: output/neuron/
Untracked: wc_de.pdf
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 650ab6b | Full Name | 2019-10-28 | wflow_git_commit(all = T) |
html | 9cf1e45 | Full Name | 2019-10-28 | Build site. |
library(Seurat)
library(WGCNA)
library(cluster)
library(parallelDist)
library(ggsci)
library(emmeans)
library(lme4)
library(ggbeeswarm)
library(genefilter)
library(tidyverse)
library(reshape2)
library(igraph)
library(gProfileR)
library(ggpubr)
library(here)
library(ggforce)
enableWGCNAThreads()
Allowing parallel execution with up to 79 working processes.
datExpr<-as.matrix(t(ventric[["SCT"]]@scale.data[ventric[["SCT"]]@var.features,]))
gsg = goodSamplesGenes(datExpr, verbose = 3);
Flagging genes and samples with too many missing values...
..step 1
powers = c(c(1:10), seq(from = 12, to=40, by=2))
sft=pickSoftThreshold(datExpr,dataIsExpr = TRUE, powerVector = powers, corOptions = list(use = 'p'),
networkType = "signed")
Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
1 1 0.186 -56.60 0.593 2.50e+03 2.50e+03 2570.000
2 2 0.536 -45.50 0.561 1.26e+03 1.25e+03 1350.000
3 3 0.924 -36.60 0.906 6.32e+02 6.27e+02 722.000
4 4 0.958 -24.60 0.975 3.18e+02 3.15e+02 398.000
5 5 0.950 -16.50 0.970 1.61e+02 1.58e+02 228.000
6 6 0.945 -11.60 0.971 8.18e+01 7.94e+01 135.000
7 7 0.945 -8.70 0.964 4.17e+01 4.00e+01 84.200
8 8 0.948 -6.70 0.961 2.14e+01 2.01e+01 54.800
9 9 0.964 -5.33 0.970 1.10e+01 1.01e+01 37.200
10 10 0.962 -4.40 0.964 5.75e+00 5.12e+00 26.200
11 12 0.981 -3.17 0.979 1.62e+00 1.31e+00 14.400
12 14 0.983 -2.48 0.978 4.93e-01 3.35e-01 8.650
13 16 0.965 -2.09 0.962 1.67e-01 8.65e-02 5.510
14 18 0.966 -1.79 0.966 6.57e-02 2.24e-02 3.650
15 20 0.947 -1.62 0.949 3.01e-02 5.85e-03 2.490
16 22 0.396 -2.00 0.345 1.57e-02 1.54e-03 1.730
17 24 0.389 -1.84 0.343 9.11e-03 4.09e-04 1.220
18 26 0.381 -1.74 0.327 5.67e-03 1.09e-04 0.873
19 28 0.960 -1.24 0.952 3.71e-03 2.95e-05 0.632
20 30 0.942 -1.21 0.927 2.53e-03 8.08e-06 0.465
21 32 0.956 -1.18 0.944 1.79e-03 2.25e-06 0.390
22 34 0.336 -1.82 0.232 1.29e-03 6.33e-07 0.329
23 36 0.981 -1.14 0.976 9.62e-04 1.80e-07 0.278
24 38 0.349 -1.75 0.252 7.31e-04 5.20e-08 0.235
25 40 0.353 -1.72 0.242 5.67e-04 1.53e-08 0.200
cex1=0.9
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit, signed R^2",type="n", main = paste("Scale independence"))
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],labels=powers ,cex=cex1,col="red")
abline(h=0.80,col="red")
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
#Mean Connectivity Plot
plot(sft$fitIndices[,1], sft$fitIndices[,5],xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
softPower = 3
SubGeneNames<-colnames(datExpr)
adj= adjacency(datExpr, type = "signed", power = softPower)
diag(adj)<-0
TOM=TOMsimilarityFromExpr(datExpr, networkType = "signed", TOMType = "signed", power = softPower, maxPOutliers = 0.05)
TOM calculation: adjacency..
..will use 79 parallel threads.
Fraction of slow calculations: 0.000000
..connectivity..
..matrix multiplication (system BLAS)..
..normalization..
..done.
colnames(TOM) = rownames(TOM) = SubGeneNames
dissTOM=1-TOM
geneTree = hclust(as.dist(dissTOM),method="average") #use complete for method rather than average (gives better results)
plot(geneTree,xlab="",sub="",cex=.5,main="Gene clustering",hang=.001)
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
minModuleSize = 15
x = 4
dynamicMods = cutreeDynamic(dendro = geneTree, distM = as.matrix(dissTOM),
method="hybrid", pamStage = F, deepSplit = x,
minClusterSize = minModuleSize)
..cutHeight not given, setting it to 0.874 ===> 99% of the (truncated) height range in dendro.
..done.
dynamicColors = labels2colors(dynamicMods) #label each module with a unique color
plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut",
dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05,
main = "Gene dendrogram and module colors") #plot the modules with colors
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
MEs = moduleEigengenes(datExpr, dynamicColors)$eigengenes #this matrix gives correlations between cells and module eigengenes (a high value indicates that the cell is highly correlated with the genes in that module)
ME1<-MEs
row.names(ME1)<-row.names(datExpr)
# Calculate dissimilarity of module eigengenes
MEDiss = 1-cor(MEs);
# Cluster module eigengenes
METree = hclust(as.dist(MEDiss), method = "average");
# Plot the result
plot(METree, main = "Clustering of module eigengenes",xlab = "", sub = "")
MEDissThres = 0.2
# Plot the cut line into the dendrogram
abline(h=MEDissThres, col = "red")
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
merge = mergeCloseModules(datExpr, dynamicColors, cutHeight = MEDissThres, verbose = 3)
mergeCloseModules: Merging modules whose distance is less than 0.2
multiSetMEs: Calculating module MEs.
Working on set 1 ...
moduleEigengenes: Calculating 10 module eigengenes in given set.
multiSetMEs: Calculating module MEs.
Working on set 1 ...
moduleEigengenes: Calculating 9 module eigengenes in given set.
Calculating new MEs...
multiSetMEs: Calculating module MEs.
Working on set 1 ...
moduleEigengenes: Calculating 9 module eigengenes in given set.
mergedColors = merge$colors
mergedMEs = merge$newMEs
moduleColors = mergedColors
MEs = mergedMEs
modulekME = signedKME(datExpr,MEs)
plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors),
c("Dynamic Tree Cut", "Merged dynamic"),
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05)
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
# Rename to moduleColors
moduleColors = mergedColors
# Construct numerical labels corresponding to the colors
# colorOrder = c("grey", standardColors(50));
# moduleLabels = match(moduleColors, colorOrder)-1
MEs = mergedMEs
modulekME = signedKME(datExpr,MEs)
#type gene name, prints out gene names also in that module
modules<-MEs
c_modules<-data.frame(moduleColors)
row.names(c_modules)<-colnames(datExpr) #assign gene names as row names
module.list.set1<-substring(colnames(modules),3) #removes ME from start of module names
index.set1<-0
Network=list() #create lists of genes for each module
for (i in 1:length(module.list.set1)){index.set1<-which(c_modules==module.list.set1[i])
Network[[i]]<-row.names(c_modules)[index.set1]}
names(Network)<-module.list.set1
lookup<-function(gene,network){return(network[names(network)[grep(gene,network)]])} #load function
nGenes = ncol(datExpr)
nSamples = nrow(datExpr)
MEs = orderMEs(MEs)
ventric$group<-paste0(ventric$trt,"_",ventric$day)
var<-model.matrix(~0+ventric$group)
#colnames(var)<-c("DV","FGF1","FGF19", "V")
moduleTraitCor <- cor(MEs, var, use="p")
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)
cor<-melt(moduleTraitCor)
ggplot(cor, aes(Var2, Var1)) + geom_tile(aes(fill = value),
colour = "white") + scale_fill_gradient2(midpoint = 0, low = "blue", mid = "white",
high = "red", space = "Lab", name="Correlation \nStrength") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + xlab("Treatment") + ylab(NULL)
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
hubgenes<-lapply(seq_len(length(Network)), function(x) {
dat<-modulekME[Network[[x]],]
dat<-dat[order(-dat[paste0("kME",names(Network)[x])]),]
gene<-rownames(dat)
return(gene)
})
names(hubgenes)<-names(Network)
d <- unlist(hubgenes)
d <- data.frame(gene = d,
vec = names(d))
write_csv(d, path=here("output/glia/wgcna/allglia_wgcna_genemodules.csv"))
MEs %>% select(-MEgrey) -> MEs
data<-data.frame(MEs, day=ventric$day, trt=ventric$trt,
sample=as.factor(ventric$sample), group=ventric$group,
batch=ventric$batch, celltype=Idents(ventric),
groupall=paste0(Idents(ventric), ventric$group))
mod<-lapply(colnames(MEs), function(me) {
mod<-lmer(MEs[[me]] ~ group*celltype + (1|batch) + (1|sample), data=data)
pairwise<-emmeans(mod, pairwise ~ group|celltype)
plot<-data.frame(plot(pairwise, plotIt=F)$data)
sig<-as.data.frame(pairwise$contrasts)
sig%>%separate(contrast, c("start", "end"), sep = " - ") -> sig
yvals<-unlist(lapply(unique(sig$celltype), function(x) {
x<-as.character(x)
y<-data[data$celltype==x,]
z<-max(as.numeric(y[[me]]))
names(z)<-x
return(z)
}))
sig$yvals<-yvals[match(sig$celltype, names(yvals))]
sig$yvals[duplicated(sig$yvals)]<-sig$yvals[duplicated(sig$yvals)]+.004
sig$yvals[duplicated(sig$yvals)]<-sig$yvals[duplicated(sig$yvals)]+.004
sig$yvals[duplicated(sig$yvals)]<-sig$yvals[duplicated(sig$yvals)]+.004
return(sig)
})
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
control$checkConv, : Model failed to converge with max|grad| = 0.00359644
(tol = 0.002, component 1)
names(mod) <- colnames(MEs)
sig <- bind_rows(mod, .id="id")
sig$symbol <- sig$p.value
sig$symbol[findInterval(sig$symbol, c(0.1,2)) == 1L] <-NA
sig$symbol[findInterval(sig$symbol, c(0.01,0.1)) == 1L] <- "*"
sig$symbol[findInterval(sig$symbol, c(0.001,0.01)) == 1L] <- "**"
Warning in findInterval(sig$symbol, c(0.001, 0.01)): NAs introduced by
coercion
sig$symbol[findInterval(sig$symbol, c(1e-200,0.001)) == 1L] <- "***"
Warning in findInterval(sig$symbol, c(1e-200, 0.001)): NAs introduced by
coercion
data <- melt(data, id.vars = c("day","trt","sample","group","batch","celltype","groupall"))
lapply(unique(data$variable), function(x) {
tryCatch({
print(ggplot(data=data[data$variable==x,], aes(x=group, y=as.numeric(value))) +
geom_quasirandom(aes(fill=sample), shape=21, size=2, alpha=.75) +
scale_fill_manual(values=pal_jco()(10)) + ylab(NULL) + xlab(NULL) +
theme_pubr() + theme(axis.text.x = element_text(angle=45, hjust=1, face="bold"), plot.title = element_text(hjust=0.5)) +
scale_y_continuous(aes(name="",limits=c(min(value)-.02,max(value))+.02)) + facet_wrap(.~celltype) +
labs(y=NULL, x=NULL) + ggtitle(x)) },
error = function(err) {
print(err)
}
)
})
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[1]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[2]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[3]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[4]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[5]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[6]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[7]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
[[8]]
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
# moddat <- bind_rows(mod, .id="id")
write_csv(sig, path=here("output/glia/wgcna/allglia_wgcna_linearmodel_testing.csv"))
sig %>%
unite(start, end, col = "comparison", remove = F) %>%
filter(comparison == "FGF_Day-1_PF_Day-1" | comparison == "FGF_Day-5_PF_Day-5") %>%
unite(estimate, p.value, sep = ",", col = "value") %>%
dcast(id + celltype ~ start, value.var = "value") %>%
separate(`FGF_Day-1`, into = c("estimate_1", "p.value_1"), sep = ",") %>%
separate(`FGF_Day-5`, into = c("estimate_5", "p.value_5"), sep = ",") %>%
mutate(id = gsub(id, pattern = "ME", replacement = "")) %>%
mutate(col = if_else(as.numeric(p.value_1) < 0.1 | as.numeric(p.value_5) < 0.1, true = id, false = "grey")) %>%
mutate(sig = if_else(as.numeric(p.value_1) < 0.1 & as.numeric(p.value_5) < 0.1, true = "red",
false = if_else(as.numeric(p.value_1) < 0.1, true = "blue",
false = if_else(as.numeric(p.value_5) < 0.1, true = "black", false = "")
)
)) %>%
mutate(label = if_else(sig == "blue", true = "DE at Day 1", false = "")) -> plot
cols <- unique(plot$col)
names(cols) <- cols
ggplot(plot, aes(x = as.numeric(estimate_1), y = as.numeric(estimate_5))) +
geom_point(data = filter(plot, sig != ""), aes(shape = celltype), size = 4) +
scale_shape(name="Cell-Type") +
geom_mark_ellipse(data = plot %>% filter(sig == "blue", p.value_1 != 0.0230780280327769), color = "black", linetype = "dashed") +
geom_point(size = 4, aes(color = col, shape = celltype)) + coord_flip() + geom_hline(yintercept = 0) +
scale_color_manual(values = cols, name = "Modules") +
geom_vline(xintercept = 0) +
annotate(
geom = "curve", x = 0.045, y = 0.02, xend = 0.03, yend = 0.005,
curvature = .3, arrow = arrow(length = unit(2, "mm"))
) + annotate(geom = "label", x = 0.045, y = 0.022, label = "DE only at Day 1", hjust = "left") +
annotate(
geom = "curve", x = -0.01, y = 0.03, xend = -0.025, yend = 0.035,
curvature = .3, arrow = arrow(length = unit(2, "mm"))
) + annotate(geom = "label", x = -0.005, y = 0.0275, label = "DE at both", hjust = "left") +
annotate(
geom = "curve", x = 0.01, y = 0.015, xend = -0.011, yend = 0.02,
curvature = .3, arrow = arrow(length = unit(2, "mm"))
) + annotate(geom = "label", x = 0.015, y = 0.01, label = "DE only at Day 5", hjust = "left") + theme_bw() + xlab("Day 1 Estimate") +
ylab("Day 5 Estimate") + labs_pubr()
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
ggsave(here("output/wgcna_res.png"), w=8, h=5)
names(mod)<-colnames(MEs)[grepl("^ME", colnames(MEs))]
go_col <- unique(plot$col)[-grep("grey", unique(plot$col))]
goterms<-lapply(go_col, function(x) {
x<-gprofiler(hubgenes[[x]], ordered_query = T,
organism = "mmusculus", significant = T, custom_bg = colnames(datExpr),
src_filter = c("GO:BP","REAC","KEGG"), hier_filtering = "strong",
min_isect_size = 3,
sort_by_structure = T,exclude_iea = T,
min_set_size = 10, max_set_size = 300,correction_method = "fdr")
x<-x[order(x$p.value),]
return(x)
})
names(goterms) <- go_col
goterms %>% bind_rows(.id="id") %>%
mutate(padj=p.adjust(p.value, "fdr")) -> godat
write_csv(godat, path=here("output/glia/wgcna/allglia_wgcna_goterms.csv"))
godat %>% group_by(id) %>% filter(id %in% c("black","green")) %>% arrange(p.value) %>% slice(1:5) %>%
select(p.value, padj, term.name, domain, id) %>% arrange(id) %>%
ggplot(aes(x=str_wrap(term.name,20), y=-log10(padj), fill=domain)) + geom_col() +
scale_fill_npg() +
facet_wrap(.~id, scales="free_y", ncol=1) + theme_pubr() +
theme(text = element_text(size=7),
axis.text.x = element_text(angle=45, hjust=1)) + coord_flip() +
xlab("GO Term") + geom_hline(yintercept = -log10(0.05), linetype="dashed", size=1) +
labs_pubr()
Version | Author | Date |
---|---|---|
9cf1e45 | Full Name | 2019-10-28 |
ggsave(filename = here("output/glia/wgcna/allglia_goterm.png"), h=6, w=8)
sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Storage
Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.3.so
locale:
[1] LC_CTYPE=en_DK.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_DK.UTF-8 LC_COLLATE=en_DK.UTF-8
[5] LC_MONETARY=en_DK.UTF-8 LC_MESSAGES=en_DK.UTF-8
[7] LC_PAPER=en_DK.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggforce_0.3.0.9000 here_0.1 ggpubr_0.2.1
[4] magrittr_1.5 gProfileR_0.6.7 igraph_1.2.4.1
[7] reshape2_1.4.3 forcats_0.4.0 stringr_1.4.0
[10] dplyr_0.8.3 purrr_0.3.2 readr_1.3.1.9000
[13] tidyr_0.8.3 tibble_2.1.3 tidyverse_1.2.1
[16] genefilter_1.64.0 ggbeeswarm_0.6.0 ggplot2_3.2.1
[19] lme4_1.1-21 Matrix_1.2-17 emmeans_1.3.5.1
[22] ggsci_2.9 parallelDist_0.2.4 cluster_2.1.0
[25] WGCNA_1.68 fastcluster_1.1.25 dynamicTreeCut_1.63-1
[28] Seurat_3.0.3.9036
loaded via a namespace (and not attached):
[1] reticulate_1.13 R.utils_2.9.0 tidyselect_0.2.5
[4] robust_0.4-18.1 RSQLite_2.1.1 AnnotationDbi_1.44.0
[7] htmlwidgets_1.3 grid_3.5.3 Rtsne_0.15
[10] munsell_0.5.0 codetools_0.2-16 ica_1.0-2
[13] preprocessCore_1.44.0 future_1.14.0 withr_2.1.2
[16] colorspace_1.4-1 Biobase_2.42.0 highr_0.8
[19] knitr_1.23 rstudioapi_0.10 stats4_3.5.3
[22] ROCR_1.0-7 robustbase_0.93-5 ggsignif_0.5.0
[25] gbRd_0.4-11 listenv_0.7.0 labeling_0.3
[28] Rdpack_0.11-0 git2r_0.25.2 polyclip_1.10-0
[31] farver_1.1.0 bit64_0.9-7 rprojroot_1.3-2
[34] vctrs_0.2.0 coda_0.19-3 generics_0.0.2
[37] TH.data_1.0-10 xfun_0.8 R6_2.4.0
[40] doParallel_1.0.14 rsvd_1.0.2 bitops_1.0-6
[43] assertthat_0.2.1 SDMTools_1.1-221.1 scales_1.0.0
[46] multcomp_1.4-10 nnet_7.3-12 beeswarm_0.2.3
[49] gtable_0.3.0 npsurv_0.4-0 globals_0.12.4
[52] sandwich_2.5-1 workflowr_1.4.0 rlang_0.4.0
[55] zeallot_0.1.0 splines_3.5.3 lazyeval_0.2.2
[58] acepack_1.4.1 impute_1.56.0 broom_0.5.2
[61] checkmate_1.9.4 modelr_0.1.4 yaml_2.2.0
[64] backports_1.1.4 Hmisc_4.2-0 tools_3.5.3
[67] gplots_3.0.1.1 RColorBrewer_1.1-2 BiocGenerics_0.28.0
[70] ggridges_0.5.1 Rcpp_1.0.2 plyr_1.8.4
[73] base64enc_0.1-3 RCurl_1.95-4.12 rpart_4.1-15
[76] pbapply_1.4-1 cowplot_1.0.0 S4Vectors_0.20.1
[79] zoo_1.8-6 haven_2.1.0 ggrepel_0.8.1
[82] fs_1.3.1 data.table_1.12.2 lmtest_0.9-37
[85] RANN_2.6.1 mvtnorm_1.0-11 whisker_0.3-2
[88] fitdistrplus_1.0-14 matrixStats_0.54.0 hms_0.5.0
[91] lsei_1.2-0 evaluate_0.14 xtable_1.8-4
[94] pbkrtest_0.4-7 XML_3.98-1.20 readxl_1.3.1
[97] IRanges_2.16.0 gridExtra_2.3 compiler_3.5.3
[100] KernSmooth_2.23-15 crayon_1.3.4 minqa_1.2.4
[103] R.oo_1.22.0 htmltools_0.3.6 pcaPP_1.9-73
[106] Formula_1.2-3 rrcov_1.4-7 RcppParallel_4.4.3
[109] lubridate_1.7.4 DBI_1.0.0 tweenr_1.0.1
[112] MASS_7.3-51.4 boot_1.3-22 cli_1.1.0
[115] R.methodsS3_1.7.1 gdata_2.18.0 parallel_3.5.3
[118] metap_1.1 pkgconfig_2.0.2 fit.models_0.5-14
[121] foreign_0.8-71 plotly_4.9.0 xml2_1.2.0
[124] foreach_1.4.4 annotate_1.60.1 vipor_0.4.5
[127] estimability_1.3 rvest_0.3.4 bibtex_0.4.2
[130] digest_0.6.20 sctransform_0.2.0 RcppAnnoy_0.0.12
[133] tsne_0.1-3 cellranger_1.1.0 rmarkdown_1.13
[136] leiden_0.3.1 htmlTable_1.13.1 uwot_0.1.3
[139] gtools_3.8.1 nloptr_1.2.1 nlme_3.1-140
[142] jsonlite_1.6 viridisLite_0.3.0 pillar_1.4.2
[145] lattice_0.20-38 httr_1.4.1 DEoptimR_1.0-8
[148] survival_2.44-1.1 GO.db_3.7.0 glue_1.3.1
[151] png_0.1-7 iterators_1.0.10 bit_1.1-14
[154] stringi_1.4.3 blob_1.1.1 latticeExtra_0.6-28
[157] caTools_1.17.1.2 memoise_1.1.0 irlba_2.3.3
[160] future.apply_1.3.0 ape_5.3