Last updated: 2022-02-21
Checks: 7 0
Knit directory: Amphibolis_Posidonia_Comparison/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210414)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d3cdc00. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/OTT.nb.html
Ignored: analysis/figure/
Ignored: analysis/plotGenes.nb.html
Ignored: analysis/plotRgenes.nb.html
Untracked files:
Untracked: data/~$R_genes.xlsx
Unstaged changes:
Modified: analysis/Orthofinder.Rmd
Modified: data/arabidopsis_gene_level_comparison.xlsx
Modified: data/arabidopsis_gene_level_comparison_only_losts.xlsx
Modified: data/arabidopsis_gene_level_counts.xlsx
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/plotRgenes.Rmd
) and HTML (docs/plotRgenes.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | d3cdc00 | Philipp Bayer | 2022-02-21 | better plot |
html | 292db59 | Philipp Bayer | 2021-10-18 | Build site. |
Rmd | 95586f9 | Philipp Bayer | 2021-10-07 | Add missing data |
html | 95586f9 | Philipp Bayer | 2021-10-07 | Add missing data |
html | c0db4a5 | Philipp Bayer | 2021-10-07 | Build site. |
Rmd | 08b28ea | Philipp Bayer | 2021-10-07 | wflow_publish(files = c("analysis/*")) |
library(tidyverse)
Warning: package 'tidyverse' was built under R version 4.1.1
-- Attaching packages --------------------------------------- tidyverse 1.3.1 --
v ggplot2 3.3.5 v purrr 0.3.4
v tibble 3.1.5 v dplyr 1.0.7
v tidyr 1.1.4 v stringr 1.4.0
v readr 2.0.2 v forcats 0.5.1
Warning: package 'ggplot2' was built under R version 4.1.1
Warning: package 'tibble' was built under R version 4.1.1
Warning: package 'tidyr' was built under R version 4.1.1
Warning: package 'readr' was built under R version 4.1.1
Warning: package 'purrr' was built under R version 4.1.1
Warning: package 'dplyr' was built under R version 4.1.1
Warning: package 'stringr' was built under R version 4.1.1
Warning: package 'forcats' was built under R version 4.1.1
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(wesanderson)
Warning: package 'wesanderson' was built under R version 4.1.1
library(ggtree)
ggtree v3.0.4 For help: https://yulab-smu.top/treedata-book/
If you use ggtree in published research, please cite the most appropriate paper(s):
1. Guangchuang Yu. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics, 2020, 69:e96. doi:10.1002/cpbi.96
2. Guangchuang Yu, Tommy Tsan-Yuk Lam, Huachen Zhu, Yi Guan. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Molecular Biology and Evolution 2018, 35(12):3041-3043. doi:10.1093/molbev/msy194
3. Guangchuang Yu, David Smith, Huachen Zhu, Yi Guan, Tommy Tsan-Yuk Lam. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 2017, 8(1):28-36. doi:10.1111/2041-210X.12628
Attaching package: 'ggtree'
The following object is masked from 'package:tidyr':
expand
library(ggtreeExtra)
Warning: package 'ggtreeExtra' was built under R version 4.1.1
ggtreeExtra v1.2.3 For help: https://yulab-smu.top/treedata-book/
If you use ggtreeExtra in published research, please cite the paper:
S Xu, Z Dai, P Guo, X Fu, S Liu, L Zhou, W Tang, T Feng, M Chen, L Zhan, T Wu, E Hu, Y Jiang, X Bo, G Yu. ggtreeExtra: Compact visualization of richly annotated phylogenetic data. Molecular Biology and Evolution 2021, 38(9):4039-4042. doi: 10.1093/molbev/msab166
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
pal <- wes_palette("Zissou1", 3, type = "continuous")
df <- readxl::read_xlsx('./data/R_genes.xlsx')
df %>% ggplot(aes(fill=Class, x=Genome, y=Count)) + geom_bar(stat='identity') +
scale_fill_manual(values=pal) +
coord_flip() + cowplot::theme_minimal_vgrid() +
theme(axis.text.y = element_text(face = "italic"))
pal <- wes_palette("Zissou1", 4, type = "continuous")
df2 <- df %>% mutate(Class2= case_when(str_detect(Subclass, pattern = 'TN') ~ 'NLR (TNL)',
str_detect(Subclass, pattern = '^R') ~ Subclass,
TRUE ~ 'NLR (CNL)'))
df2 %>% ggplot(aes(fill=Class2, x=Genome, y=Count)) + geom_bar(stat='identity') +
scale_fill_manual(values=pal) + coord_flip() + cowplot::theme_minimal_vgrid() +
theme(axis.text.y = element_text(face = "italic"))
df2 %>% dplyr::filter(Genome %in% c('P. australis', 'Z. marina', 'Z. muelleri', 'O. sativa', 'A. antarctica', 'A. thaliana')) %>%
ggplot(aes(fill=Class2, x=factor(Genome, levels=c('Z. marina', 'Z. muelleri', 'P. australis', 'A. antarctica', 'O. sativa', 'A. thaliana' )), y=Count)) +
geom_bar(stat='identity') +
scale_fill_manual(values=pal) + coord_flip() + cowplot::theme_minimal_vgrid() +
theme(axis.text.y = element_text(face = "italic")) +
xlab('Genome') +
labs(fill='Class')
Let’s link those to the phylogeny we got from timetree.org
tree <- ape::read.tree('./data/timetree_species.nwk')
tree$tip.label <- c('O. lucimarinus', 'C. reinhardtii', 'P. patens', 'S. moellendorffii', 'O. sativa', 'B. distachyon', 'Z. mays', 'P. australis', 'Z. marina', 'Z. muelleri', 'A. antarctica', 'S. polyrhiza', 'L. gibba', 'V. vinifera', 'A. thaliana', 'S. parvula', 'P. trichocarpa', 'A. trichopada')
p2 <- df2 %>% ggplot(aes(fill=Class2, x=Genome, y=Count)) + geom_bar(stat='identity') +
scale_fill_manual(values=pal) + coord_flip() + cowplot::theme_minimal_vgrid() +
theme(axis.text.y = element_text(face = "italic"))
p1 <- ggtree(tree)
p1
df2$label <- df2$Genome
# get species not in tree
subtree <- ape::drop.tip(tree, tree$tip.label[!tree$tip.label %in% df2$label])
p1 <- ggtree(subtree)
p1
df3 <- as.data.frame(df2)
df3$label <- df3$Genome
df3$id <- df3$label
# code from https://thackl.github.io/ggtree-composite-plots
tree_y <- function(ggtree, data){
if(!inherits(ggtree, "ggtree"))
stop("not a ggtree object")
left_join(select(data, label), select(ggtree$data, label, y)) %>%
pull(y)
}
# overwrite the default expand for continuous scales
scale_y_tree <- function(expand=expand_scale(0, 0.6), ...){
scale_y_continuous(expand=expand, ...)
}
# get the range of the ggtree y-axis data
tree_ylim <- function(ggtree){
if(!inherits(ggtree, "ggtree"))
stop("not a ggtree object")
range(ggtree$data$y)
}
# plot data next to a ggtree aligned by shared labels
ggtreeplot <- function(ggtree, data = NULL, mapping = aes(), flip=FALSE,
expand_limits=expand_scale(0,.6), ...){
if(!inherits(ggtree, "ggtree"))
stop("not a ggtree object")
# match the tree limits
limits <- tree_ylim(ggtree)
limits[1] <- limits[1] + (limits[1] * expand_limits[1]) - expand_limits[2]
limits[2] <- limits[2] + (limits[2] * expand_limits[3]) + expand_limits[4]
if(flip){
mapping <- modifyList(aes_(x=~x), mapping)
data <- mutate(data, x=tree_y(ggtree, data))
gg <- ggplot(data=data, mapping = mapping, ...) +
scale_x_continuous(limits=limits, expand=c(0,0))
}else{
mapping <- modifyList(aes_(y=~y), mapping)
data <- mutate(data, y=tree_y(ggtree, data))
gg <- ggplot(data=data, mapping = mapping, ...) +
scale_y_continuous(limits=limits, expand=c(0,0))
}
gg
}
# get rid of superfluous axis - this works after coord_flip, so it also works
# for the rotated histogram
no_y_axis <- function ()
theme(axis.line.y = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())
p3 <- ggtree(subtree) + geom_tiplab(align=TRUE, fontface='italic') +
scale_x_continuous(expand=expand_scale(0.8)) + scale_y_tree()
Warning: `expand_scale()` is deprecated; use `expansion()` instead.
Warning: `expand_scale()` is deprecated; use `expansion()` instead.
Scale for 'y' is already present. Adding another scale for 'y', which will
replace the existing scale.
myhist <- ggtreeplot(p3, df3, aes(y=Count, color=Class2, fill=Class2), flip=TRUE) +
geom_col(aes(fill=Class2,group=Class2,color=Class2)) +
#theme(legend.position="none") +
coord_flip() + no_y_axis() +
theme(legend.position=c(0.6, 0.87)) +
labs(fill='Class', color='Class')
Warning: `expand_scale()` is deprecated; use `expansion()` instead.
Joining, by = "label"
p3 + myhist
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
Matrix products: default
locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggtreeExtra_1.2.3 ggtree_3.0.4 wesanderson_0.3.6 forcats_0.5.1
[5] stringr_1.4.0 dplyr_1.0.7 purrr_0.3.4 readr_2.0.2
[9] tidyr_1.1.4 tibble_3.1.5 ggplot2_3.3.5 tidyverse_1.3.1
[13] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] nlme_3.1-152 fs_1.5.0 lubridate_1.8.0 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 bslib_0.3.1
[9] utf8_1.2.2 R6_2.5.1 DBI_1.1.1 lazyeval_0.2.2
[13] colorspace_2.0-2 withr_2.4.2 tidyselect_1.1.1 compiler_4.1.0
[17] git2r_0.28.0 cli_3.0.1 rvest_1.0.2 xml2_1.3.2
[21] labeling_0.4.2 sass_0.4.0 scales_1.1.1 digest_0.6.28
[25] yulab.utils_0.0.4 rmarkdown_2.11 pkgconfig_2.0.3 htmltools_0.5.2
[29] highr_0.9 dbplyr_2.1.1 fastmap_1.1.0 rlang_0.4.12
[33] readxl_1.3.1 rstudioapi_0.13 farver_2.1.0 gridGraphics_0.5-1
[37] jquerylib_0.1.4 generics_0.1.1 jsonlite_1.7.2 magrittr_2.0.1
[41] ggplotify_0.1.0 patchwork_1.1.1 Rcpp_1.0.7 munsell_0.5.0
[45] fansi_0.5.0 ape_5.5 ggnewscale_0.4.5 lifecycle_1.0.1
[49] stringi_1.7.5 whisker_0.4 yaml_2.2.1 grid_4.1.0
[53] parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1 lattice_0.20-44
[57] haven_2.4.3 cowplot_1.1.1 hms_1.1.1 knitr_1.36
[61] pillar_1.6.4 reprex_2.0.1 glue_1.4.2 evaluate_0.14
[65] ggfun_0.0.5 modelr_0.1.8 vctrs_0.3.8 treeio_1.16.2
[69] tzdb_0.1.2 httpuv_1.6.3 cellranger_1.1.0 gtable_0.3.0
[73] assertthat_0.2.1 xfun_0.27 broom_0.7.9 tidytree_0.3.7
[77] later_1.3.0 aplot_0.1.2 ellipsis_0.3.2