Last updated: 2023-07-28

Checks: 7 0

Knit directory: SuperCellCyto-analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(42) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7f102a5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rproj.user/
    Ignored:    code/.DS_Store
    Ignored:    code/b_cell_identification/.DS_Store
    Ignored:    code/batch_correction/.DS_Store
    Ignored:    code/explore_supercell_purity_clustering/.DS_Store
    Ignored:    code/explore_supercell_purity_clustering/functions/.DS_Store
    Ignored:    code/explore_supercell_purity_clustering/louvain_all_cells/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/bodenmiller_cytof/
    Ignored:    data/explore_supercell_purity_clustering/
    Ignored:    data/haas_bm/
    Ignored:    data/oetjen_bm_dataset/
    Ignored:    data/trussart_cytofruv/
    Ignored:    output/.DS_Store
    Ignored:    output/bodenmiller_cytof/
    Ignored:    output/explore_supercell_purity_clustering/
    Ignored:    output/label_transfer/
    Ignored:    output/oetjen_b_cell_panel/
    Ignored:    output/trussart_cytofruv/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/run_time.Rmd) and HTML (docs/run_time.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 366514e Givanna Putri 2023-07-28 Build site.
Rmd 402358b Givanna Putri 2023-07-28 wflow_publish(c("analysis/*Rmd"))

Introduction

In this analysis, we examine the time required to create the supercells, as well as the run time improvement obtained by analysing supercells vs single cells.

library(here)
library(data.table)
library(stringr)
library(ggplot2)
library(scales)

How long did supercell creation take?

run_time_clust_benchmark <- lapply(c("samusik_all", "levine_32dim"), function(dt_source) {
    dt <- fread(here("output", "explore_supercell_purity_clustering", "20230511", 
                            dt_source, "supercell_runs", "supercell_runtime.txt"),
                       sep = ":", header = FALSE, col.names = c("dataset", "duration_seconds"))
    dt$gamma <- str_split_i(dt$dataset, "_", 2) 
    dt$dataset <- str_to_title(dt_source)
    dt$duration_seconds <- gsub(" sec elapsed", "", dt$duration_seconds)
    
    return(dt)
})
run_time_clust_benchmark <- rbindlist(run_time_clust_benchmark)
run_time_bcells <- fread(here("output", "oetjen_b_cell_panel", "20230511", "supercell_runtime.txt"),
                         sep = ":", header = FALSE, col.names = c("dataset", "duration_seconds"))
run_time_bcells$dataset <- "Oetjen_bcells"
run_time_bcells$duration_seconds <- gsub(" sec elapsed", "", run_time_bcells$duration_seconds)
run_time_bcells$gamma <- "gamma20"
run_time_trussart <- fread(here("output", "trussart_cytofruv", "20230515_supercell_out", "supercell_runtime.txt"),
                         sep = ":", header = FALSE, col.names = c("dataset", "duration_seconds"))
run_time_trussart$dataset <- "Trussart_cytofruv"
run_time_trussart$duration_seconds <- gsub(" sec elapsed", "", run_time_trussart$duration_seconds)
run_time_trussart$gamma <- "gamma20"
run_time <- rbindlist(list(run_time_clust_benchmark, run_time_bcells, run_time_trussart))
run_time$gamma <- gsub("gamma", "", run_time$gamma)
run_time$duration_seconds <- as.numeric(run_time$duration_seconds)
run_time$duration_minutes <- run_time$duration_seconds / 60
run_time$duration_hours <- run_time$duration_seconds / 3600
ggplot(run_time[dataset %in% c("Samusik_all", "Levine_32dim")], 
       aes(x = gamma, y = duration_minutes, colour = dataset)) +
  geom_point(size = 2) +
  scale_color_manual(values = c("Levine_32dim" = "purple", "Samusik_all" = "#FFC000")) +
  theme_classic() +
  scale_y_continuous(breaks = pretty_breaks(n=5), limits = c(2,3)) +
  labs(y = "Duration (minutes)", x = "Gamma", color = "Dataset", title = "Time Taken to Generate Supercells")

Version Author Date
366514e Givanna Putri 2023-07-28
ggplot(run_time[dataset %in% c("Oetjen_bcells", "Trussart_cytofruv")], 
       aes(x = dataset, y = duration_minutes, colour = dataset)) +
  geom_point() +
  scale_color_manual(values = c("Oetjen_bcells" = "#FF5733", "Trussart_cytofruv" = "turquoise")) +
  theme_classic() +
  scale_y_continuous(breaks = pretty_breaks(n=5)) +
  labs(y = "Duration (minutes)", x = "Dataset", color = "Dataset", title = "Time Taken to Generate Supercells")

Version Author Date
366514e Givanna Putri 2023-07-28

How long did Louvain clustering take?

louvain_runtime_supercell <- lapply(c("samusik_all", "levine_32dim"), function(dt_source) {
    dt <- lapply(seq(5, 50, by=5), function(gam) {
        dt <- fread(here("output", "explore_supercell_purity_clustering", "20230511", 
                         dt_source, "louvain_supercell_runs", paste0("gamma_", gam),
                         "louvain_supercell_runtime.txt"),
                    sep = ":", header = FALSE, col.names = c("dataset", "duration_seconds"))
        dt$duration_seconds <- as.numeric(gsub(" sec elapsed", "", dt$duration_seconds))
        dt$gamma <- gam
        dt$dataset <- str_to_title(dt_source)
        return(dt)
    })
    return(rbindlist(dt))
})
louvain_runtime_supercell <- rbindlist(louvain_runtime_supercell)
louvain_runtime_supercell$type <- "Supercells"

louvain_runtime_allcell <- lapply(c("samusik_all", "levine_32dim"), function(dt_source) {
    dt <- lapply(seq(10, 30, by=5), function(k) {
        dt <- fread(here("output", "explore_supercell_purity_clustering", "20230511", 
                         dt_source, "louvain_allcells", paste0("k", k),
                         "louvain_supercell_runtime.txt"),
                    sep = ":", header = FALSE, col.names = c("dataset", "duration_seconds"))
        dt$duration_seconds <- as.numeric(gsub(" sec elapsed", "", dt$duration_seconds))
        dt$dataset <- str_to_title(dt_source)
        return(dt)
    })
    return(rbindlist(dt))
})
louvain_runtime_allcell <- rbindlist(louvain_runtime_allcell)
louvain_runtime_allcell$type <- "Single cells"

louvain_runtime <- rbind(
  louvain_runtime_allcell, 
  louvain_runtime_supercell[, c("dataset", "duration_seconds", "type")]
)
louvain_runtime[, duration_minutes := duration_seconds / 60]
ggplot(louvain_runtime, aes(x = type, y = duration_minutes, colour = dataset)) +
  geom_boxplot() +
  scale_color_manual(values = c("Levine_32dim" = "purple", "Samusik_all" = "#FFC000")) +
  theme_classic() +
  scale_y_continuous(breaks = pretty_breaks(n=20)) +
  labs(y = "Duration (minutes)", x = "Gamma", color = "Dataset", title = "Louvain clustering run time")

Version Author Date
366514e Givanna Putri 2023-07-28

Median run time?

louvain_runtime[, .(median_duration_sec = median(duration_seconds), median_duration_min = median(duration_minutes)), by = c("type", "dataset")]
           type      dataset median_duration_sec median_duration_min
1: Single cells  Samusik_all           5319.1040          88.6517333
2: Single cells Levine_32dim            590.3805           9.8396750
3:   Supercells  Samusik_all              8.2705           0.1378417
4:   Supercells Levine_32dim              1.9170           0.0319500

Any improvement for FlowSOM?

fsom_runtime_supercell <- lapply(c("samusik_all", "levine_32dim"), function(dt_source) {
    dt <- lapply(seq(5, 50, by=5), function(gam) {
        dt <- fread(here("output", "explore_supercell_purity_clustering", "20230511", 
                         dt_source, "flowsom_supercell_runs", paste0("gamma_", gam),
                         "flowsom_supercell_runtime.txt"),
                    sep = ":", header = FALSE, col.names = c("dataset", "duration_seconds"))
        dt$duration_seconds <- as.numeric(gsub(" sec elapsed", "", dt$duration_seconds))
        dt$gamma <- gam
        dt$dataset <- str_to_title(dt_source)
        return(dt)
    })
    return(rbindlist(dt))
})
fsom_runtime_supercell <- rbindlist(fsom_runtime_supercell)
fsom_runtime_supercell$type <- "Supercells"

fsom_runtime_allcell <- lapply(c("samusik_all", "levine_32dim"), function(dt_source) {
    dt <- fread(here("output", "explore_supercell_purity_clustering", "20230509", 
                         dt_source, "flowsom_allcells", "flowsom_allcell_runtime.txt"),
                    sep = ":", header = FALSE, col.names = c("dataset", "duration_seconds"))
    dt$duration_seconds <- as.numeric(gsub(" sec elapsed", "", dt$duration_seconds))
    dt$dataset <- str_to_title(dt_source)
    return(dt)
    return(rbindlist(dt))
})
fsom_runtime_allcell <- rbindlist(fsom_runtime_allcell)
fsom_runtime_allcell$type <- "Single Cells"

fsom_runtime <- rbind(
  fsom_runtime_allcell, 
  fsom_runtime_supercell[, c("dataset", "duration_seconds", "type")]
)
ggplot(fsom_runtime, aes(x = type, y = duration_seconds, colour = dataset)) +
  geom_boxplot() +
  scale_color_manual(values = c("Levine_32dim" = "purple", "Samusik_all" = "#FFC000")) +
  theme_classic() +
  scale_y_continuous(breaks = pretty_breaks(n=20)) +
  labs(y = "Duration (seconds)", x = "Gamma", color = "Dataset", title = "FlowSOM clustering run time")

Version Author Date
366514e Givanna Putri 2023-07-28

Median run time?

fsom_runtime[, .(median_duration_sec = median(duration_seconds)), by = c("type", "dataset")]
           type      dataset median_duration_sec
1: Single Cells  Samusik_all             52.7870
2: Single Cells Levine_32dim             15.8945
3:   Supercells  Samusik_all              8.0185
4:   Supercells Levine_32dim              4.1705

sessionInfo()
R version 4.2.3 (2023-03-15)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] scales_1.2.1      ggplot2_3.4.1     stringr_1.5.0     data.table_1.14.8
[5] here_1.0.1        workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.10      highr_0.10       compiler_4.2.3   pillar_1.8.1    
 [5] bslib_0.4.2      later_1.3.0      git2r_0.31.0     jquerylib_0.1.4 
 [9] tools_4.2.3      getPass_0.2-2    digest_0.6.31    gtable_0.3.1    
[13] jsonlite_1.8.4   evaluate_0.20    lifecycle_1.0.3  tibble_3.1.8    
[17] pkgconfig_2.0.3  rlang_1.0.6      cli_3.6.0        rstudioapi_0.14 
[21] yaml_2.3.7       xfun_0.39        fastmap_1.1.0    withr_2.5.0     
[25] dplyr_1.1.0      httr_1.4.4       knitr_1.42       generics_0.1.3  
[29] fs_1.6.1         vctrs_0.5.2      sass_0.4.5       tidyselect_1.2.0
[33] grid_4.2.3       rprojroot_2.0.3  glue_1.6.2       R6_2.5.1        
[37] processx_3.8.0   fansi_1.0.4      rmarkdown_2.20   farver_2.1.1    
[41] callr_3.7.3      magrittr_2.0.3   whisker_0.4.1    ps_1.7.2        
[45] promises_1.2.0.1 htmltools_0.5.4  colorspace_2.1-0 httpuv_1.6.9    
[49] utf8_1.2.3       stringi_1.7.12   munsell_0.5.0    cachem_1.0.6