Last updated: 2022-06-01

Checks: 7 0

Knit directory: propeller-paper-analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220531) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ee88aa1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  data/CTpropsTransposed.txt
    Untracked:  data/CelltypeLevels.csv
    Untracked:  data/TypeIErrTables.Rdata
    Untracked:  data/appnote1cdata.rdata
    Untracked:  data/cold_warm_fresh_cellinfo.txt
    Untracked:  data/covid.cell.annotation.meta.txt
    Untracked:  data/heartFYA.Rds
    Untracked:  data/nullsimsVaryN_results.Rdata
    Untracked:  data/pool_1.rds
    Untracked:  data/sampleinfo.csv
    Untracked:  output/Fig1ab.pdf
    Untracked:  output/Fig1cde.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pbmcJP.Rmd) and HTML (docs/pbmcJP.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ee88aa1 bphipson 2022-06-01 Add my first analysis

Load the libraries

library(Seurat)
library(speckle)
library(limma)
library(ggplot2)
library(edgeR)
library(patchwork)
library(cowplot)
library(gridGraphics)
set.seed(10)

Read the data into R

The data is stored in a Seurat object. The cells have been classified into broader and more refined cell types.

pbmc <- readRDS("./data/pool_1.rds")

Visualise the data by cell type and individual

# Cell type information
table(pbmc$predicted.celltype.l2)

            ASDC   B intermediate         B memory          B naive 
               1              570              361              871 
       CD14 Mono        CD16 Mono          CD4 CTL        CD4 Naive 
             522              225              383             3552 
         CD4 TCM          CD4 TEM        CD8 Naive          CD8 TCM 
            3451              389              597              205 
         CD8 TEM             cDC2              dnT            Eryth 
            2421               20               43                5 
             gdT             HSPC              ILC             MAIT 
               4               18                5              189 
              NK NK Proliferating    NK_CD56bright              pDC 
            2582               43              134                7 
     Plasmablast         Platelet             Treg 
              10               27              414 
DimPlot(pbmc, group.by = "predicted.celltype.l2")

table(pbmc$individual)

682_683 683_684 684_685 685_686 686_687 687_688 688_689 689_690 690_691 691_692 
   1185    1478    1042    1613    1309    1486    1582    1789    1462    1505 
692_693 693_694 
   1310    1288 
DimPlot(pbmc, group.by = "individual")

Run the Seurat workflow for normalisation, scaling, PCA and UMAP

pbmc <- NormalizeData(pbmc)
pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)
pbmc <- ScaleData(pbmc)
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
ElbowPlot(pbmc)

pbmc <- RunUMAP(pbmc, dims = 1:11)

Visualise data with UMAP

DimPlot(pbmc, reduction = "umap",group.by = "predicted.celltype.l1", label=TRUE, label.size=6) + theme(legend.position = "none")  + ggtitle("Broad cell type predictions")

DimPlot(pbmc, reduction = "umap",group.by = "predicted.celltype.l2") + ggtitle("Refined cell type predictions")

d1 <- DimPlot(pbmc, reduction = "umap",group.by = "predicted.celltype.l2") + theme(legend.position = "none") + ggtitle("a") + theme(plot.title = element_text(size = 18, hjust = 0))

Explore cell type proportions among the 12 individuals

props <- getTransformedProps(clusters = pbmc$predicted.celltype.l2, 
                             sample = pbmc$individual)

p1 <- plotCellTypeProps(clusters = pbmc$predicted.celltype.l2, sample = pbmc$individual) + theme(axis.text.x = element_text(angle = 45))+ ggtitle("Refined cell type proportions") + 
theme(plot.title = element_text(size = 18, hjust = 0))
p1 + theme_bw() + theme(panel.grid.major = element_blank(),
                        panel.grid.minor = element_blank()) + theme(axis.text.x = element_text(angle = 45))

p2 <- plotCellTypeProps(clusters = pbmc$predicted.celltype.l1, sample = pbmc$individual)
p2 + theme(axis.text.x = element_text(angle = 45)) + ggtitle("Broad cell type proportions")

pdf(file="./output/Fig1ab.pdf", width =14, height=6)
d1 + p1
dev.off()
png 
  2 

Exploring heterogeneity in cell type proportions between individuals

counts <- table(pbmc$predicted.celltype.l2, pbmc$individual)
baselineN <- rowSums(counts)
N <- sum(baselineN)
baselineprops <- baselineN/N
pbmc$final_ct <- factor(pbmc$predicted.celltype.l2, levels=names(sort(baselineprops, decreasing = TRUE)))
counts <- table(pbmc$final_ct, pbmc$individual)
baselineN <- rowSums(counts)
N <- sum(baselineN)
baselineprops <- baselineN/N
props <- getTransformedProps(clusters = pbmc$final_ct, 
                             sample = pbmc$individual)
cols <- ggplotColors(nrow(props$Proportions))
m <- match(rownames(props$Proportions),levels(factor(pbmc$predicted.celltype.l2)))
par(mfrow=c(1,1))
par(mar=c(7,5,2,2))
plot(jitter(props$Proportions[,1]), col = cols[m], pch=16, ylim=c(0,max(props$Proportions)),
     xaxt="n", xlab="", ylab="Cell type proportion", cex.lab=1.5, cex.axis=1.5)
for(i in 2:ncol(props$Proportions)){
  points(jitter(1:nrow(props$Proportions)),props$Proportions[,i], col = cols[m],
         pch=16)
}
axis(side=1, at=1:nrow(props$Proportions), las=2, 
     labels=rownames(props$Proportions))
title("Cell type proportions estimates for 12 individuals")

The mean-variance relationship plots below show that the data is overdispersed compared to what would be expected under a Binomial or Poisson distribution.

plotCellTypeMeanVar(counts)

plotCellTypePropsMeanVar(counts)


sessionInfo()
R version 4.2.0 (2022-04-22 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] gridGraphics_0.5-1 cowplot_1.1.1      patchwork_1.1.1    edgeR_3.38.1      
 [5] ggplot2_3.3.6      limma_3.52.1       speckle_0.99.0     sp_1.4-7          
 [9] SeuratObject_4.1.0 Seurat_4.1.1       workflowr_1.7.0   

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                  reticulate_1.25            
  [3] tidyselect_1.1.2            RSQLite_2.2.14             
  [5] AnnotationDbi_1.58.0        htmlwidgets_1.5.4          
  [7] BiocParallel_1.30.2         Rtsne_0.16                 
  [9] munsell_0.5.0               codetools_0.2-18           
 [11] ica_1.0-2                   statmod_1.4.36             
 [13] future_1.26.1               miniUI_0.1.1.1             
 [15] withr_2.5.0                 spatstat.random_2.2-0      
 [17] colorspace_2.0-3            progressr_0.10.0           
 [19] Biobase_2.56.0              highr_0.9                  
 [21] knitr_1.39                  rstudioapi_0.13            
 [23] stats4_4.2.0                SingleCellExperiment_1.18.0
 [25] ROCR_1.0-11                 tensor_1.5                 
 [27] listenv_0.8.0               MatrixGenerics_1.8.0       
 [29] labeling_0.4.2              git2r_0.30.1               
 [31] GenomeInfoDbData_1.2.8      polyclip_1.10-0            
 [33] farver_2.1.0                bit64_4.0.5                
 [35] rprojroot_2.0.3             parallelly_1.31.1          
 [37] vctrs_0.4.1                 generics_0.1.2             
 [39] xfun_0.31                   R6_2.5.1                   
 [41] GenomeInfoDb_1.32.2         locfit_1.5-9.5             
 [43] bitops_1.0-7                spatstat.utils_2.3-1       
 [45] cachem_1.0.6                DelayedArray_0.22.0        
 [47] assertthat_0.2.1            promises_1.2.0.1           
 [49] scales_1.2.0                rgeos_0.5-9                
 [51] gtable_0.3.0                beachmat_2.12.0            
 [53] org.Mm.eg.db_3.15.0         globals_0.15.0             
 [55] processx_3.5.3              goftest_1.2-3              
 [57] rlang_1.0.2                 splines_4.2.0              
 [59] lazyeval_0.2.2              spatstat.geom_2.4-0        
 [61] yaml_2.3.5                  reshape2_1.4.4             
 [63] abind_1.4-5                 httpuv_1.6.5               
 [65] tools_4.2.0                 ellipsis_0.3.2             
 [67] spatstat.core_2.4-4         jquerylib_0.1.4            
 [69] RColorBrewer_1.1-3          BiocGenerics_0.42.0        
 [71] ggridges_0.5.3              Rcpp_1.0.8.3               
 [73] plyr_1.8.7                  sparseMatrixStats_1.8.0    
 [75] zlibbioc_1.42.0             purrr_0.3.4                
 [77] RCurl_1.98-1.6              ps_1.7.0                   
 [79] rpart_4.1.16                deldir_1.0-6               
 [81] pbapply_1.5-0               S4Vectors_0.34.0           
 [83] zoo_1.8-10                  SummarizedExperiment_1.26.1
 [85] ggrepel_0.9.1               cluster_2.1.3              
 [87] fs_1.5.2                    magrittr_2.0.3             
 [89] RSpectra_0.16-1             data.table_1.14.2          
 [91] scattermore_0.8             lmtest_0.9-40              
 [93] RANN_2.6.1                  whisker_0.4                
 [95] fitdistrplus_1.1-8          matrixStats_0.62.0         
 [97] mime_0.12                   evaluate_0.15              
 [99] xtable_1.8-4                IRanges_2.30.0             
[101] gridExtra_2.3               compiler_4.2.0             
[103] tibble_3.1.7                KernSmooth_2.23-20         
[105] crayon_1.5.1                htmltools_0.5.2            
[107] mgcv_1.8-40                 later_1.3.0                
[109] tidyr_1.2.0                 lubridate_1.8.0            
[111] DBI_1.1.2                   MASS_7.3-57                
[113] Matrix_1.4-1                cli_3.3.0                  
[115] parallel_4.2.0              igraph_1.3.1               
[117] GenomicRanges_1.48.0        pkgconfig_2.0.3            
[119] getPass_0.2-2               plotly_4.10.0              
[121] scuttle_1.6.2               spatstat.sparse_2.1-1      
[123] bslib_0.3.1                 XVector_0.36.0             
[125] stringr_1.4.0               callr_3.7.0                
[127] digest_0.6.29               sctransform_0.3.3          
[129] RcppAnnoy_0.0.19            spatstat.data_2.2-0        
[131] Biostrings_2.64.0           rmarkdown_2.14             
[133] leiden_0.4.2                uwot_0.1.11                
[135] DelayedMatrixStats_1.18.0   shiny_1.7.1                
[137] lifecycle_1.0.1             nlme_3.1-157               
[139] jsonlite_1.8.0              viridisLite_0.4.0          
[141] fansi_1.0.3                 pillar_1.7.0               
[143] lattice_0.20-45             KEGGREST_1.36.0            
[145] fastmap_1.1.0               httr_1.4.3                 
[147] survival_3.3-1              glue_1.6.2                 
[149] png_0.1-7                   bit_4.0.4                  
[151] stringi_1.7.6               sass_0.4.1                 
[153] blob_1.2.3                  org.Hs.eg.db_3.15.0        
[155] memoise_2.0.1               dplyr_1.0.9                
[157] irlba_2.3.5                 future.apply_1.9.0