• TTN
  • IGSFB9
  • POLR3A rs7094302
  • PRDX6 rs4916358
  • SPPL3 rs16950058
  • SPPL3-2 rs2238161
  • GRAMD4 rs4253763

Last updated: 2024-10-28

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0c8593f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/
    Ignored:    trimmed_Ind1_75DA24h_S7.nodup.splited.bam/

Untracked files:
    Untracked:  Correlationplot_scaled.pdf
    Untracked:  DOX_DAR_assess.Rmd
    Untracked:  EAR_2_plot.pdf
    Untracked:  ESR_1_plot.pdf
    Untracked:  Firstcorr plotATAC.pdf
    Untracked:  IND1_2_3_6_corrplot.pdf
    Untracked:  LR_3_plot.pdf
    Untracked:  NR_1_plot.pdf
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/ReHeat_analysis.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/TE_analysis_old.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  analysis/nucleosome_explore.Rmd
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/MRC_clusterlog2cpm.R
    Untracked:  code/TSSE.R
    Untracked:  code/just_for_Fun.R
    Untracked:  code/toplist_assembly.R
    Untracked:  dataredo.RData
    Untracked:  lcpm_filtered_corplot.pdf
    Untracked:  log2cpmfragcount.pdf
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  output_1_Mecom.txt
    Untracked:  splited/
    Untracked:  trimmed_Ind1_75DA24h_S7.nodup.fragment.size.distribution.pdf
    Untracked:  trimmed_Ind1_75DA3h_S1.nodup.fragment.size.distribution.pdf

Unstaged changes:
    Modified:   analysis/CorMotif_data_n45.Rmd
    Modified:   analysis/Enhancer_files_ff.Rmd
    Modified:   analysis/Enrichment_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/Peak_calling.Rmd
    Modified:   analysis/Raodah.Rmd
    Modified:   analysis/Smaller_set_DAR.Rmd
    Modified:   analysis/TE_analysis.Rmd
    Modified:   analysis/TE_analysis_ff.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/final_plot_attempt.Rmd) and HTML (docs/final_plot_attempt.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0c8593f reneeisnowhere 2024-10-28 updates to new SNP associaitions
html ad854f2 reneeisnowhere 2024-10-24 Build site.
Rmd d949388 reneeisnowhere 2024-10-24 wflow_publish("analysis/final_plot_attempt.Rmd")
html 6074022 reneeisnowhere 2024-10-17 Build site.
Rmd 00d7d3d reneeisnowhere 2024-10-17 updates

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(ggfortify)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(ggVennDiagram)
library(BiocParallel)
library(ggpubr)
library(edgeR)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(ComplexHeatmap)
library(cowplot)
library(smplot2)
# toplistall_RNA <- readRDS("data/other_papers/toplistall_RNA.RDS") 
# toplistall_RNA <- toplistall_RNA %>% 
#   mutate(logFC = logFC*(-1))
# toplist_ATAC <- readRDS("data/Final_four_data/toplist_ff.RDS")

Collapsed_H3k27ac_NG <- read_delim("data/Final_four_data/H3K27ac_files/Collapsed_H3k27ac_NG.txt",delim = "\t",col_names = TRUE)
Collapsed_new_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt", delim = "\t", col_names = TRUE)


RNA_median_3_lfc <- readRDS("data/other_papers/RNA_median_3_lfc.RDS")
RNA_median_24_lfc <- readRDS("data/other_papers/RNA_median_24_lfc.RDS")
overlap_df_ggplot <- readRDS("data/Final_four_data/LFC_ATAC_K27ac.RDS")
AC_median_3_lfc <- read_csv("data/Final_four_data/AC_median_3_lfc.csv")
AC_median_24_lfc <- read_csv("data/Final_four_data/AC_median_24_lfc.csv")
ATAC_24_lfc <- read_csv("data/Final_four_data/median_24_lfc.csv") 
ATAC_3_lfc <- read_csv("data/Final_four_data/median_3_lfc.csv")

joined_LFC_df <- overlap_df_ggplot %>%
  left_join(.,(Collapsed_new_peaks %>%
                 dplyr::select(Peakid,dist_to_NG, NCBI_gene:SYMBOL)),
            by=c("peakid"="Peakid")) %>% 
  left_join(., RNA_median_3_lfc ,
                # %>%
                #   dplyr::select(SYMBOL,RNA_3h_lfc)), 
            by=c("SYMBOL"="SYMBOL", "NCBI_gene"="ENTREZID")) %>%
  left_join(., RNA_median_24_lfc,# %>%
                  # dplyr::select(SYMBOL,RNA_24h_lfc)),
             by=c("SYMBOL"="SYMBOL", "NCBI_gene"="ENTREZID")) 

lt1<- readRDS("data/Final_four_data/updated_RNA_gene_lookuptable")

checklist <- lt1 %>% 
  separate_longer_delim(.,col= ENTREZID, delim= ":") %>% 
separate_longer_delim(.,col= SYMBOL, delim= ":") %>% 
  dplyr::select(ENTREZID,SYMBOL) %>% 
  mutate(ENTREZID=as.numeric(ENTREZID)) %>% 
  distinct()

# schneider_closest_output <- readRDS("data/other_papers/Schneider_closestgene_SNP_file.RDS") %>% 
#   left_join(., checklist, by=c("ENTREZID"="ENTREZID"))

# schneider_gr <- schneider_closest_output %>% 
#   dplyr::select(chrom,start,stop,RSID,ENTREZID) %>% 
#   left_join(., (checklist %>% mutate(ENTREZID=as.numeric(ENTREZID))) , by=c("ENTREZID"="ENTREZID")) %>% 
#   GRanges()
# 
# schneider_10k_gr <- schneider_closest_output %>% 
#   mutate(start=(start-5000),stop=(stop+4999), width=10000) %>% 
#   dplyr::select(chrom,start,stop,RSID,ENTREZID) %>% 
#   left_join(., checklist , by=c("ENTREZID"="ENTREZID")) %>% 
#   GRanges()
# SNP_peak_check <- join_overlap_intersect(TSS_assigned_NG_gr,schneider_gr) %>% 
#   as.data.frame()
# 
# SNP_peak_check_10k <- join_overlap_intersect(TSS_assigned_NG_gr,schneider_10k_gr) %>% 
#   as.data.frame()

new_SNP_peak_check_10k <- readRDS("data/Final_four_data/new_SNP_peak_check_10k.RDS")
  
new_SNP_peak_check <-   readRDS("data/Final_four_data/new_SNP_peak_check.RDS")
point_only <- new_SNP_peak_check

new_SNP_peak_check_10k %>% dplyr::filter(ENTREZID.x !=ENTREZID.y)
  seqnames     start       end width strand                   Peakid NG_chr
1     chr8 141160879 141162083  1205      * chr8.141160879.141162083   chr8
   NG_start  NG_end.x    NG_TSS ENTREZID.x SYMBOL.x dist_to_NG Variation
1 141117277 141195808 141117278      22898   DENND3     -43602  rs428300
      RSID ENTREZID.y SYMBOL.y TSS_chr TSS_start   TSS_end  NG_end.y
1 rs428300      57210  SLC45A4    chr8 141207165 141207166 141308305
  dist_SNP_NG_TSS
1           43909
# schneider_gr %>% write_bed(.,"data/Final_four_data/meme_bed/Schnieder_SNPs.bed")


ATAC_peaks_gr <- Collapsed_new_peaks %>% GRanges()

# point_only <- join_overlap_intersect(schneider_gr,ATAC_peaks_gr)
# expand_schneider <- join_overlap_intersect(ATAC_peaks_gr,schneider_10k_gr)
library(readxl)
Reheat_data <- read_excel("data/other_papers/jah36123-sup-0002-tables2.xlsx")
top_reheat <- Reheat_data %>% 
  dplyr::filter(fisher_pvalue<0.005)
schneider_short_list <- point_only %>% as.data.frame
# 
# peakAnnoList_ff_motif <- readRDS("data/Final_four_data/peakAnnoList_ff_motif.RDS")
# 
# background_peaks <- as.data.frame(peakAnnoList_ff_motif$background) 
# EAR_df <- as.data.frame(peakAnnoList_ff_motif$EAR)
# ESR_df <- as.data.frame(peakAnnoList_ff_motif$ESR)
# LR_df <- as.data.frame(peakAnnoList_ff_motif$LR)
# NR_df <- as.data.frame(peakAnnoList_ff_motif$NR)
# open_3med <- ATAC_3_lfc %>% 
#   dplyr::filter(med_3h_lfc > 0)
# 
# close_3med <- ATAC_3_lfc %>% 
#   dplyr::filter(med_3h_lfc < 0)
# 
# open_24med <- ATAC_24_lfc %>% 
#   dplyr::filter(med_24h_lfc > 0)
# 
# close_24med <- ATAC_24_lfc %>% 
#   dplyr::filter(med_24h_lfc < 0)
# 
# medA <- ATAC_3_lfc %>% 
#   left_join(ATAC_24_lfc, by=c("peak"="peak")) %>% 
#   dplyr::filter(med_3h_lfc > 0 & med_24h_lfc>0)
# 
# medB <- ATAC_3_lfc %>% 
#   left_join(ATAC_24_lfc, by=c("peak"="peak")) %>% 
#   dplyr::filter(med_3h_lfc < 0 & med_24h_lfc < 0)
#  
# medC <- ATAC_3_lfc %>% 
#   left_join(ATAC_24_lfc, by=c("peak"="peak")) %>% 
#   dplyr::filter(med_3h_lfc > 0& med_24h_lfc <0)
#   
# 
# medD <- ATAC_3_lfc %>% 
#  left_join(ATAC_24_lfc, by=c("peak"="peak"))%>% 
#   dplyr::filter(med_3h_lfc < 0 & med_24h_lfc > 0)
 

Nine_te_df <- readRDS("data/Final_four_data/Nine_group_TE_df.RDS")

match <- Nine_te_df %>% distinct(Peakid,TEstatus,mrc,.keep_all = TRUE) 
# NR <- NR_df %>% dplyr::select(Peakid)
# EAR_open <- EAR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% open_3med$peak)
# EAR_close <-EAR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% close_3med$peak)
# ESR_open <- ESR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% medA$peak)
# ESR_close <- ESR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% medB$peak)
# LR_open <- LR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% open_24med$peak)
# LR_close <- LR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% open_24med$peak)
# ESR_opcl <- ESR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% medC$peak)
# ESR_clop <- ESR_df %>% dplyr::select(Peakid) %>% dplyr::filter(Peakid %in% medD$peak)
# expand_schneider %>% as.data.frame() %>% 
#   dplyr::select(Peakid,RSID,NCBI_gene:SYMBOL.y) %>% dplyr::filter(grepl("rs425*", RSID))
schneider_df <-
new_SNP_peak_check_10k%>% as.data.frame() %>% 
  dplyr::select(Peakid,RSID,ENTREZID.x:dist_to_NG,ENTREZID.y:SYMBOL.y, dist_SNP_NG_TSS) %>% 
  mutate(SYMBOL=if_else(is.na(SYMBOL.y),SYMBOL.x,SYMBOL.y)) %>% 
mutate(ENTREZID=if_else(is.na(ENTREZID.y),ENTREZID.x,ENTREZID.y))%>% 
 dplyr::select(Peakid, RSID, ENTREZID, SYMBOL) %>% 
  distinct(Peakid,RSID,.keep_all = TRUE) %>% 
  # left_join(., joined_LFC_df,by = c("Peakid"="peakid", "ENTREZID"="NCBI_gene","SYMBOL"="SYMBOL")) #%>% 
  # dplyr::select(Peakid:Geneid, AC_3h_lfc, AC_24h_lfc) %>% 
  left_join(., (ATAC_3_lfc %>% dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>% dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
### peaks left out here were chopped due to low counts (row_means<0) %>% 
  mutate(ENTREZID= if_else(RSID=="rs36022097","8970",ENTREZID),
         SYMBOL=if_else(RSID=="rs36022097","H2BC11",SYMBOL)) %>% 
dplyr::filter(!is.na(med_24h_lfc)) %>% 
  left_join(., RNA_median_3_lfc,by =c("ENTREZID"="ENTREZID")) %>% 
  left_join(., RNA_median_24_lfc,by =c("ENTREZID"="ENTREZID", "SYMBOL.y"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL.x %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  dplyr::filter(!is.na(med_3h_lfc)) %>% 
  distinct(RSID,.keep_all = TRUE) %>% 
  dplyr::select(RSID,Peakid,med_3h_lfc,med_24h_lfc,,RNA_3h_lfc,RNA_24h_lfc, ENTREZID,SYMBOL.x,reheat) %>% #AC_3h_lfc,AC_24h_lfc) %>% 
  tidyr::unite(name,RSID,SYMBOL.x,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  group_by(Peakid) %>% 
 summarize(name=unique(name),
           RSID=unique(RSID),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL.x=paste(unique(SYMBOL.x),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc)) %>% 
  mutate(point_ol=if_else(RSID %in% point_only$RSID,"yes","no"))

schneider_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
schneider_name_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,point_ol)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=schneider_name_mat$TEstatus,reheat_status=schneider_name_mat$reheat,MRC=schneider_name_mat$mrc,direct_overlap=schneider_name_mat$point_ol,col= list(TE_status= c("TE_peak"="goldenrod","TE_peak;not_TE_peak"="goldenrod","not_TE_peak;TE_peak"="goldenrod","not_TE_peak"="lightblue"), 
                                                                                                MRC = c("EAR_open" = "#F8766D",   "EAR_close" = "#f6483c",
    "ESR_open" = "#7CAE00",
    "ESR_close" = "#587b00",
     "ESR_opcl"="grey40",
    "ESR_C"="grey40",
      "ESR_clop"="tan",
    "ESR_D"="tan",
     "ESR_OC" = "#6a9500",
     "LR_open" = "#00BFC4",
     "LR_close" = "#008d91",
     "NR" = "#C77CFF",
    "not_mrc"="black"
  ),
  reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange")
),direct_overlap=c("yes"="red","no"="grey8"))
  
ComplexHeatmap::Heatmap(schneider_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        show_column_names = TRUE,cluster_rows = FALSE,cluster_columns = FALSE)

Version Author Date
6074022 reneeisnowhere 2024-10-17

GWAS SNP overlap log2cpm

TTN

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
# K27_counts <-  readRDS("data/Final_four_data/All_Raodahpeaks.RDS")
ATAC_counts <- readRDS("data/Final_four_data/x4_filtered.RDS")
RNA_counts <- readRDS("data/other_papers/Counts_RNA_ERMatthews.RDS")
# overlap_atac_ac_peaks <- readRDS( "data/Final_four_data/overlapping_ac_atac_peaks.RDS")
TNT_peak <- data.frame(peak="chr2.178547784.178549172", RNA="TTN", ENTREZID=7273)
 AS1 <- 100506866
RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% TNT_peak$ENTREZID) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle("Titin (TTN) RNA expression")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
6074022 reneeisnowhere 2024-10-17
RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% AS1) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle("Titin-AS1 (TTN-AS1) RNA expression")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
6074022 reneeisnowhere 2024-10-17
ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) %>% 
  dplyr::filter(row.names(.) %in% TNT_peak$peak) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle("Titin (TTN) ATAC accessibility")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24

IGSFB9

IGSF9B_peak <- data.frame(peak="chr11.133681701.133682451", RNA="IGSF9B", ENTREZID=22997)

RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% IGSF9B_peak$ENTREZID) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle("IGSF9B RNA expression")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) %>% 
  dplyr::filter(row.names(.) %in% IGSF9B_peak$peak) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle("IGSF9B ATAC accessibility")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
schneider_df
# A tibble: 43 × 13
# Groups:   Peakid [35]
   Peakid     name  RSID  med_3h_lfc med_24h_lfc RNA_3h_lfc RNA_24h_lfc repClass
   <chr>      <chr> <chr>      <dbl>       <dbl>      <dbl>       <dbl> <chr>   
 1 chr1.1734… rs10… rs10…     0.0209      1.28       0.0781      0.841  LINE    
 2 chr1.1963… rs75… rs75…    -0.0841      1.40       0.0279      0.301  Other   
 3 chr1.1964… rs75… rs75…    -0.282      -0.320      0.0279      0.301  NA      
 4 chr10.167… rs70… rs70…    -0.386      -1.43       0.0107     -0.0511 NA      
 5 chr10.167… rs70… rs70…    -0.386      -1.43       0.0107     -0.0511 NA      
 6 chr10.762… rs70… rs70…     0.268       3.24       0.126       0.202  SINE    
 7 chr11.124… rs71… rs71…     0.162       0.574      0.904       2.48   NA      
 8 chr11.124… rs50… rs50…     0.162       0.574      0.904       2.48   NA      
 9 chr11.133… rs10… rs10…    -0.513       0.888     -0.0506      0.198  LTR     
10 chr11.364… rs10… rs10…    -0.524       0.0904    -0.194      -0.102  SINE    
# ℹ 33 more rows
# ℹ 5 more variables: TEstatus <chr>, SYMBOL.x <chr>, reheat <chr>, mrc <chr>,
#   point_ol <chr>

POLR3A rs7094302

schneider_df %>% dplyr::filter(RSID=="rs7094302")
# A tibble: 1 × 13
# Groups:   Peakid [1]
  Peakid      name  RSID  med_3h_lfc med_24h_lfc RNA_3h_lfc RNA_24h_lfc repClass
  <chr>       <chr> <chr>      <dbl>       <dbl>      <dbl>       <dbl> <chr>   
1 chr10.7620… rs70… rs70…      0.268        3.24      0.126       0.202 SINE    
# ℹ 5 more variables: TEstatus <chr>, SYMBOL.x <chr>, reheat <chr>, mrc <chr>,
#   point_ol <chr>
POLR3A_peak <- data.frame(peak="chr10.77970939.77971849", RNA="POLR3A", ENTREZID=11128)


RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% POLR3A_peak$ENTREZID) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle("POLR3A RNA expression")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) %>% 
  dplyr::filter(row.names(.) %in% POLR3A_peak$peak) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle("POLR3A ATAC accessibility")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24

PRDX6 rs4916358

schneider_df %>% dplyr::filter(RSID=="rs4916358")
# A tibble: 0 × 13
# Groups:   Peakid [0]
# ℹ 13 variables: Peakid <chr>, name <chr>, RSID <chr>, med_3h_lfc <dbl>,
#   med_24h_lfc <dbl>, RNA_3h_lfc <dbl>, RNA_24h_lfc <dbl>, repClass <chr>,
#   TEstatus <chr>, SYMBOL.x <chr>, reheat <chr>, mrc <chr>, point_ol <chr>
PRDX6_peak <- data.frame(peak="chr1.173420196.173420594", RNA="PRDX6", ENTREZID=9588)


RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% PRDX6_peak$ENTREZID) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(PRDX6_peak$RNA," RNA expression"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
plotpanelATAC <- ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) 

plotpanelATAC %>% 
  dplyr::filter(row.names(.) %in% PRDX6_peak$peak) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
   ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(PRDX6_peak$RNA," gene and \n",PRDX6_peak$peak," ATAC accessibility"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24

SPPL3 rs16950058

schneider_df %>% dplyr::filter(RSID=="rs16950058")
# A tibble: 1 × 13
# Groups:   Peakid [1]
  Peakid      name  RSID  med_3h_lfc med_24h_lfc RNA_3h_lfc RNA_24h_lfc repClass
  <chr>       <chr> <chr>      <dbl>       <dbl>      <dbl>       <dbl> <chr>   
1 chr12.1203… rs16… rs16…     -0.152      -0.166      0.322       0.119 LINE    
# ℹ 5 more variables: TEstatus <chr>, SYMBOL.x <chr>, reheat <chr>, mrc <chr>,
#   point_ol <chr>
SPPL3_peak <- data.frame(peak="chr12.120751440.120751702", RNA="SPPL3", ENTREZID=121665)


RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% SPPL3_peak$ENTREZID) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(SPPL3_peak$RNA," RNA expression"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
plotpanelATAC <- ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) 

plotpanelATAC %>% 
  dplyr::filter(row.names(.) %in% SPPL3_peak$peak) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
   ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(SPPL3_peak$RNA," gene and \n",SPPL3_peak$peak," ATAC accessibility"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24

SPPL3-2 rs2238161

schneider_df %>% dplyr::filter(RSID=="rs2238161")
# A tibble: 1 × 13
# Groups:   Peakid [1]
  Peakid      name  RSID  med_3h_lfc med_24h_lfc RNA_3h_lfc RNA_24h_lfc repClass
  <chr>       <chr> <chr>      <dbl>       <dbl>      <dbl>       <dbl> <chr>   
1 chr12.1203… rs22… rs22…    -0.0539      -0.357    -0.0557       0.142 NA      
# ℹ 5 more variables: TEstatus <chr>, SYMBOL.x <chr>, reheat <chr>, mrc <chr>,
#   point_ol <chr>
SPPL3_peak <- data.frame(peak="chr12.120799289.120799823", RNA="SPPL3", ENTREZID=121665)


RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% SPPL3_peak$ENTREZID) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(SPPL3_peak$RNA," RNA expression"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
plotpanelATAC <- ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) 

plotpanelATAC %>% 
  dplyr::filter(row.names(.) %in% SPPL3_peak$peak) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
   ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(SPPL3_peak$RNA," gene and \n",SPPL3_peak$peak," ATAC accessibility"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24

GRAMD4 rs4253763

schneider_df %>% dplyr::filter(RSID=="rs4253763")
# A tibble: 1 × 13
# Groups:   Peakid [1]
  Peakid      name  RSID  med_3h_lfc med_24h_lfc RNA_3h_lfc RNA_24h_lfc repClass
  <chr>       <chr> <chr>      <dbl>       <dbl>      <dbl>       <dbl> <chr>   
1 chr22.4622… rs42… rs42…      0.837        1.31     -0.251      -0.900 Other   
# ℹ 5 more variables: TEstatus <chr>, SYMBOL.x <chr>, reheat <chr>, mrc <chr>,
#   point_ol <chr>
GRAMD4_peak <- data.frame(peak="chr22.46617259.46617993", RNA="GRAMD4", ENTREZID=23151)


RNA_counts %>% 
  column_to_rownames("ENTREZID") %>% 
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  dplyr::filter(row.names(.) %in% GRAMD4_peak$ENTREZID) %>% 
  mutate(ENTREZID = row.names(.)) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(GRAMD4_peak$RNA," RNA expression"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24
plotpanelATAC <- ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) 

plotpanelATAC %>% 
  dplyr::filter(row.names(.) %in% GRAMD4_peak$peak) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
   ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  ggtitle(paste(GRAMD4_peak$RNA," gene and \n",GRAMD4_peak$peak," ATAC accessibility"))+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
ad854f2 reneeisnowhere 2024-10-24

sessionInfo()
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] readxl_1.4.3                            
 [2] smplot2_0.2.4                           
 [3] cowplot_1.1.3                           
 [4] ComplexHeatmap_2.20.0                   
 [5] ggrepel_0.9.6                           
 [6] plyranges_1.24.0                        
 [7] ggsignif_0.6.4                          
 [8] genomation_1.36.0                       
 [9] edgeR_4.2.1                             
[10] limma_3.60.4                            
[11] ggpubr_0.6.0                            
[12] BiocParallel_1.38.0                     
[13] ggVennDiagram_1.5.2                     
[14] scales_1.3.0                            
[15] VennDiagram_1.7.3                       
[16] futile.logger_1.4.3                     
[17] gridExtra_2.3                           
[18] ggfortify_0.4.17                        
[19] rtracklayer_1.64.0                      
[20] org.Hs.eg.db_3.19.1                     
[21] TxDb.Hsapiens.UCSC.hg38.knownGene_3.18.0
[22] GenomicFeatures_1.56.0                  
[23] AnnotationDbi_1.66.0                    
[24] Biobase_2.64.0                          
[25] GenomicRanges_1.56.1                    
[26] GenomeInfoDb_1.40.1                     
[27] IRanges_2.38.1                          
[28] S4Vectors_0.42.1                        
[29] BiocGenerics_0.50.0                     
[30] RColorBrewer_1.1-3                      
[31] broom_1.0.7                             
[32] kableExtra_1.4.0                        
[33] lubridate_1.9.3                         
[34] forcats_1.0.0                           
[35] stringr_1.5.1                           
[36] dplyr_1.1.4                             
[37] purrr_1.0.2                             
[38] readr_2.1.5                             
[39] tidyr_1.3.1                             
[40] tibble_3.2.1                            
[41] ggplot2_3.5.1                           
[42] tidyverse_2.0.0                         
[43] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] later_1.3.2                 BiocIO_1.14.0              
  [3] bitops_1.0-8                cellranger_1.1.0           
  [5] rpart_4.1.23                XML_3.99-0.17              
  [7] lifecycle_1.0.4             rstatix_0.7.2              
  [9] doParallel_1.0.17           rprojroot_2.0.4            
 [11] vroom_1.6.5                 processx_3.8.4             
 [13] lattice_0.22-6              backports_1.5.0            
 [15] magrittr_2.0.3              Hmisc_5.1-3                
 [17] sass_0.4.9                  rmarkdown_2.28             
 [19] jquerylib_0.1.4             yaml_2.3.10                
 [21] plotrix_3.8-4               httpuv_1.6.15              
 [23] DBI_1.2.3                   abind_1.4-8                
 [25] zlibbioc_1.50.0             RCurl_1.98-1.16            
 [27] nnet_7.3-19                 git2r_0.33.0               
 [29] circlize_0.4.16             GenomeInfoDbData_1.2.12    
 [31] svglite_2.1.3               codetools_0.2-20           
 [33] DelayedArray_0.30.1         xml2_1.3.6                 
 [35] tidyselect_1.2.1            shape_1.4.6.1              
 [37] farver_2.1.2                UCSC.utils_1.0.0           
 [39] base64enc_0.1-3             matrixStats_1.4.1          
 [41] GenomicAlignments_1.40.0    jsonlite_1.8.9             
 [43] GetoptLong_1.0.5            Formula_1.2-5              
 [45] iterators_1.0.14            systemfonts_1.1.0          
 [47] foreach_1.5.2               tools_4.4.1                
 [49] Rcpp_1.0.13                 glue_1.8.0                 
 [51] SparseArray_1.4.8           xfun_0.47                  
 [53] MatrixGenerics_1.16.0       withr_3.0.1                
 [55] formatR_1.14                fastmap_1.2.0              
 [57] fansi_1.0.6                 callr_3.7.6                
 [59] digest_0.6.37               timechange_0.3.0           
 [61] R6_2.5.1                    seqPattern_1.36.0          
 [63] colorspace_2.1-1            RSQLite_2.3.7              
 [65] utf8_1.2.4                  generics_0.1.3             
 [67] data.table_1.16.0           htmlwidgets_1.6.4          
 [69] httr_1.4.7                  S4Arrays_1.4.1             
 [71] whisker_0.4.1               pkgconfig_2.0.3            
 [73] gtable_0.3.5                blob_1.2.4                 
 [75] impute_1.78.0               XVector_0.44.0             
 [77] htmltools_0.5.8.1           carData_3.0-5              
 [79] pwr_1.3-0                   clue_0.3-65                
 [81] png_0.1-8                   knitr_1.48                 
 [83] lambda.r_1.2.4              rstudioapi_0.16.0          
 [85] tzdb_0.4.0                  reshape2_1.4.4             
 [87] rjson_0.2.23                checkmate_2.3.2            
 [89] curl_5.2.3                  zoo_1.8-12                 
 [91] cachem_1.1.0                GlobalOptions_0.1.2        
 [93] KernSmooth_2.23-24          parallel_4.4.1             
 [95] foreign_0.8-87              restfulr_0.0.15            
 [97] pillar_1.9.0                vctrs_0.6.5                
 [99] promises_1.3.0              car_3.1-3                  
[101] cluster_2.1.6               htmlTable_2.4.3            
[103] evaluate_1.0.1              magick_2.8.5               
[105] cli_3.6.3                   locfit_1.5-9.10            
[107] compiler_4.4.1              futile.options_1.0.1       
[109] Rsamtools_2.20.0            rlang_1.1.4                
[111] crayon_1.5.3                labeling_0.4.3             
[113] ps_1.8.0                    getPass_0.2-4              
[115] plyr_1.8.9                  fs_1.6.4                   
[117] stringi_1.8.4               viridisLite_0.4.2          
[119] gridBase_0.4-7              munsell_0.5.1              
[121] Biostrings_2.72.1           Matrix_1.7-0               
[123] BSgenome_1.72.0             patchwork_1.3.0            
[125] hms_1.1.3                   bit64_4.5.2                
[127] KEGGREST_1.44.1             statmod_1.5.0              
[129] highr_0.11                  SummarizedExperiment_1.34.0
[131] memoise_2.0.1               bslib_0.8.0                
[133] bit_4.5.0