Last updated: 2025-01-17

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e179f61. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/
    Ignored:    trimmed_Ind1_75DA24h_S7.nodup.splited.bam/

Untracked files:
    Untracked:  Correlationplot_scaled.pdf
    Untracked:  DOX_DAR_assess.Rmd
    Untracked:  EAR_2_plot.pdf
    Untracked:  ESR_1_plot.pdf
    Untracked:  Firstcorr plotATAC.pdf
    Untracked:  IND1_2_3_6_corrplot.pdf
    Untracked:  LR_3_plot.pdf
    Untracked:  NR_1_plot.pdf
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/MRC_clusterlog2cpm.R
    Untracked:  code/TSSE.R
    Untracked:  code/just_for_Fun.R
    Untracked:  code/toplist_assembly.R
    Untracked:  dataredo.RData
    Untracked:  datasave.RDS
    Untracked:  lcpm_filtered_corplot.pdf
    Untracked:  log2cpmfragcount.pdf
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  output_1_Mecom.txt
    Untracked:  setup.RData
    Untracked:  splited/
    Untracked:  trimmed_Ind1_75DA24h_S7.nodup.fragment.size.distribution.pdf
    Untracked:  trimmed_Ind1_75DA3h_S1.nodup.fragment.size.distribution.pdf

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/Enhancer_files_ff.Rmd
    Modified:   analysis/TE_analysis_ff.Rmd
    Modified:   analysis/final_four_analysis.Rmd
    Modified:   analysis/final_plot_attempt.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Correlation_of_GWASnPEAK.Rmd) and HTML (docs/Correlation_of_GWASnPEAK.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e179f61 E. Renee Matthews 2025-01-17 updates with comments
html d09c7db E. Renee Matthews 2025-01-17 Build site.
Rmd 20ed2fe E. Renee Matthews 2025-01-17 additional analysis

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(ggfortify)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(ggVennDiagram)
library(BiocParallel)
library(ggpubr)
library(edgeR)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(ComplexHeatmap)
library(cowplot)
library(smplot2)
library(readxl)

Notes to self(and anyone else who is reading this!):
This is me applying the same code from my correlation_of_SNPnPeak.rmd document.
Summary of what I am doing: 1: create a list of peaks within +/-20 kb, +/-10 kb, and +/- 5 kb of an RNA expressed gene TSS. (3 separate lists)
2: making a dataframe that has all ATAC 3 hour and 24 hr LFC by peak for later ease of use. 3: creating lists of gwas SNPs (HF and ARR lists only) that are either 1bp, 10kb, 20kb, or 50kb in length to determine impact of the SNP on surrounding peaks.

Collapsed_new_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt", delim = "\t", col_names = TRUE)
Collapsed_new_peaks_gr <- Collapsed_new_peaks %>% dplyr::select(chr:Peakid) %>% GRanges()

peak_10kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<5000&dist_to_NG>-5000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

peak_20kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<10000&dist_to_NG>-10000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

peak_40kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<20000&dist_to_NG>-20000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

RNA_median_3_lfc <- readRDS("data/other_papers/RNA_median_3_lfc.RDS")
RNA_median_24_lfc <- readRDS("data/other_papers/RNA_median_24_lfc.RDS")

ATAC_24_lfc <- read_csv("data/Final_four_data/median_24_lfc.csv") 
ATAC_3_lfc <- read_csv("data/Final_four_data/median_3_lfc.csv")



gwas_HF <- readRDS("data/gwas_5_dataframe.RDS")
gwas_ARR <- readRDS("data/gwas_2_dataframe.RDS")
Short_gwas_gr <-
  gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="ARR") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
   mutate(start=CHR_POS, end=CHR_POS, width=1) %>% 
  GRanges()


Short_gwas_5k_gr <- 
    gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="ARR") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
   mutate(start=CHR_POS-5000, end=CHR_POS+4999) %>% 
  GRanges()


Short_gwas_20k_gr <- 
    gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="ARR") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
  mutate(start=(CHR_POS-10000),end=(CHR_POS+9999), width=20000) %>%
  distinct() %>% 
  GRanges()


Short_gwas_50k_gr <- 
    gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="ARR") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
  mutate(start=(CHR_POS-25000),end=(CHR_POS+24999), width=50000) %>%
  distinct() %>% 
  GRanges()
 
gwas_peak_check <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_gr) %>%
  as.data.frame()
# 
gwas_peak_check_10k <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_5k_gr) %>%
  as.data.frame()
gwas_peak_check_20k <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_20k_gr) %>% 
  as.data.frame()
 gwas_peak_check_50k <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_50k_gr) %>% 
  as.data.frame()


ATAC_LFC <- Collapsed_new_peaks %>%
                 dplyr::select(Peakid) %>% 
  left_join(.,(ATAC_3_lfc %>% dplyr::select(peak, med_3h_lfc)), by=c("Peakid"="peak")) %>% 
  left_join(.,(ATAC_24_lfc %>% dplyr::select(peak, med_24h_lfc)), by=c("Peakid"="peak"))

Here I am doing the overlapping of the previous ranges of SNPs and the full ATAC peak set. I also later create the data frames from the reheat data, the reheat data using the p<0.005 top genes, the cluster names associated with each peak, and the list of TE/notTE associated with each peak.

ATAC_peaks_gr <- Collapsed_new_peaks %>% GRanges()

Peaks_cutoff <- read_delim("data/Final_four_data/LCPM_matrix_ff.txt",delim = "/") %>% dplyr::select(Peakid)
  


gwas_short_list <- gwas_peak_check %>% as.data.frame %>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

gwas_10k_list <- gwas_peak_check_10k %>% distinct(SNPS,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

gwas_20k_list <- gwas_peak_check_20k %>% distinct(SNPS,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

gwas_50k_list <- gwas_peak_check_50k %>% distinct(SNPS,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

Reheat_data <- read_excel("data/other_papers/jah36123-sup-0002-tables2.xlsx")
top_reheat <- Reheat_data %>%
  dplyr::filter(fisher_pvalue<0.005)
Nine_te_df <- readRDS("data/Final_four_data/Nine_group_TE_df.RDS")
###needed to change TE status to at least 1 bp overlap
match <- Nine_te_df %>% 
   mutate(TEstatus=if_else(!is.na(per_ol),"TE_peak","not_TE_peak")) %>% 
  distinct(Peakid,TEstatus,mrc,.keep_all = TRUE) 

Peaks within 5kb +/- RNA TSS, gwas range +/- 10 kb

To break down what I am doing here: I start with the list of peaks that overlap a gwas SNP that has been expanded by 20kb. I then only add the RNA expressed genes associated with the peaks that are within +/- 5 kb of its TSS. I join the median LFC data frames for ATAC and RNA at 3 and 24 hours, the TEstatus, the reheat status and exclude any SNP-Peak combinations that do not have RNA assigned. (This effectively is filtering out peaks outside of the 10kb TSS range That would make the list drop from 2019 to 298 rows)

gwas_df <-gwas_20k_list%>% 
  as.data.frame() %>%
  left_join(., peak_10kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  summarize(name=unique(name),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP)) %>% 
  na.omit(RNA_3h_lfc)

gwas_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat$TEstatus,reheat_status=gwas_name_mat$reheat,MRC=gwas_name_mat$mrc,direct_overlap=gwas_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- gwas_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(gwas_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
d09c7db E. Renee Matthews 2025-01-17

Peaks within 5kb +/- RNA TSS, gwas range +/- 25 kb

For comparison, I went ahead and did the same this as above, but used the +/- 25 kb expanded SNP range. This left me with 660 ATAC-SNP_RNA sets.

gwas_df <-
gwas_50k_list%>% 
  as.data.frame() %>%
  left_join(., peak_10kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  # mutate(Keep=case_when(SNPS))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # SNPS=unique(SNPS),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  na.omit(RNA_3h_lfc)

gwas_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat$TEstatus,reheat_status=gwas_name_mat$reheat,MRC=gwas_name_mat$mrc,direct_overlap=gwas_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- gwas_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(gwas_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
d09c7db E. Renee Matthews 2025-01-17

Peaks within +/-20 kb RNA TSS ,gwas range +/- 10 kb

warning, 702 rows below

gwas_df <-
gwas_20k_list%>% 
  as.data.frame() %>%
  left_join(., peak_40kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  # mutate(Keep=case_when(SNPS))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # SNPS=unique(SNPS),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  na.omit(RNA_3h_lfc)

gwas_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat$TEstatus,reheat_status=gwas_name_mat$reheat,MRC=gwas_name_mat$mrc,direct_overlap=gwas_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- gwas_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(gwas_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
d09c7db E. Renee Matthews 2025-01-17

gwas short list only

To make life really easy, or the smallest set that was readable, I used only the peaks that were directly overlapping a SNP, but filtered out peaks that were more than +/-20 kb from an expressed RNA TSS. This gave me 33 ATAC-SNP-RNA rows.

gwas_df_short <-gwas_short_list%>%
  as.data.frame() %>%
  left_join(., peak_40kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  na.omit(RNA_median_24_lfc) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  # mutate(Keep=case_when(SNPS))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # SNPS=unique(SNPS),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP)) #%>% 
 
gwas_mat_short <- gwas_df_short %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat_short <- gwas_df_short %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno_short <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat_short$TEstatus,reheat_status=gwas_name_mat_short$reheat,MRC=gwas_name_mat_short$mrc,direct_overlap=gwas_name_mat_short$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2_short <- gwas_mat_short  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map_short <- ComplexHeatmap::Heatmap(gwas_mat_short,
                        left_annotation = row_anno_short,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat_short),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map_short, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
d09c7db E. Renee Matthews 2025-01-17

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] readxl_1.4.3                            
 [2] smplot2_0.2.4                           
 [3] cowplot_1.1.3                           
 [4] ComplexHeatmap_2.22.0                   
 [5] ggrepel_0.9.6                           
 [6] plyranges_1.26.0                        
 [7] ggsignif_0.6.4                          
 [8] genomation_1.38.0                       
 [9] edgeR_4.4.1                             
[10] limma_3.62.1                            
[11] ggpubr_0.6.0                            
[12] BiocParallel_1.40.0                     
[13] ggVennDiagram_1.5.2                     
[14] scales_1.3.0                            
[15] VennDiagram_1.7.3                       
[16] futile.logger_1.4.3                     
[17] gridExtra_2.3                           
[18] ggfortify_0.4.17                        
[19] rtracklayer_1.66.0                      
[20] org.Hs.eg.db_3.20.0                     
[21] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[22] GenomicFeatures_1.58.0                  
[23] AnnotationDbi_1.68.0                    
[24] Biobase_2.66.0                          
[25] GenomicRanges_1.58.0                    
[26] GenomeInfoDb_1.42.1                     
[27] IRanges_2.40.1                          
[28] S4Vectors_0.44.0                        
[29] BiocGenerics_0.52.0                     
[30] RColorBrewer_1.1-3                      
[31] broom_1.0.7                             
[32] kableExtra_1.4.0                        
[33] lubridate_1.9.4                         
[34] forcats_1.0.0                           
[35] stringr_1.5.1                           
[36] dplyr_1.1.4                             
[37] purrr_1.0.2                             
[38] readr_2.1.5                             
[39] tidyr_1.3.1                             
[40] tibble_3.2.1                            
[41] ggplot2_3.5.1                           
[42] tidyverse_2.0.0                         
[43] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] later_1.4.1                 BiocIO_1.16.0              
  [3] bitops_1.0-9                cellranger_1.1.0           
  [5] rpart_4.1.23                XML_3.99-0.17              
  [7] lifecycle_1.0.4             rstatix_0.7.2              
  [9] doParallel_1.0.17           rprojroot_2.0.4            
 [11] vroom_1.6.5                 processx_3.8.4             
 [13] lattice_0.22-6              backports_1.5.0            
 [15] magrittr_2.0.3              Hmisc_5.2-1                
 [17] sass_0.4.9                  rmarkdown_2.29             
 [19] jquerylib_0.1.4             yaml_2.3.10                
 [21] plotrix_3.8-4               httpuv_1.6.15              
 [23] DBI_1.2.3                   abind_1.4-8                
 [25] zlibbioc_1.52.0             RCurl_1.98-1.16            
 [27] nnet_7.3-19                 git2r_0.35.0               
 [29] circlize_0.4.16             GenomeInfoDbData_1.2.13    
 [31] svglite_2.1.3               codetools_0.2-20           
 [33] DelayedArray_0.32.0         xml2_1.3.6                 
 [35] tidyselect_1.2.1            shape_1.4.6.1              
 [37] farver_2.1.2                UCSC.utils_1.2.0           
 [39] base64enc_0.1-3             matrixStats_1.4.1          
 [41] GenomicAlignments_1.42.0    jsonlite_1.8.9             
 [43] GetoptLong_1.0.5            Formula_1.2-5              
 [45] iterators_1.0.14            systemfonts_1.1.0          
 [47] foreach_1.5.2               tools_4.4.2                
 [49] Rcpp_1.0.13-1               glue_1.8.0                 
 [51] SparseArray_1.6.0           xfun_0.49                  
 [53] MatrixGenerics_1.18.0       withr_3.0.2                
 [55] formatR_1.14                fastmap_1.2.0              
 [57] callr_3.7.6                 digest_0.6.37              
 [59] timechange_0.3.0            R6_2.5.1                   
 [61] seqPattern_1.38.0           colorspace_2.1-1           
 [63] RSQLite_2.3.9               generics_0.1.3             
 [65] data.table_1.16.4           htmlwidgets_1.6.4          
 [67] httr_1.4.7                  S4Arrays_1.6.0             
 [69] whisker_0.4.1               pkgconfig_2.0.3            
 [71] gtable_0.3.6                blob_1.2.4                 
 [73] impute_1.80.0               XVector_0.46.0             
 [75] htmltools_0.5.8.1           carData_3.0-5              
 [77] pwr_1.3-0                   clue_0.3-66                
 [79] png_0.1-8                   knitr_1.49                 
 [81] lambda.r_1.2.4              rstudioapi_0.17.1          
 [83] tzdb_0.4.0                  reshape2_1.4.4             
 [85] rjson_0.2.23                checkmate_2.3.2            
 [87] curl_6.0.1                  zoo_1.8-12                 
 [89] cachem_1.1.0                GlobalOptions_0.1.2        
 [91] KernSmooth_2.23-24          parallel_4.4.2             
 [93] foreign_0.8-87              restfulr_0.0.15            
 [95] pillar_1.10.0               vctrs_0.6.5                
 [97] promises_1.3.2              car_3.1-3                  
 [99] cluster_2.1.8               htmlTable_2.4.3            
[101] evaluate_1.0.1              magick_2.8.5               
[103] cli_3.6.3                   locfit_1.5-9.10            
[105] compiler_4.4.2              futile.options_1.0.1       
[107] Rsamtools_2.22.0            rlang_1.1.4                
[109] crayon_1.5.3                ps_1.8.1                   
[111] getPass_0.2-4               plyr_1.8.9                 
[113] fs_1.6.5                    stringi_1.8.4              
[115] viridisLite_0.4.2           gridBase_0.4-7             
[117] munsell_0.5.1               Biostrings_2.74.1          
[119] Matrix_1.7-1                BSgenome_1.74.0            
[121] patchwork_1.3.0             hms_1.1.3                  
[123] bit64_4.5.2                 KEGGREST_1.46.0            
[125] statmod_1.5.0               SummarizedExperiment_1.36.0
[127] memoise_2.0.1               bslib_0.8.0                
[129] bit_4.5.0.1