Last updated: 2023-05-26

Checks: 7 0

Knit directory: Cardiotoxicity/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230109) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c7e0fcc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
    Ignored:    data/Arr_GWAS.txt
    Ignored:    data/BC_cell_lines.csv
    Ignored:    data/CADGWASgene_table.csv
    Ignored:    data/Clamp_Summary.csv
    Ignored:    data/Cormotif_24_k1-5_raw.RDS
    Ignored:    data/DAgostres24.RDS
    Ignored:    data/DAtable1.csv
    Ignored:    data/DDEMresp_list.csv
    Ignored:    data/DDE_reQTL.txt
    Ignored:    data/DDEresp_list.csv
    Ignored:    data/DEG-GO/
    Ignored:    data/DEG_cormotif.RDS
    Ignored:    data/DF_Plate_Peak.csv
    Ignored:    data/Da24counts.txt
    Ignored:    data/Dx24counts.txt
    Ignored:    data/Dx_reQTL_specific.txt
    Ignored:    data/Ep24counts.txt
    Ignored:    data/GOplots.R
    Ignored:    data/GTEX_setsimple.csv
    Ignored:    data/HFGWASgene_table.csv
    Ignored:    data/Heart_Left_Ventricle.v8.egenes.txt
    Ignored:    data/Hf_GWAS.txt
    Ignored:    data/K_cluster
    Ignored:    data/K_cluster_kisthree.csv
    Ignored:    data/K_cluster_kistwo.csv
    Ignored:    data/LDH48hoursdata.csv
    Ignored:    data/Mt24counts.txt
    Ignored:    data/RINsamplelist.txt
    Ignored:    data/Seonane2019supp1.txt
    Ignored:    data/TOP2Bi-24hoursGO_analysis.csv
    Ignored:    data/TR24counts.txt
    Ignored:    data/Top2biresp_cluster24h.csv
    Ignored:    data/Viabilitylistfull.csv
    Ignored:    data/allexpressedgenes.txt
    Ignored:    data/allgenes.txt
    Ignored:    data/allmatrix.RDS
    Ignored:    data/avgLD50.RDS
    Ignored:    data/backGL.txt
    Ignored:    data/cormotif_3hk1-8.RDS
    Ignored:    data/cormotif_initalK5.RDS
    Ignored:    data/cormotif_initialK5.RDS
    Ignored:    data/cormotif_initialall.RDS
    Ignored:    data/counts24hours.RDS
    Ignored:    data/cpmnorm_counts.csv
    Ignored:    data/cvd_GWAS.txt
    Ignored:    data/dat_cpm.RDS
    Ignored:    data/data_outline.txt
    Ignored:    data/efit2.RDS
    Ignored:    data/efit2results.RDS
    Ignored:    data/ensembl_backup.RDS
    Ignored:    data/ensgtotal.txt
    Ignored:    data/filenameonly.txt
    Ignored:    data/filtered_cpm_counts.csv
    Ignored:    data/filtered_raw_counts.csv
    Ignored:    data/filtermatrix_x.RDS
    Ignored:    data/folder_05top/
    Ignored:    data/gene_prob_tran3h.RDS
    Ignored:    data/gene_probabilityk5.RDS
    Ignored:    data/gostresTop2bi_ER.RDS
    Ignored:    data/gostresTop2bi_LR
    Ignored:    data/gostresTop2bi_LR.RDS
    Ignored:    data/gostresTop2bi_TI.RDS
    Ignored:    data/gostrescoNR
    Ignored:    data/gtex/
    Ignored:    data/heartgenes.csv
    Ignored:    data/individualDRCfile.RDS
    Ignored:    data/individual_LDH48.RDS
    Ignored:    data/knowfig4.csv
    Ignored:    data/knowfig5.csv
    Ignored:    data/knowles56.GMT
    Ignored:    data/knowlesGMT.GMT
    Ignored:    data/mymatrix.RDS
    Ignored:    data/nonresponse_cluster24h.csv
    Ignored:    data/norm_LDH.csv
    Ignored:    data/norm_counts.csv
    Ignored:    data/old_sets/
    Ignored:    data/plan2plot.png
    Ignored:    data/raw_counts.csv
    Ignored:    data/response_cluster24h.csv
    Ignored:    data/sigVDA24.txt
    Ignored:    data/sigVDA3.txt
    Ignored:    data/sigVDX24.txt
    Ignored:    data/sigVDX3.txt
    Ignored:    data/sigVEP24.txt
    Ignored:    data/sigVEP3.txt
    Ignored:    data/sigVMT24.txt
    Ignored:    data/sigVMT3.txt
    Ignored:    data/sigVTR24.txt
    Ignored:    data/sigVTR3.txt
    Ignored:    data/siglist.RDS
    Ignored:    data/table3a.omar
    Ignored:    data/toplistall.RDS
    Ignored:    data/tvl24hour.txt
    Ignored:    data/tvl24hourw.txt
    Ignored:    data/venn_code.R

Untracked files:
    Untracked:  .RDataTmp
    Untracked:  .RDataTmp1
    Untracked:  .RDataTmp2
    Untracked:  cormotif_probability_genelist.csv
    Untracked:  individual-legenddark2.png
    Untracked:  installed_old.rda
    Untracked:  motif_ER.txt
    Untracked:  motif_LR.txt
    Untracked:  motif_NR.txt
    Untracked:  motif_TI.txt
    Untracked:  output/figure_1.Rmd
    Untracked:  output/output-old/
    Untracked:  output/plan2plot.png
    Untracked:  output/plan48ldh.png
    Untracked:  reneebasecode.R

Unstaged changes:
    Modified:   code/Compare_tnni_ldh.R
    Modified:   code/sequencing_info_collection.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/other_analysis.Rmd) and HTML (docs/other_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c7e0fcc reneeisnowhere 2023-05-26 adding in Gtex and chisquare values
html e1bcef0 reneeisnowhere 2023-05-26 Build site.
Rmd 0f512c3 reneeisnowhere 2023-05-26 adding in Gtex and chisquare values
Rmd 1f8c483 reneeisnowhere 2023-05-26 updating code with gtex and chisq
Rmd 25d32da reneeisnowhere 2023-05-26 Adding 3 hour and chisq test to populations
html 5610749 reneeisnowhere 2023-05-22 Build site.
Rmd 889832a reneeisnowhere 2023-05-22 add Seoane data again
html 36cbdab reneeisnowhere 2023-05-22 Build site.
Rmd de54fd5 reneeisnowhere 2023-05-22 add Seoane data
html 7243a18 reneeisnowhere 2023-05-22 Build site.
Rmd e2b3215 reneeisnowhere 2023-05-22 add Seoane data
html c3481d8 reneeisnowhere 2023-05-22 Build site.
Rmd acbd0a8 reneeisnowhere 2023-05-22 updates on GWAS enrichment
Rmd e8c82ec reneeisnowhere 2023-05-18 adding other_analysis and genes of interest log2cpm

Knowles Comparison data:

Determining the genetic basis of anthracycline-cardiotoxicity by molecular response QTL mapping in induced cardiomyocytes David A Knowles, Courtney K Burrows†, John D Blischak, Kristen M Patterson, Daniel J Serie, Nadine Norton, Carole Ober, Jonathan K Pritchard, Yoav Gilad

Knowles \(~~et~ al.~\) eLife 2018;7:e33480. DOI: https://doi.org/10.7554/eLife.33480 My first question was about transcription response at the 24 hour mark with my treatments. 3 hour RNA-seq had low levels of DEGs,so my focus is at 24 hours. This also happens to be when the Knowles paper collected their RNA-seq data

Supplementary 4 contains a list of 518 SNPs within 1 Mb of TSS, which had a detectable marginal effect on expression (5% FDR). When converted from ensembl gene id to entrez gene id, my list of unique Entrezgeneids = 521. I will call these meSNPs for marginal effect snps. In the meSNPs, 503 are within my DEG of 14084. Using an adj. P value of 0.05, There are 199/6864 in 24 hour daunorubicin, 184/6516 in 24 hour doxorubicin, 182/6202 in 24 hour epirubicin, 30/1327 in 24 hour mitoxantrone and 0 in Trastuzumb

Supplementary 5 contains a list of 376 response eQTLs (reQTLs). These are variants that were associated with modulation of transcriptomic response to doxorubicin treatment. After database name conversion, I have 377 unique Entregene ids. Of the reQTLs list, 374 are within my DEG of 14084. Using an adj. P value of 0.05, There are 187/6864 in 24 hour daunorubicin, 180/6516 in 24 hour doxorubicin, 176/6202 in 24 hour epirubicin, 40/1327 in 24 hour mitoxantrone and 0 in Trastuzumb.

Count of genes in each treatment by using adj. P value of <0.05
time id n K4 K5
24_hours Daunorubicin 6864 199 187
24_hours Doxorubicin 6516 184 180
24_hours Epirubicin 6202 172 176
24_hours Mitoxantrone 1327 30 40
Count of genes in each treatment by total expressed genes
time id n K4 K5
24_hours Daunorubicin 14084 503 374
24_hours Doxorubicin 14084 503 374
24_hours Epirubicin 14084 503 374
24_hours Mitoxantrone 14084 503 374
24_hours Trastuzumab 14084 503 374
[1] "this is the meSNPs (mininmally expressed QTLS)"
# A tibble: 8 × 3
# Groups:   id [4]
  id           time         pvalue
  <fct>        <chr>         <dbl>
1 Daunorubicin 24_hours 0.0000338 
2 Daunorubicin 3_hours  0.00188   
3 Doxorubicin  24_hours 0.0000113 
4 Doxorubicin  3_hours  0.923     
5 Epirubicin   24_hours 0.00000740
6 Epirubicin   3_hours  0.219     
7 Mitoxantrone 24_hours 0.00865   
8 Mitoxantrone 3_hours  0.685     
[1] "below is the reQTLS in knowles data ( reQTLS)"
# A tibble: 8 × 3
# Groups:   id [4]
  id           time     pvalue
  <fct>        <chr>     <dbl>
1 Daunorubicin 24_hours  0.658
2 Daunorubicin 3_hours   0.739
3 Doxorubicin  24_hours  0.497
4 Doxorubicin  3_hours   1.00 
5 Epirubicin   24_hours  0.254
6 Epirubicin   3_hours   0.571
7 Mitoxantrone 24_hours  0.445
8 Mitoxantrone 3_hours   0.395

Seaone 2019

Seone, Jose Chromatin gene comparison: comes from supp data NAT. MED 2019

Significant (adj. P value of <0.05) and non-sig gene counts in Seoane geneset
id notsig_no notsig_y sig_no sig_y
Daunorubicin 7065 155 6689 175
Doxorubicin 7407 161 6347 169
Epirubicin 7717 165 6037 165
Mitoxantrone 12483 274 1271 56
Trastuzumab 13754 330 NA NA
# A tibble: 4 × 2
  id               pvalue
  <fct>             <dbl>
1 Daunorubicin 0.128     
2 Doxorubicin  0.0771    
3 Epirubicin   0.0314    
4 Mitoxantrone 0.00000326

3 hour data Seaone

Significant (adj. P value of <0.05) and non-sig gene counts in 3 hours Seoane geneset
id notsig_no notsig_y sig_no sig_y
Daunorubicin 13227 302 527 28
Doxorubicin 13738 330 16 NA
Epirubicin 13551 313 203 17
Mitoxantrone 13698 328 56 2
Trastuzumab 13754 330 NA NA

chi square test Seaone

##remove Trastuzumab in order to perform chi square tests by time and drug between  DE and non DE enrichment
chi_fun <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(chrom=if_else(ENTREZID %in%chrom_genes,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(chrom, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_fun
# A tibble: 8 × 3
# Groups:   id [4]
  id           time          pvalue
  <fct>        <chr>          <dbl>
1 Daunorubicin 24_hours 0.128      
2 Daunorubicin 3_hours  0.0000332  
3 Doxorubicin  24_hours 0.0771     
4 Doxorubicin  3_hours  1.00       
5 Epirubicin   24_hours 0.0314     
6 Epirubicin   3_hours  0.000000346
7 Mitoxantrone 24_hours 0.00000326 
8 Mitoxantrone 3_hours  0.902      

ArrGWAS to 24 hour DEG genes p < 0.05

Significant (adj. P value of <0.05) and non-sig gene counts in Arrhythmia 24 hour GWAS
id sigcount ARR ARRcount
Daunorubicin notsig no 7169
Daunorubicin notsig y 51
Daunorubicin sig no 6795
Daunorubicin sig y 69
Doxorubicin notsig no 7512
Doxorubicin notsig y 56
Doxorubicin sig no 6452
Doxorubicin sig y 64
Epirubicin notsig no 7827
Epirubicin notsig y 55
Epirubicin sig no 6137
Epirubicin sig y 65
Mitoxantrone notsig no 12650
Mitoxantrone notsig y 107
Mitoxantrone sig no 1314
Mitoxantrone sig y 13
Trastuzumab notsig no 13964
Trastuzumab notsig y 120

3 hour data set

Significant (adj. P value of <0.05) and non-sig gene counts in Arrhythmia 24 hour GWAS
id sigcount ARR ARRcount
Daunorubicin notsig no 7169
Daunorubicin notsig y 51
Daunorubicin sig no 6795
Daunorubicin sig y 69
Doxorubicin notsig no 7512
Doxorubicin notsig y 56
Doxorubicin sig no 6452
Doxorubicin sig y 64
Epirubicin notsig no 7827
Epirubicin notsig y 55
Epirubicin sig no 6137
Epirubicin sig y 65
Mitoxantrone notsig no 12650
Mitoxantrone notsig y 107
Mitoxantrone sig no 1314
Mitoxantrone sig y 13
Trastuzumab notsig no 13964
Trastuzumab notsig y 120

chi square test ARR

chi_funarr <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(ARR=if_else(ENTREZID %in%Arr_geneset$entrezgene_id,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(ARR, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_funarr
# A tibble: 8 × 3
# Groups:   id [4]
  id           time      pvalue
  <fct>        <chr>      <dbl>
1 Daunorubicin 24_hours 0.0662 
2 Daunorubicin 3_hours  0.0246 
3 Doxorubicin  24_hours 0.142  
4 Doxorubicin  3_hours  1.00   
5 Epirubicin   24_hours 0.0313 
6 Epirubicin   3_hours  0.644  
7 Mitoxantrone 24_hours 0.708  
8 Mitoxantrone 3_hours  0.00409

HFGWAS

Significant (adj. P value of <0.05) and non-sig gene counts in HFhythmia GWAS
id sigcount HF HFcount
Daunorubicin notsig no 7209
Daunorubicin notsig y 11
Daunorubicin sig no 6842
Daunorubicin sig y 22
Doxorubicin notsig no 7556
Doxorubicin notsig y 12
Doxorubicin sig no 6495
Doxorubicin sig y 21
Epirubicin notsig no 7868
Epirubicin notsig y 14
Epirubicin sig no 6183
Epirubicin sig y 19
Mitoxantrone notsig no 12728
Mitoxantrone notsig y 29
Mitoxantrone sig no 1323
Mitoxantrone sig y 4
Trastuzumab notsig no 14051
Trastuzumab notsig y 33

3 hours HF

Significant (adj. P value of <0.05) and non-sig gene counts in Three hour HFhythmia GWAS
id sigcount HF HFcount
Daunorubicin notsig no 13498
Daunorubicin notsig y 31
Daunorubicin sig no 553
Daunorubicin sig y 2
Doxorubicin notsig no 14035
Doxorubicin notsig y 33
Doxorubicin sig no 16
Epirubicin notsig no 13831
Epirubicin notsig y 33
Epirubicin sig no 220
Mitoxantrone notsig no 13993
Mitoxantrone notsig y 33
Mitoxantrone sig no 58
Trastuzumab notsig no 14051
Trastuzumab notsig y 33

chi square test HF

chi_funhf <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(HF=if_else(ENTREZID %in%HF_geneset$entrezgene_id,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(HF, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_funhf
# A tibble: 8 × 3
# Groups:   id [4]
  id           time     pvalue
  <fct>        <chr>     <dbl>
1 Daunorubicin 24_hours 0.0589
2 Daunorubicin 3_hours  0.858 
3 Doxorubicin  24_hours 0.0674
4 Doxorubicin  3_hours  1.00  
5 Epirubicin   24_hours 0.164 
6 Epirubicin   3_hours  0.983 
7 Mitoxantrone 24_hours 0.816 
8 Mitoxantrone 3_hours  1.00  

CAD GWAS

Significant (adj. P value of <0.05) and non-sig gene counts in CAD GWAS
id sigcount CAD CADcount
Daunorubicin notsig no 7107
Daunorubicin notsig y 113
Daunorubicin sig no 6748
Daunorubicin sig y 116
Doxorubicin notsig no 7447
Doxorubicin notsig y 121
Doxorubicin sig no 6408
Doxorubicin sig y 108
Epirubicin notsig no 7762
Epirubicin notsig y 120
Epirubicin sig no 6093
Epirubicin sig y 109
Mitoxantrone notsig no 12547
Mitoxantrone notsig y 210
Mitoxantrone sig no 1308
Mitoxantrone sig y 19
Trastuzumab notsig no 13855
Trastuzumab notsig y 229

3 hour data set

Significant (adj. P value of <0.05) and non-sig gene counts in 3 hour CAD GWAS
id sigcount CAD CADcount
Daunorubicin notsig no 13317
Daunorubicin notsig y 212
Daunorubicin sig no 538
Daunorubicin sig y 17
Doxorubicin notsig no 13839
Doxorubicin notsig y 229
Doxorubicin sig no 16
Epirubicin notsig no 13643
Epirubicin notsig y 221
Epirubicin sig no 212
Epirubicin sig y 8
Mitoxantrone notsig no 13798
Mitoxantrone notsig y 228
Mitoxantrone sig no 57
Mitoxantrone sig y 1
Trastuzumab notsig no 13855
Trastuzumab notsig y 229

chi square test CAD

chi_funCAD <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(CAD=if_else(ENTREZID %in%CAD_geneset$entrezgene_id,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(CAD, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_funCAD
# A tibble: 8 × 3
# Groups:   id [4]
  id           time     pvalue
  <fct>        <chr>     <dbl>
1 Daunorubicin 24_hours 0.604 
2 Daunorubicin 3_hours  0.0105
3 Doxorubicin  24_hours 0.836 
4 Doxorubicin  3_hours  1.00  
5 Epirubicin   24_hours 0.304 
6 Epirubicin   3_hours  0.0351
7 Mitoxantrone 24_hours 0.636 
8 Mitoxantrone 3_hours  1.00  

GTEx V8 heart-left ventrical egenes

Significant (adj. P value of <0.05) and non-sig gene counts in Arrhythmia 24 hour GWAS
id time sigcount no y
Daunorubicin 24_hours notsig 866 6354
Daunorubicin 24_hours sig 797 6067
Daunorubicin 3_hours notsig 1628 11901
Daunorubicin 3_hours sig 35 520
Doxorubicin 24_hours notsig 920 6648
Doxorubicin 24_hours sig 743 5773
Doxorubicin 3_hours notsig 1662 12406
Doxorubicin 3_hours sig 1 15
Epirubicin 24_hours notsig 953 6929
Epirubicin 24_hours sig 710 5492
Epirubicin 3_hours notsig 1651 12213
Epirubicin 3_hours sig 12 208
Mitoxantrone 24_hours notsig 1503 11254
Mitoxantrone 24_hours sig 160 1167
Mitoxantrone 3_hours notsig 1660 12366
Mitoxantrone 3_hours sig 3 55
Trastuzumab 24_hours notsig 1663 12421
Trastuzumab 3_hours notsig 1663 12421
[1] "after performing chi square test between DEgenes, and non DE genes"
# A tibble: 8 × 3
# Groups:   id [4]
  id           time        pvalue
  <fct>        <chr>        <dbl>
1 Daunorubicin 24_hours 0.498    
2 Daunorubicin 3_hours  0.0000556
3 Doxorubicin  24_hours 0.175    
4 Doxorubicin  3_hours  0.763    
5 Epirubicin   24_hours 0.251    
6 Epirubicin   3_hours  0.00454  
7 Mitoxantrone 24_hours 0.802    
8 Mitoxantrone 3_hours  0.172    

R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.2       broom_1.0.3        kableExtra_1.3.4   sjmisc_2.8.9      
 [5] scales_1.2.1       ggpubr_0.6.0       cowplot_1.1.1      RColorBrewer_1.1-3
 [9] biomaRt_2.52.0     ggsignif_0.6.4     lubridate_1.9.2    forcats_1.0.0     
[13] stringr_1.5.0      dplyr_1.1.0        purrr_1.0.1        readr_2.1.4       
[17] tidyr_1.3.0        tibble_3.1.8       ggplot2_3.4.1      tidyverse_2.0.0   
[21] limma_3.52.4       workflowr_1.7.0   

loaded via a namespace (and not attached):
  [1] colorspace_2.1-0       ellipsis_0.3.2         sjlabelled_1.2.0      
  [4] rprojroot_2.0.3        XVector_0.36.0         fs_1.6.1              
  [7] rstudioapi_0.14        farver_2.1.1           bit64_4.0.5           
 [10] AnnotationDbi_1.58.0   fansi_1.0.4            xml2_1.3.3            
 [13] cachem_1.0.7           knitr_1.42             jsonlite_1.8.4        
 [16] dbplyr_2.3.1           png_0.1-8              compiler_4.2.2        
 [19] httr_1.4.5             backports_1.4.1        fastmap_1.1.1         
 [22] cli_3.6.0              later_1.3.0            htmltools_0.5.4       
 [25] prettyunits_1.1.1      tools_4.2.2            gtable_0.3.1          
 [28] glue_1.6.2             GenomeInfoDbData_1.2.8 rappdirs_0.3.3        
 [31] Rcpp_1.0.10            carData_3.0-5          Biobase_2.56.0        
 [34] cellranger_1.1.0       jquerylib_0.1.4        vctrs_0.5.2           
 [37] Biostrings_2.64.1      svglite_2.1.1          insight_0.19.0        
 [40] xfun_0.37              ps_1.7.2               rvest_1.0.3           
 [43] timechange_0.2.0       lifecycle_1.0.3        rstatix_0.7.2         
 [46] XML_3.99-0.13          getPass_0.2-2          zlibbioc_1.42.0       
 [49] vroom_1.6.1            hms_1.1.2              promises_1.2.0.1      
 [52] parallel_4.2.2         yaml_2.3.7             curl_5.0.0            
 [55] memoise_2.0.1          sass_0.4.5             stringi_1.7.12        
 [58] RSQLite_2.3.0          highr_0.10             S4Vectors_0.34.0      
 [61] BiocGenerics_0.42.0    filelock_1.0.2         GenomeInfoDb_1.32.4   
 [64] rlang_1.0.6            pkgconfig_2.0.3        systemfonts_1.0.4     
 [67] bitops_1.0-7           evaluate_0.20          labeling_0.4.2        
 [70] bit_4.0.5              processx_3.8.0         tidyselect_1.2.0      
 [73] magrittr_2.0.3         R6_2.5.1               IRanges_2.30.1        
 [76] generics_0.1.3         DBI_1.1.3              pillar_1.8.1          
 [79] whisker_0.4.1          withr_2.5.0            KEGGREST_1.36.3       
 [82] abind_1.4-5            RCurl_1.98-1.10        crayon_1.5.2          
 [85] car_3.1-1              utf8_1.2.3             BiocFileCache_2.4.0   
 [88] tzdb_0.3.0             rmarkdown_2.20         progress_1.2.2        
 [91] grid_4.2.2             blob_1.2.3             callr_3.7.3           
 [94] git2r_0.31.0           digest_0.6.31          webshot_0.5.4         
 [97] httpuv_1.6.9           stats4_4.2.2           munsell_0.5.0         
[100] viridisLite_0.4.1      bslib_0.4.2