Last updated: 2021-07-28
Checks: 7 0
Knit directory: Multispectral HCC/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 9ab4acc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: code/
Ignored: data/
Ignored: old/
Ignored: output/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tcga.Rmd
) and HTML (docs/tcga.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 9ab4acc | Jovan Tanevski | 2021-07-28 | Build site. |
Rmd | bd05dbf | Jovan Tanevski | 2021-07-28 | add expression profiles |
html | e45bf1d | Jovan Tanevski | 2021-07-28 | Build site. |
Rmd | dcab1bf | Jovan Tanevski | 2021-07-28 | set figure output to svg |
html | 33e71a0 | Jovan Tanevski | 2021-07-28 | Build site. |
Rmd | bb998b8 | Jovan Tanevski | 2021-07-28 | hclust with factoextra |
html | 1cb80af | Jovan Tanevski | 2021-07-28 | Build site. |
Rmd | d0b6e0f | Jovan Tanevski | 2021-07-28 | add pca to tcga analysis |
html | d73f586 | Jovan Tanevski | 2021-07-28 | Build site. |
Rmd | c4324f5 | Jovan Tanevski | 2021-07-28 | add umap |
html | 0bfae68 | Jovan Tanevski | 2021-07-28 | Build site. |
Rmd | 82e3712 | Jovan Tanevski | 2021-07-28 | add basic hclust |
Load required libraries.
library(tidyverse)
library(skimr)
library(uwot)
library(factoextra)
library(cowplot)
Read filtered TCGA RRPA data and display summary statistics.
tcga <- read_csv("data/TCGA-RPPA-LIHC_selected.csv", col_types = cols()) %>%
select(-TumorType) %>%
column_to_rownames("SampleID")
skim(tcga)
Name | tcga |
Number of rows | 184 |
Number of columns | 12 |
_______________________ | |
Column type frequency: | |
numeric | 12 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
P53 | 0 | 1 | -1.13 | 0.46 | -2.54 | -1.40 | -0.96 | -0.76 | -0.51 | ▁▂▂▅▇ |
AKT_pS473 | 0 | 1 | -0.63 | 0.71 | -2.76 | -1.02 | -0.41 | -0.15 | 0.96 | ▁▂▃▇▁ |
AKT_pT308 | 0 | 1 | 0.07 | 0.42 | -1.16 | -0.07 | 0.09 | 0.22 | 1.72 | ▁▃▇▁▁ |
BETACATENIN | 0 | 1 | 1.50 | 0.72 | -1.30 | 1.08 | 1.51 | 1.87 | 3.70 | ▁▁▇▅▁ |
JNK_pT183Y185 | 0 | 1 | -0.21 | 0.29 | -1.14 | -0.36 | -0.17 | -0.04 | 0.48 | ▁▂▇▇▂ |
MEK1_pS217S221 | 0 | 1 | -0.17 | 0.36 | -0.82 | -0.35 | -0.23 | -0.10 | 2.58 | ▇▃▁▁▁ |
P38_pT180Y182 | 0 | 1 | 0.49 | 0.57 | -1.45 | 0.31 | 0.50 | 0.72 | 2.95 | ▁▂▇▁▁ |
P70S6K_pT389 | 0 | 1 | -1.21 | 0.75 | -3.22 | -1.58 | -0.95 | -0.65 | 1.09 | ▂▃▇▃▁ |
PDK1_pS241 | 0 | 1 | 0.40 | 0.31 | -0.56 | 0.23 | 0.37 | 0.55 | 1.62 | ▁▇▇▂▁ |
S6_pS235S236 | 0 | 1 | -0.72 | 0.75 | -3.53 | -1.06 | -0.67 | -0.36 | 1.12 | ▁▁▅▇▂ |
YAP_pS127 | 0 | 1 | 2.21 | 0.61 | 0.68 | 1.78 | 2.10 | 2.54 | 4.05 | ▁▇▇▂▁ |
TRANSGLUTAMINASE | 0 | 1 | -0.42 | 0.56 | -1.24 | -0.83 | -0.59 | -0.20 | 2.72 | ▇▃▁▁▁ |
Perform hierarchical clustering of the data and plot the resulting dendrogram
tcga.hclust <- eclust(tcga, "hclust", k = 4)
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
"none")` instead.
fviz_dend(tcga.hclust, rect = TRUE)
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
"none")` instead.
Version | Author | Date |
---|---|---|
e45bf1d | Jovan Tanevski | 2021-07-28 |
fviz_silhouette(tcga.hclust) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
cluster size ave.sil.width
1 1 72 0.05
2 2 15 0.23
3 3 29 -0.04
4 4 68 0.25
Version | Author | Date |
---|---|---|
e45bf1d | Jovan Tanevski | 2021-07-28 |
Project to 2D with PCA and UMAP and plot
tcga.pca <- prcomp(tcga)
summary(tcga.pca)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.2123 0.8248 0.6607 0.56514 0.52805 0.47568 0.43431
Proportion of Variance 0.3831 0.1773 0.1138 0.08325 0.07268 0.05898 0.04917
Cumulative Proportion 0.3831 0.5604 0.6742 0.75746 0.83014 0.88912 0.93829
PC8 PC9 PC10 PC11 PC12
Standard deviation 0.31055 0.24392 0.2216 0.14622 0.10156
Proportion of Variance 0.02514 0.01551 0.0128 0.00557 0.00269
Cumulative Proportion 0.96343 0.97894 0.9917 0.99731 1.00000
fviz_pca_biplot(tcga.pca, label = "var", col.ind = as.factor(tcga.hclust$cluster)) +
theme_classic()
Version | Author | Date |
---|---|---|
e45bf1d | Jovan Tanevski | 2021-07-28 |
tcga.umap <- umap(tcga, n_neighbors = 5, n_epochs = 1000) %>%
cbind(tcga.hclust$cluster) %>%
`colnames<-`(c("U1", "U2", "Cluster")) %>%
as_tibble() %>%
mutate_at("Cluster", as.factor)
ggplot(tcga.umap, aes(x = U1, y = U2, color = Cluster, shape = Cluster)) +
geom_point() +
theme_classic()
Version | Author | Date |
---|---|---|
e45bf1d | Jovan Tanevski | 2021-07-28 |
Expression profiles per cluster
tcga.clustered <- tcga %>%
mutate(Cluster = as.factor(tcga.hclust$cluster)) %>%
pivot_longer(names_to = "Marker", values_to = "Z", -Cluster)
profiles <- seq_len(4) %>% map(~
ggplot(
tcga.clustered %>% filter(Cluster == .x),
aes(x = Marker, y = Z, color = Marker)
) +
stat_summary(fun.data = mean_sdl, show.legend = FALSE) +
ylim(-3, 3) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)))
plot_grid(plotlist = profiles, labels = paste("Cluster", seq_len(4)))
Warning: Removed 7 rows containing non-finite values (stat_summary).
Warning: Removed 20 rows containing non-finite values (stat_summary).
Warning: Removed 3 rows containing missing values (geom_segment).
Warning: Removed 4 rows containing non-finite values (stat_summary).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing non-finite values (stat_summary).
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] cowplot_1.1.1 factoextra_1.0.7 uwot_0.1.10 Matrix_1.3-4
[5] skimr_2.1.3 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[9] purrr_0.3.4 readr_2.0.0 tidyr_1.1.3 tibble_3.1.3
[13] ggplot2_3.3.5 tidyverse_1.3.1 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] colorspace_2.0-2 ggsignif_0.6.2 ellipsis_0.3.2
[4] rio_0.5.27 rprojroot_2.0.2 htmlTable_2.2.1
[7] base64enc_0.1-3 fs_1.5.0 rstudioapi_0.13
[10] ggpubr_0.4.0 farver_2.1.0 ggrepel_0.9.1
[13] bit64_4.0.5 RSpectra_0.16-0 fansi_0.5.0
[16] lubridate_1.7.10 xml2_1.3.2 splines_4.1.0
[19] knitr_1.33 Formula_1.2-4 jsonlite_1.7.2
[22] broom_0.7.8 cluster_2.1.2 dbplyr_2.1.1
[25] png_0.1-7 compiler_4.1.0 httr_1.4.2
[28] backports_1.2.1 assertthat_0.2.1 cli_3.0.1
[31] later_1.2.0 htmltools_0.5.1.1 tools_4.1.0
[34] gtable_0.3.0 glue_1.4.2 Rcpp_1.0.7
[37] carData_3.0-4 cellranger_1.1.0 jquerylib_0.1.4
[40] vctrs_0.3.8 xfun_0.24 openxlsx_4.2.4
[43] rvest_1.0.0 lifecycle_1.0.0 rstatix_0.7.0
[46] dendextend_1.15.1 scales_1.1.1 vroom_1.5.3
[49] hms_1.1.0 promises_1.2.0.1 parallel_4.1.0
[52] RColorBrewer_1.1-2 yaml_2.2.1 curl_4.3.2
[55] gridExtra_2.3 sass_0.4.0 rpart_4.1-15
[58] latticeExtra_0.6-29 stringi_1.7.3 highr_0.9
[61] checkmate_2.0.0 zip_2.2.0 repr_1.1.3
[64] rlang_0.4.11 pkgconfig_2.0.3 evaluate_0.14
[67] lattice_0.20-44 htmlwidgets_1.5.3 labeling_0.4.2
[70] bit_4.0.4 tidyselect_1.1.1 magrittr_2.0.1
[73] R6_2.5.0 generics_0.1.0 Hmisc_4.5-0
[76] DBI_1.1.1 pillar_1.6.1 haven_2.4.1
[79] whisker_0.4 foreign_0.8-81 withr_2.4.2
[82] survival_3.2-11 abind_1.4-5 nnet_7.3-16
[85] modelr_0.1.8 crayon_1.4.1 car_3.0-11
[88] utf8_1.2.2 tzdb_0.1.2 rmarkdown_2.9
[91] viridis_0.6.1 jpeg_0.1-9 grid_4.1.0
[94] readxl_1.3.1 data.table_1.14.0 FNN_1.1.3
[97] git2r_0.28.0 reprex_2.0.0 digest_0.6.27
[100] httpuv_1.6.1 munsell_0.5.0 viridisLite_0.4.0
[103] bslib_0.2.5.1