Last updated: 2020-12-28

Checks: 7 0

Knit directory: meta-liver/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20201218) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e4603ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/human-diehl-nafld_cache/
    Ignored:    analysis/human-hampe13-nash_cache/
    Ignored:    analysis/human-hampe14-misc_cache/
    Ignored:    analysis/human-hoang-nafld_cache/
    Ignored:    analysis/human-ramnath-fibrosis_cache/
    Ignored:    analysis/meta-chronic-vs-acute_cache/
    Ignored:    analysis/meta-mouse-vs-human_cache/
    Ignored:    analysis/mouse-acute-apap_cache/
    Ignored:    analysis/mouse-acute-bdl_cache/
    Ignored:    analysis/mouse-acute-ccl4_cache/
    Ignored:    analysis/mouse-acute-lps_cache/
    Ignored:    analysis/mouse-acute-ph_cache/
    Ignored:    analysis/mouse-acute-tunicamycin_cache/
    Ignored:    analysis/mouse-chronic-ccl4_cache/
    Ignored:    analysis/plot-acute-apap_cache/
    Ignored:    analysis/plot-acute-bdl_cache/
    Ignored:    analysis/plot-acute-ccl4_cache/
    Ignored:    analysis/plot-acute-ph_cache/
    Ignored:    analysis/plot-chronic-ccl4_cache/
    Ignored:    analysis/plot-chronic-vs-acute_cache/
    Ignored:    analysis/plot-precision-recall_cache/
    Ignored:    analysis/plot-study-overview_cache/
    Ignored:    code/.DS_Store
    Ignored:    code/README.html
    Ignored:    data/.DS_Store
    Ignored:    data/README.html
    Ignored:    data/annotation/
    Ignored:    data/human-diehl-nafld/
    Ignored:    data/human-hampe13-nash/
    Ignored:    data/human-hampe14-misc/
    Ignored:    data/human-hoang-nafld/
    Ignored:    data/human-ramnath-fibrosis/
    Ignored:    data/meta-chronic-vs-acute/
    Ignored:    data/mouse-acute-apap/
    Ignored:    data/mouse-acute-bdl/
    Ignored:    data/mouse-acute-ccl4/
    Ignored:    data/mouse-acute-lps/
    Ignored:    data/mouse-acute-ph/
    Ignored:    data/mouse-acute-tunicamycin/
    Ignored:    data/mouse-chronic-ccl4/
    Ignored:    external_software/.DS_Store
    Ignored:    external_software/README.html
    Ignored:    external_software/stem/.DS_Store
    Ignored:    figures/
    Ignored:    output/.DS_Store
    Ignored:    output/README.html
    Ignored:    output/human-diehl-nafld/
    Ignored:    output/human-hampe13-nash/
    Ignored:    output/human-hampe14-misc/
    Ignored:    output/human-hoang-nafld/
    Ignored:    output/human-ramnath-fibrosis/
    Ignored:    output/meta-chronic-vs-acute/
    Ignored:    output/meta-mouse-vs-human/
    Ignored:    output/mouse-acute-apap/
    Ignored:    output/mouse-acute-bdl/
    Ignored:    output/mouse-acute-ccl4/
    Ignored:    output/mouse-acute-lps/
    Ignored:    output/mouse-acute-ph/
    Ignored:    output/mouse-acute-tunicamycin/
    Ignored:    output/mouse-chronic-ccl4/
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  data/meta-mouse-vs-human/

Unstaged changes:
    Modified:   analysis/meta-mouse-vs-human.Rmd
    Modified:   analysis/plot-acute-bdl.Rmd
    Modified:   analysis/plot-chronic-vs-acute.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/plot-mouse-vs-human.Rmd) and HTML (docs/plot-mouse-vs-human.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e4603ab christianholland 2020-12-28 Added script for fig 4

Introduction

Here we generate publication-ready plots for the comparison of the chronic CCl4 model and patient cohorts.

Libraries and sources

These libraries and sources are used for this analysis.

library(tidyverse)
library(tidylog)
library(here)

library(AachenColorPalette)
library(VennDiagram)
library(gridExtra)
library(ggpubr)
library(scales)
library(lemon)
library(ComplexHeatmap)
library(ggwordcloud)
library(circlize)
library(patchwork)

source(here("code/utils-plots.R"))
source(here("code/utils-utils.R"))

Definition of global variables and functions that are used throughout this analysis.

# i/o
data_path <- "data/meta-mouse-vs-human"
output_path <- "output/meta-mouse-vs-human"

# graphical parameters
# fontsize
fz <- 7
# color function for heatmaps
col_fun <- colorRamp2(
  c(-4, 0, 4),
  c(aachen_color("blue"), "white", aachen_color("red"))
)

# keys to annotate contrasts
key_mm <- readRDS(here("data/meta-chronic-vs-acute/contrast_annotation.rds"))
key_hs <- readRDS(here("data/meta-mouse-vs-human/contrast_annotation.rds"))

Similarity of patient cohort gene sets

keys <- key_hs %>%
  distinct(contrast, label, source, phenotype)

j <- readRDS(here(output_path, "gene_set_similarity.rds")) %>%
  separate(set1, into = c("source", "phenotype", "contrast"), sep = "-") %>%
  inner_join(keys, by = c("contrast", "source", "phenotype")) %>%
  select(-source, -phenotype, -contrast) %>%
  rename(set1 = label) %>%
  separate(set2, into = c("source", "phenotype", "contrast"), sep = "-") %>%
  inner_join(keys, by = c("contrast", "source", "phenotype")) %>%
  rename(set2 = label) %>%
  select(set1, set2, similarity)

patient_gs_sim <- j %>%
  mutate(set1 = fct_rev(set1)) %>%
  ggplot(aes(
    x = set1, y = set2, fill = similarity,
    label = round(similarity, 3)
  )) +
  geom_tile(color = "black") +
  scale_fill_gradient(low = "white", high = aachen_color("green")) +
  labs(x = NULL, y = NULL, fill = "Jaccard\nIndex") +
  theme(
    axis.text.x = element_text(angle = 45, hjust = 1),
    axis.line = element_blank(),
    axis.ticks = element_blank()
  ) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  geom_text(size = (fz - 2) / (14 / 5)) +
  my_theme(fsize = fz, grid = "no")

patient_gs_sim

Interstudy enrichment of patient cohorts

keys <- key_hs %>%
  distinct(contrast, label, source, phenotype)

gsea_res <- readRDS(here(output_path, "interstudy_enrichment.rds")) %>%
  separate(signature, into = c("source", "phenotype", "contrast"), sep = "-") %>%
  inner_join(keys, by = c("contrast", "source", "phenotype")) %>%
  select(-source, -phenotype, -contrast) %>%
  rename(signature = label) %>%
  separate(geneset, into = c("source", "phenotype", "contrast"), sep = "-") %>%
  inner_join(keys, by = c("contrast", "source", "phenotype")) %>%
  rename(geneset = label)

patient_interstudy_enrichment <- gsea_res %>%
  mutate(direction = fct_rev(str_to_title(direction))) %>%
  mutate(label = gtools::stars.pval(padj)) %>%
  ggplot(aes(x = signature, y = geneset, fill = ES)) +
  geom_tile() +
  geom_text(aes(label = label), size = fz / (14 / 5), vjust = 1) +
  facet_wrap(~direction, ncol = 2) +
  theme(
    axis.text.x = element_text(angle = 45, hjust = 1),
    axis.line = element_blank(),
    axis.ticks = element_blank()
  ) +
  scale_fill_gradient2(
    low = aachen_color("blue"), mid = "white",
    high = aachen_color("red")
  ) +
  my_theme(grid = "no", fsize = fz) +
  labs(x = "Signature", y = "Gene Set", fill = "ES") +
  guides(fill = guide_colorbar(title = "ES"))

patient_interstudy_enrichment

Mouse enrichment in patients

contrast_keys_mouse <- key_mm %>%
  distinct(signature = contrast, label2)
contrast_keys_human <- key_hs %>%
  unite(geneset, source, phenotype, contrast, sep = "-") %>%
  distinct(geneset, label)

gsea_res <- readRDS(here(output_path, "gsea_res.rds")) %>%
  inner_join(contrast_keys_mouse, by = "signature") %>%
  select(-signature) %>%
  rename(signature = label2) %>%
  inner_join(contrast_keys_human, by = "geneset") %>%
  select(-geneset) %>%
  rename(geneset = label) %>%
  mutate(
    label = gtools::stars.pval(padj),
    direction = fct_rev(str_to_title(direction))
  )

mm_enrichment_in_hs <- gsea_res %>%
  ggplot(aes(x = signature, y = geneset, fill = ES, label = label)) +
  geom_tile() +
  facet_wrap(~direction) +
  scale_fill_gradient2(
    low = aachen_color("blue"), mid = "white",
    high = aachen_color("red")
  ) +
  my_theme(grid = "no", fsize = fz) +
  theme(
    axis.text.x = element_text(angle = 45, hjust = 1),
    axis.line = element_blank(),
    axis.ticks = element_blank()
  ) +
  geom_text(size = fz / (14 / 5), vjust = 1) +
  labs(x = "Signature", y = "Gene Set")

mm_enrichment_in_hs

Overlap of leading-edge genes

keys <- key_mm %>%
  distinct(signature = contrast, class = time_label2)

le <- readRDS(here(output_path, "leading_edges.rds")) %>%
  inner_join(keys, by = "signature") %>%
  rename(regulation = direction) %>%
  arrange(class)

tables <- le %>%
  group_split(class)

# extract labellers
c1 <- tables[[1]] %>%
  distinct(class) %>%
  pull() %>%
  as.character()
c2 <- tables[[2]] %>%
  distinct(class) %>%
  pull() %>%
  as.character()
c3 <- tables[[3]] %>%
  distinct(class) %>%
  pull() %>%
  as.character()

t1 <- tables[[1]] %>% count(regulation)
t2 <- tables[[2]] %>% count(regulation)
t3 <- tables[[3]] %>% count(regulation)

le_overlap_plots <- c("up", "down") %>%
  map(function(r) {
    # set sizes of regulated genes
    a1 <- t1 %>%
      filter(regulation == r) %>%
      pull(n)
    a2 <- t2 %>%
      filter(regulation == r) %>%
      pull(n)
    a3 <- t3 %>%
      filter(regulation == r) %>%
      pull(n)

    a12 <- purrr::reduce(
      list(
        tables[[1]] %>% filter(regulation == r) %>% pull(gene),
        tables[[2]] %>% filter(regulation == r) %>% pull(gene)
      ),
      intersect
    ) %>%
      length()

    a23 <- purrr::reduce(
      list(
        tables[[2]] %>% filter(regulation == r) %>% pull(gene),
        tables[[3]] %>% filter(regulation == r) %>% pull(gene)
      ),
      intersect
    ) %>%
      length()

    a13 <- purrr::reduce(
      list(
        tables[[1]] %>% filter(regulation == r) %>% pull(gene),
        tables[[3]] %>% filter(regulation == r) %>% pull(gene)
      ),
      intersect
    ) %>%
      length()

    a123 <- purrr::reduce(
      list(
        tables[[1]] %>% filter(regulation == r) %>% pull(gene),
        tables[[2]] %>% filter(regulation == r) %>% pull(gene),
        tables[[3]] %>% filter(regulation == r) %>% pull(gene)
      ),
      intersect
    ) %>%
      length()

    grid.newpage()
    grid.grabExpr(draw.triple.venn(
      area1 = a1, area2 = a2, area3 = a3,
      n12 = a12, n23 = a23, n13 = a13,
      n123 = a123,
      category = c(c1, c2, c3),
      # lty = "blank",
      cex = 1 / 12 * fz,
      fontfamily = rep("sans", 7),
      # fill = aachen_color(c("purple", "petrol", "red")),
      # cat.col = aachen_color(c("purple", "petrol", "red")),
      cat.cex = 1 / 12 * (fz + 1),
      cat.fontfamily = rep("sans", 3),
      cat.pos = c(0, 0, 180),
      cat.prompts = T
    )) %>%
      as_ggplot() %>%
      grid.arrange(top = textGrob(str_to_title(r), gp = gpar(
        fontsize = fz,
        fontface = "bold"
      )))
  })


le_gene_overlap <- wrap_plots(le_overlap_plots)

Top human-mouse consistent genes

Heatmap

contrast_keys_mouse <- key_hs %>%
  unite(contrast, source, phenotype, contrast, sep = "-") %>%
  distinct(contrast, label)

contrast_keys_human <- key_mm %>%
  filter(str_detect(contrast, "pure")) %>%
  distinct(contrast, label)

keys <- bind_rows(contrast_keys_mouse, contrast_keys_human)

# get degs from single cell data
sc_degs <- readRDS(here(data_path, "single_cell_degs.rds")) %>%
  enframe("celltype") %>%
  unnest(value) %>%
  filter(p_val_adj <= 0.05) %>%
  mutate(adjusted_logfc = case_when(
    avg_logFC >= 0 & cluster == "Uninjured" ~ -avg_logFC,
    avg_logFC < 0 & cluster == "Uninjured" ~ -avg_logFC,
    TRUE ~ avg_logFC
  ))

# load consistent genes
df <- readRDS(here(output_path, "consistent_genes.rds")) %>%
  left_join(sc_degs, by = "gene") %>%
  mutate(celltype = fct_explicit_na(celltype, na_level = "Unknown"))

# extract top 100 consistent genes
top_genes_df <- df %>%
  filter(rank <= 100) %>%
  inner_join(keys, by = "contrast") %>%
  mutate(label = fct_drop(label))

# build matrix for heatmap
m <- top_genes_df %>%
  distinct(gene, label, logFC) %>%
  spread(label, logFC) %>%
  data.frame(row.names = 1, check.names = F) %>%
  as.matrix()

# build cell type annotation
celltype_anno <- top_genes_df %>%
  distinct(gene, celltype, adjusted_logfc) %>%
  spread(celltype, adjusted_logfc, fill = 0) %>%
  data.frame(row.names = 1, check.names = F) %>%
  select(-Unknown)

col_fun_anno <- col_fun
ha <- HeatmapAnnotation(
  df = celltype_anno,
  show_legend = F,
  border = F,
  gap = unit(0.25, "mm"),
  col = list(
    MPs = col_fun_anno, pDCs = col_fun_anno, ILCs = col_fun_anno,
    Tcells = col_fun_anno, Bcells = col_fun_anno,
    `Plasma Bcells` = col_fun_anno, `Mast cells` = col_fun_anno,
    Endothelia = col_fun_anno, Mesenchyme = col_fun_anno,
    Mesothelia = col_fun_anno, Hepatocytes = col_fun_anno,
    Cholangiocytes = col_fun_anno
  ),
  annotation_name_gp = gpar(fontsize = fz - 1),
  simple_anno_size = unit(0.15, "cm")
)

# build heatmap
h_hmap <- Heatmap(
  t(as.matrix(m)),
  col = col_fun,
  cluster_rows = T,
  cluster_columns = T,
  show_row_dend = F,
  show_column_dend = T,
  row_names_gp = gpar(fontsize = fz), column_names_gp = gpar(fontsize = fz - 2),
  name = "logFC",
  heatmap_legend_param = list(
    title_gp = gpar(
      fontface = "plain",
      fontsize = fz + 1
    ),
    labels_gp = gpar(fontsize = fz)
  ),
  row_gap = unit(2.5, "mm"),
  border = T,
  top_annotation = ha,
  row_split = c(rep("Mouse", 3), rep("Human", 15)),
  row_title_gp = gpar(fontsize = fz + 1),
)

h_hmap

Characteriatzion via TFs

ora_res <- readRDS(here(
  output_path,
  "leading_edges_characterization.rds"
)) %>%
  filter(group %in% c("dorothea") & fdr <= 0.2) %>%
  mutate(regulation = str_to_title(regulation))

tfs_up <- ora_res %>%
  filter(regulation == "Up") %>%
  filter(geneset %in% c("SP1", "RELA", "NFKB1")) %>%
  ggplot(aes(x = fct_reorder(geneset, p.value), y = -log10(p.value))) +
  geom_col() +
  geom_text(aes(label = geneset),
    color = "white", angle = 90, hjust = 1.5,
    size = fz / (14 / 5)
  ) +
  theme(axis.text.x = element_blank()) +
  labs(x = "TF", y = expression(-log["10"] * "(p-value)")) +
  my_theme(grid = "y", fsize = fz) +
  facet_rep_wrap(~regulation)

# no significant hits
# tfs_down <- ora_res %>%
#   filter(regulation == "Down") %>%
#   slice_min(order_by = p.value, n = 3) %>%
#   ggplot(aes(x = fct_reorder(geneset, p.value), y = -log10(p.value))) +
#   geom_col() +
#   geom_text(aes(label = geneset),
#     color = "white", angle = 90, hjust = 1.5,
#     size = fz / (14 / 5)
#   ) +
#   theme(axis.text.x = element_blank()) +
#   labs(x = "TF", y = expression(-log["10"] * "(p-value)")) +
#   my_theme(grid = "y", fsize = fz) +
#   facet_rep_wrap(~regulation)

tfs_up

Characteriatzion via pathways

ora_res <- readRDS(here(
  output_path,
  "leading_edges_characterization.rds"
)) %>%
  filter(group %in% c("progeny") & fdr <= 0.2) %>%
  mutate(regulation = str_to_title(regulation))

pw_up <- ora_res %>%
  filter(regulation == "Up") %>%
  filter(geneset %in% c("TGFb", "TNFa")) %>%
  ggplot(aes(x = fct_reorder(geneset, p.value), y = -log10(p.value))) +
  geom_col() +
  geom_text(aes(label = geneset),
    color = "white", angle = 90, hjust = 1.5,
    size = fz / (14 / 5)
  ) +
  theme(axis.text.x = element_blank()) +
  labs(x = "Pathway", y = expression(-log["10"] * "(p-value)")) +
  my_theme(grid = "y", fsize = fz) +
  facet_rep_wrap(~regulation)

pw_down <- ora_res %>%
  filter(regulation == "Down") %>%
  filter(geneset %in% c("Androgen")) %>%
  ggplot(aes(x = fct_reorder(geneset, p.value), y = -log10(p.value))) +
  geom_col() +
  geom_text(aes(label = geneset),
    color = "white", angle = 90, hjust = 1.5,
    size = fz / (14 / 5)
  ) +
  theme(axis.text.x = element_blank()) +
  labs(x = "Pathway", y = expression(-log["10"] * "(p-value)")) +
  my_theme(grid = "y", fsize = fz) +
  facet_rep_wrap(~regulation)

pw_up + pw_down

Characterization via GO terms

# get wordcounts for go terms
wordcounts <- readRDS(here(output_path, "go_wordcounts.rds"))

# get ranking of go clusters
cluster_ranking <- readRDS(here(output_path, "go_cluster_ranking.rds")) %>%
  group_by(cluster) %>%
  mutate(label = str_c(n(), " ", "GO terms")) %>%
  ungroup() %>%
  mutate(regulation = fct_rev(str_to_title(regulation))) %>%
  arrange(desc(cluster)) %>%
  mutate(description = fct_rev(as_factor(description)))

cluster_anno <- cluster_ranking %>%
  nest(data = c(rank, term)) %>%
  # find max peak for each cluster
  mutate(peak = data %>% map(function(data) {
    max(density(data$rank)$y)
  })) %>%
  unnest(c(peak)) %>%
  group_by(regulation) %>%
  mutate(max_peak = max(peak)) %>%
  ungroup() %>%
  distinct(
    cluster, regulation, description, peak, max_peak, max_rank,
    label
  ) %>%
  arrange(description) %>%
  group_by(regulation) %>%
  mutate(n_clusters = row_number()) %>%
  mutate(x_coord = case_when(
    n_clusters == 1 ~ 0,
    n_clusters == 2 ~ 1 * max_rank
  )) %>%
  ungroup()

# up-regulated genes
up_dens <- cluster_ranking %>%
  filter(regulation == "Up") %>%
  plot_go_rank_density() +
  my_theme(grid = "no", fsize = fz) +
  geom_text(
    data = filter(cluster_anno, regulation == "Up"),
    aes(x = x_coord, y = 1.1 * max_peak, label = label, color = description),
    inherit.aes = F, size = fz / (14 / 5), hjust = "inward",
    show.legend = F
  ) +
  scale_color_manual(values = aachen_color(c("green", "purple"))) +
  guides(color = guide_legend(nrow = 2)) +
  theme(legend.box.margin = margin(-10, 0, -20, 0))

up_cloud <- wordcounts %>%
  filter(regulation == "up") %>%
  slice_max(order_by = n, n = 15) %>%
  plot_wordcloud(fontsize = fz)

consistent_up <- up_dens +
  inset_element(up_cloud,
    left = 0, bottom = 0, right = 1, top = 1,
    align_to = "panel"
  )

# down-regulated genes
down_dens <- cluster_ranking %>%
  filter(regulation == "Down") %>%
  plot_go_rank_density() +
  my_theme(grid = "no", fsize = fz) +
  geom_text(
    data = filter(cluster_anno, regulation == "Down"),
    aes(x = x_coord, y = 1.1 * max_peak, label = label, color = description),
    inherit.aes = F, size = fz / (14 / 5), hjust = "inward",
    show.legend = F
  ) +
  scale_color_manual(values = aachen_color("purple")) +
  guides(color = guide_legend(nrow = 2)) +
  theme(legend.box.margin = margin(-10, 0, -20, 0))

down_cloud <- wordcounts %>%
  filter(regulation == "down") %>%
  slice_max(order_by = n, n = 15) %>%
  plot_wordcloud(fontsize = fz)

consistent_down <- down_dens +
  inset_element(down_cloud,
    left = 0, bottom = 0, right = 1, top = 1,
    align_to = "panel"
  )

consistent_up + consistent_down

Expression of consistent genes in mouse

keys <- key_mm %>%
  distinct(contrast, label = time_label2)

le <- readRDS(here(output_path, "leading_edges_mgi.rds")) %>%
  rename(contrast = signature)

c <- readRDS(here("output/meta-chronic-vs-acute/limma_result.rds")) %>%
  filter(treatment == "pure_ccl4") %>%
  left_join(le) %>%
  select(-regulation) %>%
  rename(regulation = direction) %>%
  replace_na(list(regulation = "ns")) %>%
  mutate(regulation = factor(regulation, levels = c("up", "down", "ns"))) %>%
  mutate(regulation = fct_recode(regulation,
    Up = "up", Down = "down",
    n.s. = "ns"
  )) %>%
  inner_join(keys, by = "contrast") %>%
  arrange(desc(regulation))

consistent_volcano_main <- c %>%
  filter(label == "Month 12") %>%
  ggplot(aes(x = logFC, y = -log10(pval), color = regulation, alpha = regulation)) +
  geom_point() +
  facet_rep_wrap(~label, scales = "free") +
  my_theme(grid = "y", fsize = fz) +
  scale_alpha_manual(values = c(0.7, 0.7, 0.2), guide = "none", drop = F) +
  scale_color_manual(
    values = c(aachen_color(c("red", "blue", "black50"))),
    breaks = c("Up", "Down"), labels = c("Up", "Down"),
    drop = F
  ) +
  labs(
    x = "logFC", y = expression(-log["10"] * "(p-value)"),
    color = str_wrap("Regulation", width = 15)
  )

consistent_volcano_supp <- c %>%
  filter(label != "Month 12") %>%
  ggplot(aes(x = logFC, y = -log10(pval), color = regulation, alpha = regulation)) +
  geom_point() +
  facet_rep_wrap(~label, scales = "free") +
  my_theme(grid = "y", fsize = fz) +
  scale_alpha_manual(values = c(0.7, 0.7, 0.2), guide = "none", drop = F) +
  scale_color_manual(
    values = c(aachen_color(c("red", "blue", "black50"))),
    breaks = c("Up", "Down"), labels = c("Up", "Down"),
    drop = F
  ) +
  labs(
    x = "logFC", y = expression(-log["10"] * "(p-value)"),
    color = str_wrap("Regulation", width = 15)
  )

consistent_volcano_main + consistent_volcano_supp

Collage

Figure 4

Main Figure.


fig4 <- patient_interstudy_enrichment /
  ((mm_enrichment_in_hs | le_overlap_plots[[1]] | le_overlap_plots[[2]]) +
    plot_layout(widths = c(1, 2.25, 1.75))) /
  grid.grabExpr(draw(h_hmap)) /
  ((pw_up | tfs_up | consistent_up | consistent_volcano_main) +
    plot_layout(width = c(0.2, 0.3, 1.5, 1.5))) +
  plot_layout(height = c(0.75, 0.75, 1.75, 0.75)) +
  plot_annotation(tag_levels = list(c("A", "B", "C", "", "D", "E", "F", "G", "", "H"))) &
  theme(
    plot.tag = element_text(size = fz + 3, face = "bold"),
    legend.key.height = unit(11.5, "pt"),
    legend.key.width = unit(12.5, "pt")
  )

fig4


ggsave(here("figures/Figure 4.pdf"), fig4,
  width = 21, height = 29.7, units = c("cm")
)
ggsave(here("figures/Figure 4.png"), fig4,
  width = 21, height = 29.7, units = c("cm")
)

Supplementary Figure 4.1

Gene similarity of patient cohorts.

sfig4_1 <- patient_gs_sim +
  theme(
    legend.key.height = unit(11.5, "pt"),
    legend.key.width = unit(12.5, "pt")
  )

sfig4_1


ggsave(here("figures/Supplementary Figure 4.1.pdf"), sfig4_1,
  width = 21, height = 10, units = c("cm")
)
ggsave(here("figures/Supplementary Figure 4.1.png"), sfig4_1,
  width = 21, height = 10, units = c("cm")
)

Supplementary Figure 4.2

Characterization of down-regulated consistent genes.

sfig4_2 <- pw_down + consistent_down +
  plot_layout(widths = c(1, 8)) +
  plot_annotation(tag_levels = list(c("A", "B"))) &
  theme(
    plot.tag = element_text(size = fz + 3, face = "bold"),
    legend.key.height = unit(11.5, "pt"),
    legend.key.width = unit(12.5, "pt")
  )

sfig4_2


ggsave(here("figures/Supplementary Figure 4.2.pdf"), sfig4_2,
  width = 21, height = 10, units = c("cm")
)
ggsave(here("figures/Supplementary Figure 4.2.png"), sfig4_2,
  width = 21, height = 10, units = c("cm")
)

Time spend to execute this analysis: 00:31 minutes.


sessionInfo()
#> R version 4.0.2 (2020-06-22)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Mojave 10.14.5
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices datasets  utils     methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] patchwork_1.1.1          circlize_0.4.11          ggwordcloud_0.5.0       
#>  [4] ComplexHeatmap_2.4.3     lemon_0.4.5              scales_1.1.1            
#>  [7] ggpubr_0.4.0             gridExtra_2.3            VennDiagram_1.6.20      
#> [10] futile.logger_1.4.3      AachenColorPalette_1.1.2 here_1.0.1              
#> [13] tidylog_1.0.2            forcats_0.5.0            stringr_1.4.0           
#> [16] dplyr_1.0.2              purrr_0.3.4              readr_1.4.0             
#> [19] tidyr_1.1.2              tibble_3.0.4             ggplot2_3.3.2           
#> [22] tidyverse_1.3.0          workflowr_1.6.2         
#> 
#> loaded via a namespace (and not attached):
#>  [1] colorspace_2.0-0     ggsignif_0.6.0       rjson_0.2.20        
#>  [4] ellipsis_0.3.1       rio_0.5.16           rprojroot_2.0.2     
#>  [7] GlobalOptions_0.1.2  fs_1.5.0             clue_0.3-58         
#> [10] rstudioapi_0.13      farver_2.0.3         fansi_0.4.1         
#> [13] lubridate_1.7.9.2    xml2_1.3.2           codetools_0.2-16    
#> [16] knitr_1.30           jsonlite_1.7.2       broom_0.7.3         
#> [19] cluster_2.1.0        dbplyr_2.0.0         png_0.1-7           
#> [22] compiler_4.0.2       httr_1.4.2           backports_1.2.1     
#> [25] assertthat_0.2.1     cli_2.2.0            later_1.1.0.1       
#> [28] formatR_1.7          htmltools_0.5.0      tools_4.0.2         
#> [31] gtable_0.3.0         glue_1.4.2           Rcpp_1.0.5          
#> [34] carData_3.0-4        cellranger_1.1.0     vctrs_0.3.6         
#> [37] xfun_0.19            openxlsx_4.2.3       rvest_0.3.6         
#> [40] lifecycle_0.2.0      renv_0.12.3          gtools_3.8.2        
#> [43] rstatix_0.6.0        clisymbols_1.2.0     hms_0.5.3           
#> [46] promises_1.1.1       parallel_4.0.2       lambda.r_1.2.4      
#> [49] RColorBrewer_1.1-2   yaml_2.2.1           curl_4.3            
#> [52] stringi_1.5.3        zip_2.1.1            shape_1.4.5         
#> [55] rlang_0.4.9          pkgconfig_2.0.3      evaluate_0.14       
#> [58] lattice_0.20-41      labeling_0.4.2       cowplot_1.1.0       
#> [61] tidyselect_1.1.0     plyr_1.8.6           magrittr_2.0.1      
#> [64] R6_2.5.0             generics_0.1.0       DBI_1.1.0           
#> [67] pillar_1.4.7         haven_2.3.1          whisker_0.4         
#> [70] foreign_0.8-80       withr_2.3.0          abind_1.4-5         
#> [73] modelr_0.1.8         crayon_1.3.4         car_3.0-10          
#> [76] futile.options_1.0.1 rmarkdown_2.6        GetoptLong_1.0.5    
#> [79] readxl_1.3.1         data.table_1.13.4    git2r_0.27.1        
#> [82] reprex_0.3.0         digest_0.6.27        httpuv_1.5.4        
#> [85] munsell_0.5.0