Last updated: 2021-09-15
Checks: 7 0
Knit directory: mistyMBC/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(42)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a88b46a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: code/
Ignored: data/
Ignored: omnipathr-log/
Ignored: output/.DS_Store
Ignored: output/HTAPP-213-SMP-6752/.DS_Store
Ignored: output/HTAPP-213-SMP-6752/HTAPP-213-SMP-6752_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-213-SMP-6752/HTAPP-213-SMP-6752_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-313-SMP-932/.DS_Store
Ignored: output/HTAPP-313-SMP-932/HTAPP-313-SMP-932_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-313-SMP-932/HTAPP-313-SMP-932_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-330-SMP-1082/.DS_Store
Ignored: output/HTAPP-330-SMP-1082/HTAPP-330-SMP-1082_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-364-SMP-1321/.DS_Store
Ignored: output/HTAPP-514-SMP-6760/.DS_Store
Ignored: output/HTAPP-514-SMP-6760/HTAPP-514-SMP-6760_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-514-SMP-6760/HTAPP-514-SMP-6760_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-783-SMP-4081/.DS_Store
Ignored: output/HTAPP-783-SMP-4081/HTAPP-783-SMP-4081_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-783-SMP-4081/HTAPP-783-SMP-4081_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-812-SMP-8239/.DS_Store
Ignored: output/HTAPP-812-SMP-8239/HTAPP-812-SMP-8239_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-812-SMP-8239/HTAPP-812-SMP-8239_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-853-SMP-4381/.DS_Store
Ignored: output/HTAPP-853-SMP-4381/HTAPP-853-SMP-4381_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-853-SMP-4381/HTAPP-853-SMP-4381_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-878-SMP-7149/.DS_Store
Ignored: output/HTAPP-878-SMP-7149/HTAPP-878-SMP-7149_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-878-SMP-7149/HTAPP-878-SMP-7149_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-880-SMP-7179/.DS_Store
Ignored: output/HTAPP-880-SMP-7179/HTAPP-880-SMP-7179_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-880-SMP-7179/HTAPP-880-SMP-7179_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-895-SMP-7359/.DS_Store
Ignored: output/HTAPP-895-SMP-7359/HTAPP-895-SMP-7359_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-917-SMP-4531/.DS_Store
Ignored: output/HTAPP-917-SMP-4531/HTAPP-917-SMP-4531_slide_seq_processed-2/.DS_Store
Ignored: output/HTAPP-944-SMP-7479/.DS_Store
Ignored: output/HTAPP-944-SMP-7479/HTAPP-944-SMP-7479_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-982-SMP-7629/.DS_Store
Ignored: output/HTAPP-982-SMP-7629/HTAPP-982-SMP-7629_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-997-SMP-7789/.DS_Store
Ignored: output/HTAPP-997-SMP-7789/HTAPP-997-SMP-7789_slide_seq_processed-1/.DS_Store
Ignored: output/HTAPP-997-SMP-7789/HTAPP-997-SMP-7789_slide_seq_processed-2/.DS_Store
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/browse_results.Rmd
) and HTML (docs/browse_results.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c6d135a | Jovan Tanevski | 2021-09-15 | extend results with celltype analysis |
html | 6398d1c | Jovan Tanevski | 2021-09-13 | Build site. |
Rmd | b562161 | Jovan Tanevski | 2021-09-13 | merge codex and merfish results |
html | c457348 | Jovan Tanevski | 2021-09-09 | Build site. |
html | aa6ca6b | Jovan Tanevski | 2021-09-09 | Build site. |
Rmd | 04b30ad | Jovan Tanevski | 2021-09-09 | clean up results, focus on targets with gain |
html | 2438eb2 | Jovan Tanevski | 2021-09-09 | Build site. |
Rmd | b124494 | Jovan Tanevski | 2021-09-09 | update codex,merfish; add slideseq cellcom results |
html | e0c1952 | Jovan Tanevski | 2021-07-22 | Build site. |
html | 4dd6a02 | Jovan Tanevski | 2021-07-14 | Build site. |
html | 913535e | Jovan Tanevski | 2021-06-17 | Build site. |
Rmd | 736d8e3 | Jovan Tanevski | 2021-06-17 | subset merfish results |
html | 1b68c27 | Jovan Tanevski | 2021-06-15 | Build site. |
Rmd | 43913a8 | Jovan Tanevski | 2021-06-15 | auto publish date |
Rmd | 34b1d9e | Jovan Tanevski | 2021-06-15 | explicit codex, merfish and exseq |
html | e445e6f | Jovan Tanevski | 2021-06-11 | Build site. |
Rmd | dd0219f | Jovan Tanevski | 2021-06-11 | add result browsing example |
Load necessary libraries
library(stringr)
library(dplyr)
library(mistyR)
library(future)
plan(multisession)
Find the location of the results for all samples
outputs <- str_subset(list.dirs("output"), "processed") %>%
str_subset("failed", negate = TRUE)
Collect the results for all samples, single modality and all replicates
misty.results.codex <- collect_results(str_subset(outputs, "codex"))
Collecting improvements
Collecting contributions
Collecting importances
Aggregating
misty.results.merfish <- collect_results(str_subset(outputs, "merfish"))
Collecting improvements
Collecting contributions
Collecting importances
Aggregating
misty.results.ligrcp <- collect_results(str_subset(outputs, "ligrcp"))
Collecting improvements
Collecting contributions
Collecting importances
Aggregating
misty.results.ligpath <- collect_results(str_subset(outputs, "ligpath"))
Collecting improvements
Collecting contributions
Collecting importances
Aggregating
Filter only genes with mean gain in variance explained of 1 or more to plot the gain and view contributions
misty.results.codex %>%
plot_improvement_stats(trim = 1) %>%
plot_view_contributions(trim = 1)
Plot interaction heatmaps
misty.results.codex %>%
plot_interaction_heatmap("intra", cutoff = 3, clean = TRUE) %>%
plot_interaction_heatmap("juxta.15", cutoff = 0.75, clean = TRUE, trim = 1) %>%
plot_interaction_heatmap("para.100", cutoff = 0.75, clean = TRUE, trim = 1)
Plot contrasts
misty.results.codex %>%
plot_contrast_heatmap("intra", "juxta.15", cutoff = 0.75, trim = 1) %>%
plot_contrast_heatmap("intra", "para.100", cutoff = 0.75, trim = 1)
Plot interaction communities
misty.results.codex %>%
plot_interaction_communities("intra", cutoff = 3) %>%
plot_interaction_communities("juxta.15", cutoff = 1) %>%
plot_interaction_communities("para.100", cutoff = 1)
Version | Author | Date |
---|---|---|
2438eb2 | Jovan Tanevski | 2021-09-09 |
Filter only genes with mean gain in variance explained of 1 or more to plot the gain and view contributions
misty.results.merfish %>%
plot_improvement_stats(trim = 1) %>%
plot_view_contributions(trim = 1)
Version | Author | Date |
---|---|---|
2438eb2 | Jovan Tanevski | 2021-09-09 |
Version | Author | Date |
---|---|---|
2438eb2 | Jovan Tanevski | 2021-09-09 |
Plot interaction heatmaps
misty.results.merfish %>%
plot_interaction_heatmap("intra", cutoff = 6, clean = TRUE) %>%
plot_interaction_heatmap("juxta.15", cutoff = 2, clean = TRUE, trim = 1) %>%
plot_interaction_heatmap("para.100", cutoff = 1, clean = TRUE, trim = 1)
Plot contrasts
misty.results.merfish %>%
plot_contrast_heatmap("intra", "juxta.15", cutoff = 1.5, trim = 1) %>%
plot_contrast_heatmap("intra", "para.100", cutoff = 1, trim = 1)
Plot interaction communities
misty.results.merfish %>%
plot_interaction_communities("intra", cutoff = 6) %>%
plot_interaction_communities("juxta.15", cutoff = 3) %>%
plot_interaction_communities("para.100", cutoff = 1.5)
Filter only genes with mean gain in variance explained of 1 or more to plot the gain and view contributions
misty.results.merged <- collect_results(str_subset(outputs, "codex|merfish"))
Collecting improvements
Collecting contributions
Collecting importances
Aggregating
misty.results.merged %>% plot_improvement_stats(trim = 1) %>%
plot_view_contributions(trim = 1)
Plot interaction heatmaps
misty.results.merged %>%
plot_interaction_heatmap("intra", cutoff = 6, clean = TRUE) %>%
plot_interaction_heatmap("juxta.15", cutoff = 1.5, clean = TRUE, trim = 1) %>%
plot_interaction_heatmap("para.100", cutoff = 1, clean = TRUE, trim = 1)
Version | Author | Date |
---|---|---|
6398d1c | Jovan Tanevski | 2021-09-13 |
Filter only ligands then pathways with mean gain in variance explained of 1 or more to plot the gain and view contributions
misty.results.ligrcp %>%
plot_improvement_stats(trim = 0.5) %>%
plot_view_contributions(trim = 0.5)
Warning: Removed 1 rows containing missing values (geom_segment).
misty.results.ligpath %>%
plot_improvement_stats(trim = 1) %>%
plot_view_contributions(trim = 1)
Version | Author | Date |
---|---|---|
6398d1c | Jovan Tanevski | 2021-09-13 |
Plot interaction heatmaps
misty.results.ligrcp %>%
plot_interaction_heatmap("intra", cutoff = 5, clean = TRUE) %>%
plot_interaction_heatmap("para.100", cutoff = 2, clean = TRUE, trim = 0.5)
Version | Author | Date |
---|---|---|
6398d1c | Jovan Tanevski | 2021-09-13 |
Version | Author | Date |
---|---|---|
6398d1c | Jovan Tanevski | 2021-09-13 |
misty.results.ligpath %>%
plot_interaction_heatmap("intra", cutoff = 1, clean = TRUE) %>%
plot_interaction_heatmap("para.100", cutoff = 1.5, clean = TRUE, trim = 1)
Version | Author | Date |
---|---|---|
6398d1c | Jovan Tanevski | 2021-09-13 |
Version | Author | Date |
---|---|---|
6398d1c | Jovan Tanevski | 2021-09-13 |
Plot intrinsic pathway communities
misty.results.ligpath %>% plot_interaction_communities("intra", cutoff = 1)
Version | Author | Date |
---|---|---|
6398d1c | Jovan Tanevski | 2021-09-13 |
We are interested in predicting the probability of a cell being of a cell-type of interest, by looking at the distribution of cell types in the neighborhood of 100 cells.
More conservative trimming of above 10% variance explained since the intraview is bypassed.
misty.results.ctype <- collect_results(str_subset(outputs, "ctype"))
Collecting improvements
Collecting contributions
Collecting importances
Aggregating
misty.results.ctype %>% plot_improvement_stats(trim = 10)
Warning: Removed 1 rows containing missing values (geom_segment).
Plot neighborhood interactions
misty.results.ctype %>% plot_interaction_heatmap("para.100", trim = 10,
cutoff = 0.5)
misty.results.ctype %>% plot_interaction_communities("para.100", cutoff = 1)
sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] future_1.22.1 mistyR_1.1.9 dplyr_1.0.7 stringr_1.4.0
[5] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] tidyselect_1.1.1 xfun_0.25 bslib_0.3.0 purrr_0.3.4
[5] listenv_0.8.0 colorspace_2.0-2 vctrs_0.3.8 generics_0.1.0
[9] htmltools_0.5.2 yaml_2.2.1 utf8_1.2.2 rlang_0.4.11
[13] R.oo_1.24.0 jquerylib_0.1.4 later_1.3.0 pillar_1.6.2
[17] glue_1.4.2 DBI_1.1.1 R.utils_2.10.1 RColorBrewer_1.1-2
[21] lifecycle_1.0.0 munsell_0.5.0 gtable_0.3.0 R.methodsS3_1.8.1
[25] codetools_0.2-18 evaluate_0.14 labeling_0.4.2 knitr_1.34
[29] fastmap_1.1.0 httpuv_1.6.3 parallel_4.1.1 fansi_0.5.0
[33] highr_0.9 furrr_0.2.3 Rcpp_1.0.7 scales_1.1.1
[37] promises_1.2.0.1 jsonlite_1.7.2 farver_2.1.0 parallelly_1.28.1
[41] fs_1.5.0 ggplot2_3.3.5 digest_0.6.27 stringi_1.7.4
[45] rprojroot_2.0.2 grid_4.1.1 tools_4.1.1 magrittr_2.0.1
[49] sass_0.4.0 tibble_3.1.4 crayon_1.4.1 whisker_0.4
[53] tidyr_1.1.3 pkgconfig_2.0.3 ellipsis_0.3.2 assertthat_0.2.1
[57] rmarkdown_2.10 R6_2.5.1 globals_0.14.0 igraph_1.2.6
[61] git2r_0.28.0 compiler_4.1.1