Last updated: 2025-08-15

Checks: 7 0

Knit directory: ChIPSeq_project/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250815) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ffe6f24. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Note that any generated files, e.g.Β HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Total_Reads_and_Mapped_Reads_TOP2B_P53.Rmd) and HTML (docs/Total_Reads_and_Mapped_Reads_TOP2B_P53.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ffe6f24 sayanpaul01 2025-08-15 Commit
html ffe6f24 sayanpaul01 2025-08-15 Commit

πŸ“Œ Total Reads by Sample

Load Required Libraries

# Load necessary R packages
library(edgeR)
Warning: package 'edgeR' was built under R version 4.3.2
Loading required package: limma
Warning: package 'limma' was built under R version 4.3.1
library(limma)
library(RColorBrewer)
library(gridExtra)
library(reshape2)
library(data.table)
Warning: package 'data.table' was built under R version 4.3.3

Attaching package: 'data.table'
The following objects are masked from 'package:reshape2':

    dcast, melt
library(tidyverse)
Warning: package 'tidyverse' was built under R version 4.3.2
Warning: package 'tidyr' was built under R version 4.3.3
Warning: package 'readr' was built under R version 4.3.3
Warning: package 'purrr' was built under R version 4.3.3
Warning: package 'dplyr' was built under R version 4.3.2
Warning: package 'stringr' was built under R version 4.3.2
Warning: package 'lubridate' was built under R version 4.3.3
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
βœ” dplyr     1.1.4     βœ” readr     2.1.5
βœ” forcats   1.0.0     βœ” stringr   1.5.1
βœ” ggplot2   3.5.2     βœ” tibble    3.2.1
βœ” lubridate 1.9.4     βœ” tidyr     1.3.1
βœ” purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
βœ– dplyr::between()     masks data.table::between()
βœ– dplyr::combine()     masks gridExtra::combine()
βœ– dplyr::filter()      masks stats::filter()
βœ– dplyr::first()       masks data.table::first()
βœ– lubridate::hour()    masks data.table::hour()
βœ– lubridate::isoweek() masks data.table::isoweek()
βœ– dplyr::lag()         masks stats::lag()
βœ– dplyr::last()        masks data.table::last()
βœ– lubridate::mday()    masks data.table::mday()
βœ– lubridate::minute()  masks data.table::minute()
βœ– lubridate::month()   masks data.table::month()
βœ– lubridate::quarter() masks data.table::quarter()
βœ– lubridate::second()  masks data.table::second()
βœ– purrr::transpose()   masks data.table::transpose()
βœ– lubridate::wday()    masks data.table::wday()
βœ– lubridate::week()    masks data.table::week()
βœ– lubridate::yday()    masks data.table::yday()
βœ– lubridate::year()    masks data.table::year()
β„Ή Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(scales)
Warning: package 'scales' was built under R version 4.3.2

Attaching package: 'scales'

The following object is masked from 'package:purrr':

    discard

The following object is masked from 'package:readr':

    col_factor
library(biomaRt)
Warning: package 'biomaRt' was built under R version 4.3.2
library(cowplot)
Warning: package 'cowplot' was built under R version 4.3.2

Attaching package: 'cowplot'

The following object is masked from 'package:lubridate':

    stamp
library(ggrepel)
Warning: package 'ggrepel' was built under R version 4.3.3
library(corrplot)
Warning: package 'corrplot' was built under R version 4.3.3
corrplot 0.95 loaded
library(Hmisc)
Warning: package 'Hmisc' was built under R version 4.3.3

Attaching package: 'Hmisc'

The following objects are masked from 'package:dplyr':

    src, summarize

The following objects are masked from 'package:base':

    format.pval, units
library(ggpubr)
Warning: package 'ggpubr' was built under R version 4.3.1

Attaching package: 'ggpubr'

The following object is masked from 'package:cowplot':

    get_legend

πŸ“ 2. Load Data

align<-read.csv("data/ChIP Seq Summary stat TOP2B P53.csv")

map<-data.frame(align)

map$Treatment<- factor(map$Treatment, levels = c("VEH_TOP2B", "DOX_TOP2B", "VEH_p53", "DOX_p53", "VEH_Input_P53", "DOX_Input_P53"))

πŸ“ 3. Define Color Palettes

drug_palc <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")

Ind_palc <- c("#ffbe0b","#ff006e","#fb5607", "#8338ec","#3a86ff","#4a4e69")

Treat_palc <- c("#ffbe0b","#ff006e","#fb5607", "#8338ec", "#800080","#FFC0CB")

Map_palc <- c("#9b19f5","#e6d800", "#b3d4ff")

Combined_palc <- c("#FF0000","#00FF00","#0000FF","#FFFF00","#FF00FF","#00FFFF","#FFA500","#800080","#FFC0CB","#A52A2A","#808080","#FFD700")

Type_palc <- c("#800080","#FFD700")

πŸ“ 4. Prepare Data

# Factor Sample_name to maintain order
map$Sample.Det<-factor(map$Sample.Det,levels = map$Sample.Det)

πŸ“ 5. Plot Total Reads by Sample

map %>%
  #mutate(Drug=factor(Drug,levels=c("CX-5461","DOX","VEH"))) %>%
  #mutate(Conc.=factor(Conc.,levels=c("0.1","0.5"))) %>%
  #mutate(Time=factor(Time,levels=c("3","24","48"))) %>%
  #group_by(Drug,Conc.,Time) %>%
  ggplot(., aes (x =Sample.Det, y=Total.Reads..before.trimming., fill = Ind))+
  geom_col()+
  #geom_hline(aes(yintercept=20000000))+
  scale_fill_manual(values=Ind_palc)+
  scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6))+
  ggtitle(expression("Total number of reads by sample"))+
  xlab("")+
  ylab(expression("ChIP -sequencing reads"))+
  theme_bw()+
  theme(plot.title = element_text(size = rel(2), hjust = 0.5),
        axis.title = element_text(size = 15, color = "black"),
        axis.ticks = element_line(linewidth = 1.5),
        axis.line = element_line(linewidth = 1.5),
        axis.text.y = element_text(size =10, color = "black", angle = 0, hjust = 0.8, vjust = 0.5),
        axis.text.x = element_text(size =10, color = "black", angle = 90, hjust = 1, vjust = 0.2),
        #strip.text.x = element_text(size = 15, color = "black", face = "bold"),
        strip.text.y = element_text(color = "white"))

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Total Reads by Individuals

map %>%
  ggplot(aes(x = Ind, y = Total.Reads..before.trimming., fill = Ind)) +
  geom_boxplot() +
  scale_fill_manual(values = Ind_palc) +
  scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
                     limits = c(0, NA)) +
  ggtitle(expression("Total number of reads by Individual")) +
  xlab("") +
  ylab(expression("ChIP -sequencing reads")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Total Reads by Treatment

map %>%
  ggplot(aes(x = Treatment, y = Total.Reads..before.trimming., fill = Treatment)) +
  geom_boxplot() +
  scale_fill_manual(values = Treat_palc) +
  scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
                     limits = c(0, NA)) +
  ggtitle(expression("Total number of reads by Treatment")) +
  xlab("") +
  ylab(expression("ChIP -sequencing reads")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Total Reads by Sample type

map %>%
  ggplot(aes(x = Type, y = Total.Reads..before.trimming., fill = Type)) +
  geom_boxplot() +
  scale_fill_manual(values = Type_palc) +
  scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
                     limits = c(0, NA)) +
  ggtitle(expression("Total number of reads by Sample Type")) +
  xlab("") +
  ylab(expression("ChIP -sequencing reads")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Total Reads by Individuals and Sample type

map %>%
  ggplot(aes(x = Ind, y = Total.Reads..before.trimming., fill = Type)) +
  geom_boxplot() +
  scale_fill_manual(values = Type_palc) +
  scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
                     limits = c(0, NA)) +
  ggtitle(expression("Total number of reads by Individual and Sample Type")) +
  xlab("") +
  ylab(expression("ChIP -sequencing reads")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Number of reads before and after trimming

library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)

# Keep sample order as in file
map$Sample.Det <- factor(map$Sample.Det, levels = map$Sample.Det)

# Make sure read counts are numeric (in case CSV parsed as character)
map <- map %>%
  mutate(
    `Total.Reads..before.trimming.` = as.numeric(`Total.Reads..before.trimming.`),
    `Total.reads..after.Trimming.`  = as.numeric(`Total.reads..after.Trimming.`)
  )

# Compute kept fraction for annotation
map <- map %>%
  mutate(kept_frac = `Total.reads..after.Trimming.` / `Total.Reads..before.trimming.`)

# Long format for before vs after
map_long <- map %>%
  pivot_longer(
    cols = c(`Total.Reads..before.trimming.`, `Total.reads..after.Trimming.`),
    names_to = "TrimStage", values_to = "Reads"
  ) %>%
  mutate(
    TrimStage = factor(
      TrimStage,
      levels = c("Total.Reads..before.trimming.", "Total.reads..after.Trimming."),
      labels = c("Before trimming", "After trimming")
    )
  )

# High-contrast (colorblind-safe) colors
stage_colors <- c("Before trimming" = "#1f78b4",  # deep blue
                  "After trimming"  = "#ff7f00")  # bright orange

# Base plot
p <- ggplot(map_long, aes(x = Sample.Det, y = Reads, fill = TrimStage)) +
  geom_col(position = position_dodge(width = 0.8), width = 0.75, color = "black") +
  scale_fill_manual(values = stage_colors) +
  scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
  ggtitle(expression("Total number of reads by sample: before vs after trimming")) +
  xlab("") +
  ylab(expression("ChIP-sequencing reads")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90, hjust = 1, vjust = 0.2),
    legend.title = element_blank()
  )
p

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Mean Sequencing Reads Before and After Trimming by Individual, Sample Type, and Antibody

library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
library(stringr)

# --- Prep -------------------------------------------------------------

# Use your existing data frame name: map (change to df if needed)
df <- map

# Ensure required columns exist / are numeric
df <- df %>%
  mutate(
    `Total.Reads..before.trimming.` = as.numeric(`Total.Reads..before.trimming.`),
    `Total.reads..after.Trimming.`  = as.numeric(`Total.reads..after.Trimming.`)
  )

# Define Tx if your data uses 'Treatment'
if (!"Tx" %in% names(df) && "Treatment" %in% names(df)) {
  df <- df %>% mutate(Tx = Treatment)
}

# Normalize factors you care about
df <- df %>%
  mutate(
    Ab   = ifelse(is.na(Ab) | Ab == "", "Input", as.character(Ab)),
    Type = factor(Type, levels = c("ChIP_DNA", "Input_DNA"))  # adjust if your labels differ
  )

# Helper: label function for Y axis (millions)
reads_lab <- label_number(suffix = " M", scale = 1e-6)

# Kept fraction (After / Before)
df <- df %>%
  mutate(kept_frac = `Total.reads..after.Trimming.` / `Total.Reads..before.trimming.`)

# --- Group, summarise, pivot -----------------------------------------

group_sum <- df %>%
  group_by(Ind, Type, Ab, Tx) %>%
  summarise(
    before_mean = mean(`Total.Reads..before.trimming.`, na.rm = TRUE),
    after_mean  = mean(`Total.reads..after.Trimming.`,  na.rm = TRUE),
    kept_pct    = 100 * mean(kept_frac, na.rm = TRUE),
    .groups     = "drop"
  ) %>%
  pivot_longer(
    cols      = c(before_mean, after_mean),
    names_to  = "stage",
    values_to = "reads"
  ) %>%
  mutate(
    stage = factor(stage, levels = c("before_mean", "after_mean"),
                          labels = c("Before", "After")),
    facet_id = paste0(Ind, "_", Type, "_", Ab)
  )

# Order facets by Ind then Type (cleaner viewing)
facet_levels <- group_sum %>%
  distinct(Ind, Type, Ab, facet_id) %>%
  arrange(Ind, Type, Ab) %>%
  pull(facet_id)

group_sum <- group_sum %>%
  mutate(facet_id = factor(facet_id, levels = facet_levels))

# Optional: prettier strip labels (multi-line)
strip_labeller <- function(ids) {
  parts <- str_split(ids, "_", n = 3, simplify = TRUE)
  paste0("Ind: ", parts[,1], "\nType: ", parts[,2], "\nAb: ", parts[,3])
}

# Colors for Before / After
before_after_colors <- c("Before" = "#1f78b4", "After" = "#ff7f00")

# --- Plot -------------------------------------------------------------

p_group <- ggplot(group_sum, aes(x = Tx, y = reads, fill = stage)) +
  geom_col(position = position_dodge(width = 0.8), width = 0.7, color = "black") +
  scale_fill_manual(values = before_after_colors) +
  facet_wrap(~ facet_id, scales = "free_y",
             labeller = labeller(facet_id = strip_labeller)) +
  scale_y_continuous(labels = reads_lab) +
  labs(
    x = "Treatment",
    y = "Mean reads",
    title = "Mean reads by Individual Γ— Sample Type Γ— Antibody"
  ) +
  theme_bw(base_size = 12) +
  theme(
    legend.title = element_blank(),
    plot.title = element_text(hjust = 0.5, face = "bold"),
    strip.text  = element_text(size = 10)
  )

p_group

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Duplication percentage by Sample

map %>%
  ggplot(aes(x = Sample.Det, y = Duplication.percentage, fill = Ind)) +
  geom_col(color = "black") +
  scale_fill_manual(values = Ind_palc) +
  scale_y_continuous(limits = c(0, 100), expand = c(0, 0)) +
  ggtitle(expression("Duplication Percentage by Sample")) +
  xlab("") +
  ylab(expression("Duplication percentage")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Duplication percentage by Individual

map %>%
  ggplot(aes(x = Ind, y = Duplication.percentage, fill = Ind)) +
  geom_boxplot() +
  scale_fill_manual(values = Ind_palc) +
  scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
  ggtitle(expression("Duplication percentage by Individual")) +
  xlab("") +
  ylab(expression("Duplication percentage")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Duplication percentage by Treatment

map %>%
  ggplot(aes(x = Treatment, y = Duplication.percentage, fill = Treatment)) +
  geom_boxplot() +
  scale_fill_manual(values = Treat_palc) +
  scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
  ggtitle(expression("Duplication percentage by Treatment")) +
  xlab("") +
  ylab(expression("Duplication percentage")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Duplication percentage by Sample type

map %>%
  ggplot(aes(x = Type, y = Duplication.percentage, fill = Type)) +
  geom_boxplot() +
  scale_fill_manual(values = Type_palc) +
  scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
  ggtitle(expression("Duplication percentage by Sample Type")) +
  xlab("") +
  ylab(expression("Duplication percentage")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

πŸ“Œ Duplication percentage by Individual and Sample type

map %>%
  ggplot(aes(x = Ind, y = Duplication.percentage, fill = Type)) +
  geom_boxplot() +
  scale_fill_manual(values = Type_palc) +
  scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
  ggtitle(expression("Duplication percentage by Individual and Sample Type")) +
  xlab("") +
  ylab(expression("Duplication percentage")) +
  theme_bw() +
  theme(
    plot.title  = element_text(size = rel(2), hjust = 0.5),
    axis.title  = element_text(size = 15, color = "black"),
    axis.ticks  = element_line(linewidth = 1.5),
    axis.line   = element_line(linewidth = 1.5),
    axis.text.y = element_text(size = 10, color = "black"),
    axis.text.x = element_text(size = 10, color = "black", angle = 90,
                               hjust = 1, vjust = 0.2),
    strip.text.y = element_text(color = "white")
  )

Version Author Date
ffe6f24 sayanpaul01 2025-08-15

sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggpubr_0.6.0       Hmisc_5.2-3        corrplot_0.95      ggrepel_0.9.6     
 [5] cowplot_1.1.3      biomaRt_2.58.2     scales_1.3.0       lubridate_1.9.4   
 [9] forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4        purrr_1.0.4       
[13] readr_2.1.5        tidyr_1.3.1        tibble_3.2.1       ggplot2_3.5.2     
[17] tidyverse_2.0.0    data.table_1.17.0  reshape2_1.4.4     gridExtra_2.3     
[21] RColorBrewer_1.1-3 edgeR_4.0.16       limma_3.58.1      

loaded via a namespace (and not attached):
 [1] DBI_1.2.3               bitops_1.0-9            rlang_1.1.3            
 [4] magrittr_2.0.3          git2r_0.36.2            compiler_4.3.0         
 [7] RSQLite_2.3.9           png_0.1-8               vctrs_0.6.5            
[10] pkgconfig_2.0.3         crayon_1.5.3            fastmap_1.2.0          
[13] backports_1.5.0         dbplyr_2.5.0            XVector_0.42.0         
[16] labeling_0.4.3          promises_1.3.2          rmarkdown_2.29         
[19] tzdb_0.5.0              bit_4.6.0               xfun_0.52              
[22] zlibbioc_1.48.2         cachem_1.1.0            GenomeInfoDb_1.38.8    
[25] jsonlite_2.0.0          progress_1.2.3          blob_1.2.4             
[28] later_1.3.2             broom_1.0.8             prettyunits_1.2.0      
[31] cluster_2.1.8.1         R6_2.6.1                bslib_0.9.0            
[34] stringi_1.8.3           car_3.1-3               rpart_4.1.24           
[37] jquerylib_0.1.4         Rcpp_1.0.12             knitr_1.50             
[40] base64enc_0.1-3         IRanges_2.36.0          httpuv_1.6.15          
[43] nnet_7.3-20             timechange_0.3.0        tidyselect_1.2.1       
[46] abind_1.4-8             rstudioapi_0.17.1       yaml_2.3.10            
[49] curl_6.2.2              lattice_0.22-7          plyr_1.8.9             
[52] Biobase_2.62.0          withr_3.0.2             KEGGREST_1.42.0        
[55] evaluate_1.0.3          foreign_0.8-90          BiocFileCache_2.10.2   
[58] xml2_1.3.8              Biostrings_2.70.3       pillar_1.10.2          
[61] filelock_1.0.3          carData_3.0-5           whisker_0.4.1          
[64] checkmate_2.3.2         stats4_4.3.0            generics_0.1.3         
[67] rprojroot_2.0.4         RCurl_1.98-1.17         S4Vectors_0.40.2       
[70] hms_1.1.3               munsell_0.5.1           glue_1.7.0             
[73] tools_4.3.0             ggsignif_0.6.4          locfit_1.5-9.12        
[76] fs_1.6.3                XML_3.99-0.18           grid_4.3.0             
[79] AnnotationDbi_1.64.1    colorspace_2.1-0        GenomeInfoDbData_1.2.11
[82] htmlTable_2.4.3         Formula_1.2-5           cli_3.6.1              
[85] rappdirs_0.3.3          workflowr_1.7.1         gtable_0.3.6           
[88] rstatix_0.7.2           sass_0.4.10             digest_0.6.34          
[91] BiocGenerics_0.48.1     farver_2.1.2            htmlwidgets_1.6.4      
[94] memoise_2.0.1           htmltools_0.5.8.1       lifecycle_1.0.4        
[97] httr_1.4.7              statmod_1.5.0           bit64_4.6.0-1