Last updated: 2025-08-15
Checks: 7 0
Knit directory: ChIPSeq_project/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity itβs best to always run the code in an empty environment.
The command set.seed(20250815) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ffe6f24. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Note that any generated files, e.g.Β HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/Total_Reads_and_Mapped_Reads_TOP2B_P53.Rmd) and
HTML (docs/Total_Reads_and_Mapped_Reads_TOP2B_P53.html)
files. If youβve configured a remote Git repository (see
?wflow_git_remote), click on the hyperlinks in the table
below to view the files as they were in that past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | ffe6f24 | sayanpaul01 | 2025-08-15 | Commit |
| html | ffe6f24 | sayanpaul01 | 2025-08-15 | Commit |
# Load necessary R packages
library(edgeR)
Warning: package 'edgeR' was built under R version 4.3.2
Loading required package: limma
Warning: package 'limma' was built under R version 4.3.1
library(limma)
library(RColorBrewer)
library(gridExtra)
library(reshape2)
library(data.table)
Warning: package 'data.table' was built under R version 4.3.3
Attaching package: 'data.table'
The following objects are masked from 'package:reshape2':
dcast, melt
library(tidyverse)
Warning: package 'tidyverse' was built under R version 4.3.2
Warning: package 'tidyr' was built under R version 4.3.3
Warning: package 'readr' was built under R version 4.3.3
Warning: package 'purrr' was built under R version 4.3.3
Warning: package 'dplyr' was built under R version 4.3.2
Warning: package 'stringr' was built under R version 4.3.2
Warning: package 'lubridate' was built under R version 4.3.3
ββ Attaching core tidyverse packages ββββββββββββββββββββββββ tidyverse 2.0.0 ββ
β dplyr 1.1.4 β readr 2.1.5
β forcats 1.0.0 β stringr 1.5.1
β ggplot2 3.5.2 β tibble 3.2.1
β lubridate 1.9.4 β tidyr 1.3.1
β purrr 1.0.4
ββ Conflicts ββββββββββββββββββββββββββββββββββββββββββ tidyverse_conflicts() ββ
β dplyr::between() masks data.table::between()
β dplyr::combine() masks gridExtra::combine()
β dplyr::filter() masks stats::filter()
β dplyr::first() masks data.table::first()
β lubridate::hour() masks data.table::hour()
β lubridate::isoweek() masks data.table::isoweek()
β dplyr::lag() masks stats::lag()
β dplyr::last() masks data.table::last()
β lubridate::mday() masks data.table::mday()
β lubridate::minute() masks data.table::minute()
β lubridate::month() masks data.table::month()
β lubridate::quarter() masks data.table::quarter()
β lubridate::second() masks data.table::second()
β purrr::transpose() masks data.table::transpose()
β lubridate::wday() masks data.table::wday()
β lubridate::week() masks data.table::week()
β lubridate::yday() masks data.table::yday()
β lubridate::year() masks data.table::year()
βΉ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(scales)
Warning: package 'scales' was built under R version 4.3.2
Attaching package: 'scales'
The following object is masked from 'package:purrr':
discard
The following object is masked from 'package:readr':
col_factor
library(biomaRt)
Warning: package 'biomaRt' was built under R version 4.3.2
library(cowplot)
Warning: package 'cowplot' was built under R version 4.3.2
Attaching package: 'cowplot'
The following object is masked from 'package:lubridate':
stamp
library(ggrepel)
Warning: package 'ggrepel' was built under R version 4.3.3
library(corrplot)
Warning: package 'corrplot' was built under R version 4.3.3
corrplot 0.95 loaded
library(Hmisc)
Warning: package 'Hmisc' was built under R version 4.3.3
Attaching package: 'Hmisc'
The following objects are masked from 'package:dplyr':
src, summarize
The following objects are masked from 'package:base':
format.pval, units
library(ggpubr)
Warning: package 'ggpubr' was built under R version 4.3.1
Attaching package: 'ggpubr'
The following object is masked from 'package:cowplot':
get_legend
align<-read.csv("data/ChIP Seq Summary stat TOP2B P53.csv")
map<-data.frame(align)
map$Treatment<- factor(map$Treatment, levels = c("VEH_TOP2B", "DOX_TOP2B", "VEH_p53", "DOX_p53", "VEH_Input_P53", "DOX_Input_P53"))
drug_palc <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
Ind_palc <- c("#ffbe0b","#ff006e","#fb5607", "#8338ec","#3a86ff","#4a4e69")
Treat_palc <- c("#ffbe0b","#ff006e","#fb5607", "#8338ec", "#800080","#FFC0CB")
Map_palc <- c("#9b19f5","#e6d800", "#b3d4ff")
Combined_palc <- c("#FF0000","#00FF00","#0000FF","#FFFF00","#FF00FF","#00FFFF","#FFA500","#800080","#FFC0CB","#A52A2A","#808080","#FFD700")
Type_palc <- c("#800080","#FFD700")
# Factor Sample_name to maintain order
map$Sample.Det<-factor(map$Sample.Det,levels = map$Sample.Det)
map %>%
#mutate(Drug=factor(Drug,levels=c("CX-5461","DOX","VEH"))) %>%
#mutate(Conc.=factor(Conc.,levels=c("0.1","0.5"))) %>%
#mutate(Time=factor(Time,levels=c("3","24","48"))) %>%
#group_by(Drug,Conc.,Time) %>%
ggplot(., aes (x =Sample.Det, y=Total.Reads..before.trimming., fill = Ind))+
geom_col()+
#geom_hline(aes(yintercept=20000000))+
scale_fill_manual(values=Ind_palc)+
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6))+
ggtitle(expression("Total number of reads by sample"))+
xlab("")+
ylab(expression("ChIP -sequencing reads"))+
theme_bw()+
theme(plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size =10, color = "black", angle = 0, hjust = 0.8, vjust = 0.5),
axis.text.x = element_text(size =10, color = "black", angle = 90, hjust = 1, vjust = 0.2),
#strip.text.x = element_text(size = 15, color = "black", face = "bold"),
strip.text.y = element_text(color = "white"))

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Total.Reads..before.trimming., fill = Ind)) +
geom_boxplot() +
scale_fill_manual(values = Ind_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Individual")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Treatment, y = Total.Reads..before.trimming., fill = Treatment)) +
geom_boxplot() +
scale_fill_manual(values = Treat_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Treatment")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Type, y = Total.Reads..before.trimming., fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Sample Type")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Total.Reads..before.trimming., fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Individual and Sample Type")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# Keep sample order as in file
map$Sample.Det <- factor(map$Sample.Det, levels = map$Sample.Det)
# Make sure read counts are numeric (in case CSV parsed as character)
map <- map %>%
mutate(
`Total.Reads..before.trimming.` = as.numeric(`Total.Reads..before.trimming.`),
`Total.reads..after.Trimming.` = as.numeric(`Total.reads..after.Trimming.`)
)
# Compute kept fraction for annotation
map <- map %>%
mutate(kept_frac = `Total.reads..after.Trimming.` / `Total.Reads..before.trimming.`)
# Long format for before vs after
map_long <- map %>%
pivot_longer(
cols = c(`Total.Reads..before.trimming.`, `Total.reads..after.Trimming.`),
names_to = "TrimStage", values_to = "Reads"
) %>%
mutate(
TrimStage = factor(
TrimStage,
levels = c("Total.Reads..before.trimming.", "Total.reads..after.Trimming."),
labels = c("Before trimming", "After trimming")
)
)
# High-contrast (colorblind-safe) colors
stage_colors <- c("Before trimming" = "#1f78b4", # deep blue
"After trimming" = "#ff7f00") # bright orange
# Base plot
p <- ggplot(map_long, aes(x = Sample.Det, y = Reads, fill = TrimStage)) +
geom_col(position = position_dodge(width = 0.8), width = 0.75, color = "black") +
scale_fill_manual(values = stage_colors) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
ggtitle(expression("Total number of reads by sample: before vs after trimming")) +
xlab("") +
ylab(expression("ChIP-sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90, hjust = 1, vjust = 0.2),
legend.title = element_blank()
)
p

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
library(stringr)
# --- Prep -------------------------------------------------------------
# Use your existing data frame name: map (change to df if needed)
df <- map
# Ensure required columns exist / are numeric
df <- df %>%
mutate(
`Total.Reads..before.trimming.` = as.numeric(`Total.Reads..before.trimming.`),
`Total.reads..after.Trimming.` = as.numeric(`Total.reads..after.Trimming.`)
)
# Define Tx if your data uses 'Treatment'
if (!"Tx" %in% names(df) && "Treatment" %in% names(df)) {
df <- df %>% mutate(Tx = Treatment)
}
# Normalize factors you care about
df <- df %>%
mutate(
Ab = ifelse(is.na(Ab) | Ab == "", "Input", as.character(Ab)),
Type = factor(Type, levels = c("ChIP_DNA", "Input_DNA")) # adjust if your labels differ
)
# Helper: label function for Y axis (millions)
reads_lab <- label_number(suffix = " M", scale = 1e-6)
# Kept fraction (After / Before)
df <- df %>%
mutate(kept_frac = `Total.reads..after.Trimming.` / `Total.Reads..before.trimming.`)
# --- Group, summarise, pivot -----------------------------------------
group_sum <- df %>%
group_by(Ind, Type, Ab, Tx) %>%
summarise(
before_mean = mean(`Total.Reads..before.trimming.`, na.rm = TRUE),
after_mean = mean(`Total.reads..after.Trimming.`, na.rm = TRUE),
kept_pct = 100 * mean(kept_frac, na.rm = TRUE),
.groups = "drop"
) %>%
pivot_longer(
cols = c(before_mean, after_mean),
names_to = "stage",
values_to = "reads"
) %>%
mutate(
stage = factor(stage, levels = c("before_mean", "after_mean"),
labels = c("Before", "After")),
facet_id = paste0(Ind, "_", Type, "_", Ab)
)
# Order facets by Ind then Type (cleaner viewing)
facet_levels <- group_sum %>%
distinct(Ind, Type, Ab, facet_id) %>%
arrange(Ind, Type, Ab) %>%
pull(facet_id)
group_sum <- group_sum %>%
mutate(facet_id = factor(facet_id, levels = facet_levels))
# Optional: prettier strip labels (multi-line)
strip_labeller <- function(ids) {
parts <- str_split(ids, "_", n = 3, simplify = TRUE)
paste0("Ind: ", parts[,1], "\nType: ", parts[,2], "\nAb: ", parts[,3])
}
# Colors for Before / After
before_after_colors <- c("Before" = "#1f78b4", "After" = "#ff7f00")
# --- Plot -------------------------------------------------------------
p_group <- ggplot(group_sum, aes(x = Tx, y = reads, fill = stage)) +
geom_col(position = position_dodge(width = 0.8), width = 0.7, color = "black") +
scale_fill_manual(values = before_after_colors) +
facet_wrap(~ facet_id, scales = "free_y",
labeller = labeller(facet_id = strip_labeller)) +
scale_y_continuous(labels = reads_lab) +
labs(
x = "Treatment",
y = "Mean reads",
title = "Mean reads by Individual Γ Sample Type Γ Antibody"
) +
theme_bw(base_size = 12) +
theme(
legend.title = element_blank(),
plot.title = element_text(hjust = 0.5, face = "bold"),
strip.text = element_text(size = 10)
)
p_group

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Sample.Det, y = Duplication.percentage, fill = Ind)) +
geom_col(color = "black") +
scale_fill_manual(values = Ind_palc) +
scale_y_continuous(limits = c(0, 100), expand = c(0, 0)) +
ggtitle(expression("Duplication Percentage by Sample")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Duplication.percentage, fill = Ind)) +
geom_boxplot() +
scale_fill_manual(values = Ind_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Individual")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Treatment, y = Duplication.percentage, fill = Treatment)) +
geom_boxplot() +
scale_fill_manual(values = Treat_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Treatment")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Type, y = Duplication.percentage, fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Sample Type")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Duplication.percentage, fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Individual and Sample Type")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)

| Version | Author | Date |
|---|---|---|
| ffe6f24 | sayanpaul01 | 2025-08-15 |
sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 26100)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/Chicago
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggpubr_0.6.0 Hmisc_5.2-3 corrplot_0.95 ggrepel_0.9.6
[5] cowplot_1.1.3 biomaRt_2.58.2 scales_1.3.0 lubridate_1.9.4
[9] forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4 purrr_1.0.4
[13] readr_2.1.5 tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.2
[17] tidyverse_2.0.0 data.table_1.17.0 reshape2_1.4.4 gridExtra_2.3
[21] RColorBrewer_1.1-3 edgeR_4.0.16 limma_3.58.1
loaded via a namespace (and not attached):
[1] DBI_1.2.3 bitops_1.0-9 rlang_1.1.3
[4] magrittr_2.0.3 git2r_0.36.2 compiler_4.3.0
[7] RSQLite_2.3.9 png_0.1-8 vctrs_0.6.5
[10] pkgconfig_2.0.3 crayon_1.5.3 fastmap_1.2.0
[13] backports_1.5.0 dbplyr_2.5.0 XVector_0.42.0
[16] labeling_0.4.3 promises_1.3.2 rmarkdown_2.29
[19] tzdb_0.5.0 bit_4.6.0 xfun_0.52
[22] zlibbioc_1.48.2 cachem_1.1.0 GenomeInfoDb_1.38.8
[25] jsonlite_2.0.0 progress_1.2.3 blob_1.2.4
[28] later_1.3.2 broom_1.0.8 prettyunits_1.2.0
[31] cluster_2.1.8.1 R6_2.6.1 bslib_0.9.0
[34] stringi_1.8.3 car_3.1-3 rpart_4.1.24
[37] jquerylib_0.1.4 Rcpp_1.0.12 knitr_1.50
[40] base64enc_0.1-3 IRanges_2.36.0 httpuv_1.6.15
[43] nnet_7.3-20 timechange_0.3.0 tidyselect_1.2.1
[46] abind_1.4-8 rstudioapi_0.17.1 yaml_2.3.10
[49] curl_6.2.2 lattice_0.22-7 plyr_1.8.9
[52] Biobase_2.62.0 withr_3.0.2 KEGGREST_1.42.0
[55] evaluate_1.0.3 foreign_0.8-90 BiocFileCache_2.10.2
[58] xml2_1.3.8 Biostrings_2.70.3 pillar_1.10.2
[61] filelock_1.0.3 carData_3.0-5 whisker_0.4.1
[64] checkmate_2.3.2 stats4_4.3.0 generics_0.1.3
[67] rprojroot_2.0.4 RCurl_1.98-1.17 S4Vectors_0.40.2
[70] hms_1.1.3 munsell_0.5.1 glue_1.7.0
[73] tools_4.3.0 ggsignif_0.6.4 locfit_1.5-9.12
[76] fs_1.6.3 XML_3.99-0.18 grid_4.3.0
[79] AnnotationDbi_1.64.1 colorspace_2.1-0 GenomeInfoDbData_1.2.11
[82] htmlTable_2.4.3 Formula_1.2-5 cli_3.6.1
[85] rappdirs_0.3.3 workflowr_1.7.1 gtable_0.3.6
[88] rstatix_0.7.2 sass_0.4.10 digest_0.6.34
[91] BiocGenerics_0.48.1 farver_2.1.2 htmlwidgets_1.6.4
[94] memoise_2.0.1 htmltools_0.5.8.1 lifecycle_1.0.4
[97] httr_1.4.7 statmod_1.5.0 bit64_4.6.0-1