Last updated: 2021-09-14

Checks: 7 0

Knit directory: soil_alcontar/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210907) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b2f355b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/C369E4F4/
    Ignored:    .Rproj.user/shared/notebooks/0EF54E14-NOBORRAR/
    Ignored:    .Rproj.user/shared/notebooks/27FF967E-analysis_pre_post_epoca/
    Ignored:    .Rproj.user/shared/notebooks/33E25F73-analysis_resilience/
    Ignored:    .Rproj.user/shared/notebooks/3F603CAC-map/
    Ignored:    .Rproj.user/shared/notebooks/4672E36C-study_area/
    Ignored:    .Rproj.user/shared/notebooks/4A68381F-general_overview_soils/
    Ignored:    .Rproj.user/shared/notebooks/4E13660A-temporal_comparison/
    Ignored:    .Rproj.user/shared/notebooks/5D919DFD-analysis_zona_time_postFire/
    Ignored:    .Rproj.user/shared/notebooks/827D0727-analysis_pre_post/
    Ignored:    .Rproj.user/shared/notebooks/A3F813C2-index/
    Ignored:    .Rproj.user/shared/notebooks/D4E3AA10-analysis_zona_time/

Untracked files:
    Untracked:  analysis/NOBORRAR.Rmd
    Untracked:  analysis/analysis_pre_post_cache/
    Untracked:  analysis/test.Rmd
    Untracked:  data/spatial/01_EP_ANDALUCIA/EP_Andalucía.shp.DESKTOP-CKNNEUJ.5492.5304.sr.lock
    Untracked:  data/spatial/lucdeme/
    Untracked:  data/spatial/parcelas/GEO_PARCELAS.shp.DESKTOP-CKNNEUJ.5492.5304.sr.lock
    Untracked:  data/spatial/test/
    Untracked:  map.Rmd
    Untracked:  output/anovas_pre_post_epoca.csv
    Untracked:  output/anovas_zona_time.csv
    Untracked:  output/anovas_zona_time_postFire.csv
    Untracked:  scripts/generate_3dview.R

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   data/spatial/.DS_Store
    Modified:   data/spatial/01_EP_ANDALUCIA/EP_Andalucía.dbf
    Deleted:    index.Rmd
    Modified:   scripts/00_prepare_data.R
    Modified:   temporal_comparison.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_zona_time_postFire.Rmd) and HTML (docs/analysis_zona_time_postFire.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b2f355b ajpelu 2021-09-14 add analysis

Introduction

  • Analysis of temporal evolution of soil parameters along time.

  • Only for Autumn treatment (i.e. zona == “P”; zona == “NP”)

  • Interpret zona as “grazing effect”:

    • zona == “P” corresponds to Browsing
    • zona == “NP” corresponds to No Browsing

Prepare data

raw_soil <- readxl::read_excel(here::here("data/Resultados_Suelos_2018_2021_v2.xlsx"), 
    sheet = "SEGUIMIENTO_SUELOS_sin_ouliers") %>% janitor::clean_names() %>% mutate(treatment_name = case_when(str_detect(geo_parcela_nombre, 
    "NP_") ~ "Autumn Burning / No Browsing", str_detect(geo_parcela_nombre, "PR_") ~ 
    "Spring Burning / Browsing", str_detect(geo_parcela_nombre, "P_") ~ "Autumn Burning / Browsing"), 
    zona = case_when(str_detect(geo_parcela_nombre, "NP_") ~ "QOt_NP", str_detect(geo_parcela_nombre, 
        "PR_") ~ "QPr_P", str_detect(geo_parcela_nombre, "P_") ~ "QOt_P"), fecha = lubridate::ymd(fecha), 
    pre_post_quema = case_when(pre_post_quema == "Prequema" ~ "0 preQuema", pre_post_quema == 
        "Postquema" ~ "1 postQuema"))
  • Compute date as months after fire
autumn_fire <- lubridate::ymd("2018-12-18")

soil <- raw_soil %>% filter(zona != "QPr_P") %>% filter(fecha != "2018-12-11") %>% 
    mutate(zona = as.factor(zona)) %>% mutate(meses = as.factor(as.character(lubridate::interval(autumn_fire, 
    lubridate::ymd(fecha))%/%months(1)))) %>% mutate(pastoreo = as.factor(case_when(zona == 
    "QOt_P" ~ "Browsing", zona == "QOt_NP" ~ "No Browsing"))) %>% relocate(pastoreo, 
    fecha, meses) %>% dplyr::select(-pre_post_quema, -tratamiento)

xtabs(~meses + pastoreo, data = soil)
     pastoreo
meses Browsing No Browsing
   0        24          24
   22       25          25
   29       24          24
# sss <- soil %>% dplyr::select(meses, pastoreo, ca_percent)

Modelize

  • For each response variable, the approach modelling is

\(Y \sim pastoreo (Browsing|NoBrowsing)+ Fecha(0|22|29) + zona \times Fecha\)

  • using the “(1|pastoreo:geo_parcela_nombre)” as nested random effects

Humedad

humedad ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)    
pastoreo         4.60   4.597     1   6.005  0.6233 0.4598622    
meses          362.22 181.110     2 133.044 24.5534 8.395e-10 ***
pastoreo:meses 132.90  66.452     2 133.044  9.0090 0.0002141 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean    SE   df lower.CL upper.CL
 Browsing      11.1 0.883 6.01     8.96     13.3
 No Browsing   10.1 0.882 5.99     7.98     12.3

Results are averaged over the levels of: meses 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate   SE df t.ratio p.value
 Browsing - No Browsing    0.985 1.25  6 0.789   0.4599 

Results are averaged over the levels of: meses 
Degrees-of-freedom method: kenward-roger 
$`emmeans of meses`
 meses emmean    SE   df lower.CL upper.CL
 0      12.13 0.702 9.55    10.55     13.7
 22      8.47 0.697 9.33     6.90     10.0
 29     11.30 0.704 9.69     9.72     12.9

Results are averaged over the levels of: pastoreo 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate    SE  df t.ratio p.value
 0 - 22     3.661 0.549 133  6.668  <.0001 
 0 - 29     0.827 0.558 133  1.483  0.3023 
 22 - 29   -2.834 0.552 133 -5.131  <.0001 

Results are averaged over the levels of: pastoreo 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE   df lower.CL upper.CL
 0      11.39 0.992 9.55     9.17     13.6
 22     10.05 0.986 9.33     7.83     12.3
 29     11.93 0.999 9.82     9.69     14.2

pastoreo = No Browsing:
 meses emmean    SE   df lower.CL upper.CL
 0      12.86 0.992 9.55    10.64     15.1
 22      6.88 0.986 9.33     4.66      9.1
 29     10.67 0.992 9.55     8.45     12.9

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22     1.339 0.776 133  1.725  0.1996 
 0 - 29    -0.533 0.793 133 -0.673  0.7798 
 22 - 29   -1.873 0.786 133 -2.383  0.0485 

pastoreo = No Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22     5.983 0.776 133  7.705  <.0001 
 0 - 29     2.187 0.784 133  2.789  0.0166 
 22 - 29   -3.796 0.776 133 -4.889  <.0001 

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

CIC

cic ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF   DenDF F value Pr(>F)    
pastoreo         4.21   4.210     1   5.979  1.3273 0.2933    
meses          435.43 217.716     2 133.999 68.6311 <2e-16 ***
pastoreo:meses   2.97   1.485     2 133.999  0.4682 0.6271    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean    SE df lower.CL upper.CL
 Browsing      16.8 0.555  6     15.5     18.2
 No Browsing   15.9 0.555  6     14.6     17.3

Results are averaged over the levels of: meses 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate    SE df t.ratio p.value
 Browsing - No Browsing    0.904 0.784  6 1.152   0.2931 

Results are averaged over the levels of: meses 
Degrees-of-freedom method: kenward-roger 
$`emmeans of meses`
 meses emmean    SE   df lower.CL upper.CL
 0       15.3 0.445 9.92     14.3     16.3
 22      15.0 0.442 9.67     14.0     16.0
 29      18.8 0.445 9.92     17.8     19.8

Results are averaged over the levels of: pastoreo 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate    SE  df t.ratio p.value
 0 - 22     0.325 0.360 134   0.903 0.6395 
 0 - 29    -3.500 0.364 134  -9.627 <.0001 
 22 - 29   -3.825 0.360 134 -10.624 <.0001 

Results are averaged over the levels of: pastoreo 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE   df lower.CL upper.CL
 0       15.6 0.630 9.92     14.2     17.0
 22      15.6 0.626 9.67     14.2     17.0
 29      19.4 0.630 9.92     18.0     20.8

pastoreo = No Browsing:
 meses emmean    SE   df lower.CL upper.CL
 0       15.1 0.630 9.92     13.7     16.5
 22      14.4 0.626 9.67     13.0     15.8
 29      18.3 0.630 9.92     16.9     19.7

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22    0.0111 0.509 134  0.022  0.9997 
 0 - 29   -3.7917 0.514 134 -7.375  <.0001 
 22 - 29  -3.8027 0.509 134 -7.468  <.0001 

pastoreo = No Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22    0.6390 0.509 134  1.255  0.4231 
 0 - 29   -3.2083 0.514 134 -6.240  <.0001 
 22 - 29  -3.8474 0.509 134 -7.556  <.0001 

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

C

c_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Type III Analysis of Variance Table with Satterthwaite's method
                Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)    
pastoreo        2.9927  2.9927     1   5.995  1.5033 0.2661352    
meses          30.1228 15.0614     2 134.001  7.5658 0.0007706 ***
pastoreo:meses  0.5280  0.2640     2 134.001  0.1326 0.8759091    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean    SE df lower.CL upper.CL
 Browsing      8.06 0.768  6     6.18     9.94
 No Browsing   6.73 0.768  6     4.85     8.61

Results are averaged over the levels of: meses 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate   SE df t.ratio p.value
 Browsing - No Browsing     1.33 1.09  6 1.226   0.2661 

Results are averaged over the levels of: meses 
Degrees-of-freedom method: kenward-roger 
$`emmeans of meses`
 meses emmean    SE   df lower.CL upper.CL
 0       8.00 0.568 7.18     6.66     9.33
 22      6.91 0.567 7.11     5.57     8.24
 29      7.27 0.568 7.18     5.94     8.61

Results are averaged over the levels of: pastoreo 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate    SE  df t.ratio p.value
 0 - 22     1.092 0.285 134  3.830  0.0006 
 0 - 29     0.726 0.288 134  2.519  0.0343 
 22 - 29   -0.367 0.285 134 -1.286  0.4053 

Results are averaged over the levels of: pastoreo 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE   df lower.CL upper.CL
 0       8.73 0.804 7.18     6.84    10.62
 22      7.49 0.802 7.11     5.60     9.38
 29      7.96 0.804 7.18     6.07     9.85

pastoreo = No Browsing:
 meses emmean    SE   df lower.CL upper.CL
 0       7.27 0.804 7.18     5.38     9.16
 22      6.32 0.802 7.11     4.43     8.21
 29      6.59 0.804 7.18     4.70     8.48

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22     1.236 0.403 134  3.064  0.0074 
 0 - 29     0.772 0.407 134  1.895  0.1442 
 22 - 29   -0.464 0.403 134 -1.151  0.4844 

pastoreo = No Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22     0.949 0.403 134  2.353  0.0522 
 0 - 29     0.680 0.407 134  1.668  0.2212 
 22 - 29   -0.269 0.403 134 -0.668  0.7825 

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fe

fe_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: fe_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df den Df        F  Pr(>F)    
pastoreo            1      6   0.3182 0.59314    
meses               2    134 195.2049 < 2e-16 ***
pastoreo:meses      2    134   3.3444 0.03825 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean     SE  df asymp.LCL asymp.UCL
 Browsing     0.550 0.0555 Inf     0.442     0.659
 No Browsing  0.467 0.0604 Inf     0.349     0.586

Results are averaged over the levels of: meses 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate    SE  df z.ratio p.value
 Browsing - No Browsing    0.083 0.082 Inf 1.013   0.3110 

Results are averaged over the levels of: meses 
Note: contrasts are still on the inverse scale 
$`emmeans of meses`
 meses emmean     SE  df asymp.LCL asymp.UCL
 0      0.586 0.0416 Inf     0.504     0.667
 22     0.541 0.0414 Inf     0.459     0.622
 29     0.400 0.0412 Inf     0.319     0.481

Results are averaged over the levels of: pastoreo 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate      SE  df z.ratio p.value
 0 - 22    0.0451 0.01029 Inf  4.386  <.0001 
 0 - 29    0.1858 0.00917 Inf 20.265  <.0001 
 22 - 29   0.1406 0.00849 Inf 16.570  <.0001 

Results are averaged over the levels of: pastoreo 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean     SE  df asymp.LCL asymp.UCL
 0      0.636 0.0563 Inf     0.525     0.746
 22     0.568 0.0560 Inf     0.458     0.678
 29     0.447 0.0557 Inf     0.338     0.556

pastoreo = No Browsing:
 meses emmean     SE  df asymp.LCL asymp.UCL
 0      0.536 0.0611 Inf     0.416     0.656
 22     0.513 0.0610 Inf     0.393     0.633
 29     0.353 0.0606 Inf     0.234     0.472

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22    0.0674 0.0148 Inf  4.558  <.0001 
 0 - 29    0.1886 0.0135 Inf 14.020  <.0001 
 22 - 29   0.1212 0.0121 Inf 10.041  <.0001 

pastoreo = No Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22    0.0228 0.0143 Inf  1.596  0.2474 
 0 - 29    0.1829 0.0125 Inf 14.686  <.0001 
 22 - 29   0.1601 0.0119 Inf 13.411  <.0001 

Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 

K

k_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: k_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df den Df        F    Pr(>F)    
pastoreo            1   6.00   3.5557  0.108303    
meses               2 134.01 477.4712 < 2.2e-16 ***
pastoreo:meses      2 134.01   6.3832  0.002249 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean    SE  df asymp.LCL asymp.UCL
 Browsing      2.32 0.140 Inf      2.05      2.60
 No Browsing   1.59 0.139 Inf      1.32      1.86

Results are averaged over the levels of: meses 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate    SE  df z.ratio p.value
 Browsing - No Browsing    0.731 0.196 Inf 3.725   0.0002 

Results are averaged over the levels of: meses 
Note: contrasts are still on the inverse scale 
$`emmeans of meses`
 meses emmean     SE  df asymp.LCL asymp.UCL
 0      2.722 0.1273 Inf     2.473      2.97
 22     2.183 0.1130 Inf     1.962      2.40
 29     0.963 0.0962 Inf     0.775      1.15

Results are averaged over the levels of: pastoreo 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate     SE  df z.ratio p.value
 0 - 22     0.539 0.1111 Inf  4.852  <.0001 
 0 - 29     1.759 0.0935 Inf 18.813  <.0001 
 22 - 29    1.220 0.0725 Inf 16.837  <.0001 

Results are averaged over the levels of: pastoreo 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE  df asymp.LCL asymp.UCL
 0      3.554 0.200 Inf     3.163      3.95
 22     2.372 0.160 Inf     2.058      2.69
 29     1.040 0.132 Inf     0.782      1.30

pastoreo = No Browsing:
 meses emmean    SE  df asymp.LCL asymp.UCL
 0      1.891 0.157 Inf     1.583      2.20
 22     1.995 0.159 Inf     1.684      2.31
 29     0.886 0.138 Inf     0.615      1.16

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22     1.182 0.1867 Inf  6.332  <.0001 
 0 - 29     2.514 0.1629 Inf 15.434  <.0001 
 22 - 29    1.331 0.1096 Inf 12.141  <.0001 

pastoreo = No Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22    -0.104 0.1204 Inf -0.865  0.6622 
 0 - 29     1.005 0.0919 Inf 10.937  <.0001 
 22 - 29    1.109 0.0947 Inf 11.706  <.0001 

Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 

Mg

mg_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mg_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df den Df      F   Pr(>F)   
pastoreo            1      6 0.7514 0.419348   
meses               2    134 3.1375 0.046594 * 
pastoreo:meses      2    134 4.7869 0.009817 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean    SE  df asymp.LCL asymp.UCL
 Browsing     0.949 0.143 Inf     0.669      1.23
 No Browsing  0.760 0.152 Inf     0.462      1.06

Results are averaged over the levels of: meses 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate    SE  df z.ratio p.value
 Browsing - No Browsing    0.189 0.209 Inf 0.907   0.3647 

Results are averaged over the levels of: meses 
Note: contrasts are still on the inverse scale 
$`emmeans of meses`
 meses emmean    SE  df asymp.LCL asymp.UCL
 0      0.869 0.107 Inf     0.660      1.08
 22     0.899 0.107 Inf     0.689      1.11
 29     0.795 0.106 Inf     0.587      1.00

Results are averaged over the levels of: pastoreo 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate     SE  df z.ratio p.value
 0 - 22   -0.0295 0.0403 Inf -0.731  0.7451 
 0 - 29    0.0742 0.0376 Inf  1.974  0.1188 
 22 - 29   0.1037 0.0377 Inf  2.748  0.0165 

Results are averaged over the levels of: pastoreo 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE  df asymp.LCL asymp.UCL
 0      1.033 0.149 Inf     0.742      1.32
 22     0.981 0.147 Inf     0.692      1.27
 29     0.833 0.145 Inf     0.548      1.12

pastoreo = No Browsing:
 meses emmean    SE  df asymp.LCL asymp.UCL
 0      0.706 0.154 Inf     0.404      1.01
 22     0.817 0.155 Inf     0.513      1.12
 29     0.757 0.155 Inf     0.454      1.06

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22    0.0516 0.0659 Inf  0.783  0.7134 
 0 - 29    0.1994 0.0612 Inf  3.259  0.0032 
 22 - 29   0.1478 0.0576 Inf  2.563  0.0280 

pastoreo = No Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22   -0.1106 0.0465 Inf -2.380  0.0456 
 0 - 29   -0.0511 0.0437 Inf -1.169  0.4717 
 22 - 29   0.0596 0.0487 Inf  1.223  0.4393 

Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 

C/N

c_n ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: c_n ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df   den Df      F Pr(>F)
pastoreo            1   6.0002 0.4479 0.5283
meses               2 133.0226 1.0502 0.3528
pastoreo:meses      2 133.0226 0.3729 0.6895

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean      SE  df asymp.LCL asymp.UCL
 Browsing    0.0288 0.00412 Inf    0.0207    0.0368
 No Browsing 0.0319 0.00400 Inf    0.0241    0.0397

Results are averaged over the levels of: meses 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate      SE  df z.ratio p.value
 Browsing - No Browsing -0.00314 0.00571 Inf -0.550  0.5826 

Results are averaged over the levels of: meses 
Note: contrasts are still on the inverse scale 
$`emmeans of meses`
 meses emmean      SE  df asymp.LCL asymp.UCL
 0     0.0302 0.00308 Inf    0.0241    0.0362
 22    0.0289 0.00305 Inf    0.0230    0.0349
 29    0.0319 0.00313 Inf    0.0258    0.0380

Results are averaged over the levels of: pastoreo 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate      SE  df z.ratio p.value
 0 - 22   0.00124 0.00181 Inf  0.686  0.7719 
 0 - 29  -0.00172 0.00195 Inf -0.885  0.6499 
 22 - 29 -0.00296 0.00189 Inf -1.569  0.2593 

Results are averaged over the levels of: pastoreo 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean      SE  df asymp.LCL asymp.UCL
 0     0.0290 0.00437 Inf    0.0204    0.0376
 22    0.0265 0.00429 Inf    0.0181    0.0350
 29    0.0308 0.00442 Inf    0.0221    0.0394

pastoreo = No Browsing:
 meses emmean      SE  df asymp.LCL asymp.UCL
 0     0.0313 0.00430 Inf    0.0229    0.0398
 22    0.0313 0.00429 Inf    0.0229    0.0397
 29    0.0330 0.00438 Inf    0.0244    0.0416

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2        estimate      SE  df z.ratio p.value
 0 - 22   2.46e-03 0.00235 Inf  1.049  0.5462 
 0 - 29  -1.76e-03 0.00259 Inf -0.682  0.7740 
 22 - 29 -4.23e-03 0.00245 Inf -1.725  0.1959 

pastoreo = No Browsing:
 2        estimate      SE  df z.ratio p.value
 0 - 22   1.41e-05 0.00274 Inf  0.005  1.0000 
 0 - 29  -1.68e-03 0.00291 Inf -0.578  0.8320 
 22 - 29 -1.70e-03 0.00287 Inf -0.591  0.8250 

Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 

MO

mo ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mo ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df   den Df       F    Pr(>F)    
pastoreo            1   5.9992  0.4239    0.5391    
meses               2 134.0502 20.5449 1.649e-08 ***
pastoreo:meses      2 134.0502  0.0116    0.9885    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean     SE  df asymp.LCL asymp.UCL
 Browsing     0.221 0.0221 Inf     0.177     0.264
 No Browsing  0.246 0.0229 Inf     0.201     0.291

Results are averaged over the levels of: meses 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate     SE  df z.ratio p.value
 Browsing - No Browsing  -0.0253 0.0316 Inf -0.802  0.4226 

Results are averaged over the levels of: meses 
Note: contrasts are still on the inverse scale 
$`emmeans of meses`
 meses emmean     SE  df asymp.LCL asymp.UCL
 0      0.173 0.0171 Inf     0.140     0.207
 22     0.229 0.0190 Inf     0.192     0.266
 29     0.297 0.0222 Inf     0.254     0.341

Results are averaged over the levels of: pastoreo 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate     SE  df z.ratio p.value
 0 - 22   -0.0558 0.0162 Inf -3.437  0.0017 
 0 - 29   -0.1241 0.0199 Inf -6.250  <.0001 
 22 - 29  -0.0684 0.0216 Inf -3.166  0.0044 

Results are averaged over the levels of: pastoreo 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean     SE  df asymp.LCL asymp.UCL
 0      0.166 0.0236 Inf     0.120     0.212
 22     0.216 0.0261 Inf     0.165     0.267
 29     0.280 0.0302 Inf     0.221     0.339

pastoreo = No Browsing:
 meses emmean     SE  df asymp.LCL asymp.UCL
 0      0.181 0.0244 Inf     0.133     0.229
 22     0.242 0.0274 Inf     0.189     0.296
 29     0.315 0.0323 Inf     0.252     0.378

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22   -0.0501 0.0221 Inf -2.268  0.0603 
 0 - 29   -0.1141 0.0268 Inf -4.250  0.0001 
 22 - 29  -0.0640 0.0290 Inf -2.205  0.0703 

pastoreo = No Browsing:
 2       estimate     SE  df z.ratio p.value
 0 - 22   -0.0614 0.0238 Inf -2.585  0.0264 
 0 - 29   -0.1342 0.0293 Inf -4.585  <.0001 
 22 - 29  -0.0727 0.0320 Inf -2.274  0.0595 

Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 

pH Agua

p_h_agua_eez ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_agua_eez ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df   den Df       F    Pr(>F)    
pastoreo            1   5.9999  0.8325   0.39674    
meses               2 134.0153 23.1121 2.379e-09 ***
pastoreo:meses      2 134.0153  4.7246   0.01041 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean       SE  df asymp.LCL asymp.UCL
 Browsing     0.127 0.000757 Inf     0.126     0.129
 No Browsing  0.127 0.000760 Inf     0.125     0.128

Results are averaged over the levels of: meses 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate      SE  df z.ratio p.value
 Browsing - No Browsing 0.000823 0.00107 Inf 0.768   0.4427 

Results are averaged over the levels of: meses 
Note: contrasts are still on the inverse scale 
$`emmeans of meses`
 meses emmean       SE  df asymp.LCL asymp.UCL
 0      0.126 0.000573 Inf     0.125     0.128
 22     0.126 0.000571 Inf     0.125     0.127
 29     0.128 0.000574 Inf     0.127     0.129

Results are averaged over the levels of: pastoreo 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1        estimate       SE  df z.ratio p.value
 0 - 22   0.000249 0.000343 Inf  0.725  0.7487 
 0 - 29  -0.001982 0.000350 Inf -5.667  <.0001 
 22 - 29 -0.002230 0.000346 Inf -6.441  <.0001 

Results are averaged over the levels of: pastoreo 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean       SE  df asymp.LCL asymp.UCL
 0      0.126 0.000808 Inf     0.125     0.128
 22     0.126 0.000806 Inf     0.125     0.128
 29     0.129 0.000812 Inf     0.128     0.131

pastoreo = No Browsing:
 meses emmean       SE  df asymp.LCL asymp.UCL
 0      0.126 0.000811 Inf     0.125     0.128
 22     0.126 0.000808 Inf     0.124     0.127
 29     0.127 0.000812 Inf     0.126     0.129

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2        estimate       SE  df z.ratio p.value
 0 - 22  -6.92e-06 0.000485 Inf -0.014  0.9999 
 0 - 29  -3.06e-03 0.000496 Inf -6.169  <.0001 
 22 - 29 -3.05e-03 0.000492 Inf -6.202  <.0001 

pastoreo = No Browsing:
 2        estimate       SE  df z.ratio p.value
 0 - 22   5.05e-04 0.000485 Inf  1.040  0.5515 
 0 - 29  -9.05e-04 0.000493 Inf -1.838  0.1574 
 22 - 29 -1.41e-03 0.000487 Inf -2.894  0.0106 

Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 

pH KCl

p_h_k_cl ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_k_cl ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df   den Df       F    Pr(>F)    
pastoreo            1   5.9999  0.0072   0.93499    
meses               2 134.0178 17.3528 1.987e-07 ***
pastoreo:meses      2 134.0178  3.0542   0.05046 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean       SE  df asymp.LCL asymp.UCL
 Browsing     0.134 0.000849 Inf     0.132     0.135
 No Browsing  0.133 0.000850 Inf     0.132     0.135

Results are averaged over the levels of: meses 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate     SE  df z.ratio p.value
 Browsing - No Browsing 0.000109 0.0012 Inf 0.091   0.9277 

Results are averaged over the levels of: meses 
Note: contrasts are still on the inverse scale 
$`emmeans of meses`
 meses emmean       SE  df asymp.LCL asymp.UCL
 0      0.133 0.000647 Inf     0.131     0.134
 22     0.133 0.000645 Inf     0.132     0.134
 29     0.135 0.000650 Inf     0.134     0.136

Results are averaged over the levels of: pastoreo 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1        estimate       SE  df z.ratio p.value
 0 - 22  -0.000495 0.000415 Inf -1.194  0.4569 
 0 - 29  -0.002431 0.000422 Inf -5.763  <.0001 
 22 - 29 -0.001936 0.000419 Inf -4.622  <.0001 

Results are averaged over the levels of: pastoreo 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean       SE  df asymp.LCL asymp.UCL
 0      0.132 0.000914 Inf     0.130     0.134
 22     0.133 0.000912 Inf     0.131     0.135
 29     0.136 0.000920 Inf     0.134     0.137

pastoreo = No Browsing:
 meses emmean       SE  df asymp.LCL asymp.UCL
 0      0.133 0.000916 Inf     0.131     0.135
 22     0.133 0.000913 Inf     0.131     0.135
 29     0.134 0.000918 Inf     0.133     0.136

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2        estimate       SE  df z.ratio p.value
 0 - 22  -0.000888 0.000585 Inf -1.518  0.2822 
 0 - 29  -0.003500 0.000596 Inf -5.869  <.0001 
 22 - 29 -0.002612 0.000593 Inf -4.402  <.0001 

pastoreo = No Browsing:
 2        estimate       SE  df z.ratio p.value
 0 - 22  -0.000102 0.000588 Inf -0.174  0.9835 
 0 - 29  -0.001362 0.000596 Inf -2.284  0.0580 
 22 - 29 -0.001260 0.000591 Inf -2.131  0.0836 

Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 

NH4

  • No data
# A tibble: 1 x 3
# Groups:   meses, fecha [1]
  meses fecha          n
  <fct> <date>     <int>
1 0     2018-12-20    44

NO3

  • No data
# A tibble: 1 x 3
# Groups:   meses, fecha [1]
  meses fecha          n
  <fct> <date>     <int>
1 0     2018-12-20    47

P

p ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
               num Df   den Df       F    Pr(>F)    
pastoreo            1   5.9996  0.0232    0.8840    
meses               2 134.0368 12.0243 1.574e-05 ***
pastoreo:meses      2 134.0368  1.5180    0.2229    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean     SE  df asymp.LCL asymp.UCL
 Browsing      1.42 0.0982 Inf      1.23      1.62
 No Browsing   1.40 0.0995 Inf      1.21      1.60

Results are averaged over the levels of: meses 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate   SE  df z.ratio p.value
 Browsing - No Browsing   0.0211 0.14 Inf 0.151   0.8800 

Results are averaged over the levels of: meses 
Results are given on the log (not the response) scale. 
$`emmeans of meses`
 meses emmean     SE  df asymp.LCL asymp.UCL
 0       1.64 0.0862 Inf     1.468      1.81
 22      1.50 0.0884 Inf     1.329      1.68
 29      1.10 0.1017 Inf     0.899      1.30

Results are averaged over the levels of: pastoreo 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate     SE  df z.ratio p.value
 0 - 22     0.135 0.0954 Inf 1.411   0.3350 
 0 - 29     0.538 0.1077 Inf 4.998   <.0001 
 22 - 29    0.404 0.1095 Inf 3.686   0.0007 

Results are averaged over the levels of: pastoreo 
Results are given on the log (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE  df asymp.LCL asymp.UCL
 0      1.584 0.123 Inf     1.342      1.83
 22     1.450 0.127 Inf     1.201      1.70
 29     1.234 0.137 Inf     0.965      1.50

pastoreo = No Browsing:
 meses emmean    SE  df asymp.LCL asymp.UCL
 0      1.689 0.120 Inf     1.453      1.92
 22     1.554 0.123 Inf     1.313      1.80
 29     0.962 0.150 Inf     0.668      1.26

Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate    SE  df z.ratio p.value
 0 - 22     0.135 0.138 Inf 0.973   0.5941 
 0 - 29     0.351 0.148 Inf 2.372   0.0465 
 22 - 29    0.216 0.151 Inf 1.434   0.3232 

pastoreo = No Browsing:
 2       estimate    SE  df z.ratio p.value
 0 - 22     0.135 0.131 Inf 1.025   0.5610 
 0 - 29     0.726 0.157 Inf 4.633   <.0001 
 22 - 29    0.591 0.159 Inf 3.719   0.0006 

Results are given on the log (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 

N

n_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: n_percent
                 Chisq Df Pr(>Chisq)   
pastoreo        0.0361  1   0.849276   
meses          12.5842  2   0.001851 **
pastoreo:meses  0.4221  2   0.809750   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean     SE  df lower.CL upper.CL
 Browsing     -1.15 0.0752 137    -1.30    -1.00
 No Browsing  -1.17 0.0759 137    -1.32    -1.02

Results are averaged over the levels of: meses 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate    SE  df t.ratio p.value
 Browsing - No Browsing   0.0217 0.106 137 0.205   0.8379 

Results are averaged over the levels of: meses 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of meses`
 meses emmean     SE  df lower.CL upper.CL
 0     -0.959 0.0810 137    -1.12   -0.798
 22    -1.352 0.0863 137    -1.52   -1.181
 29    -1.180 0.0855 137    -1.35   -1.011

Results are averaged over the levels of: pastoreo 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate    SE  df t.ratio p.value
 0 - 22     0.393 0.111 137  3.528  0.0016 
 0 - 29     0.222 0.111 137  1.999  0.1163 
 22 - 29   -0.171 0.114 137 -1.498  0.2951 

Results are averaged over the levels of: pastoreo 
Results are given on the log odds ratio (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE  df lower.CL upper.CL
 0     -0.971 0.115 137    -1.20   -0.745
 22    -1.360 0.122 137    -1.60   -1.119
 29    -1.127 0.118 137    -1.36   -0.894

pastoreo = No Browsing:
 meses emmean    SE  df lower.CL upper.CL
 0     -0.946 0.114 137    -1.17   -0.721
 22    -1.344 0.121 137    -1.58   -1.104
 29    -1.233 0.123 137    -1.48   -0.990

Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22     0.389 0.158 137  2.463  0.0396 
 0 - 29     0.156 0.155 137  1.006  0.5741 
 22 - 29   -0.232 0.160 137 -1.452  0.3175 

pastoreo = No Browsing:
 2       estimate    SE  df t.ratio p.value
 0 - 22     0.398 0.157 137  2.527  0.0336 
 0 - 29     0.287 0.159 137  1.812  0.1694 
 22 - 29   -0.110 0.163 137 -0.675  0.7785 

Results are given on the log odds ratio (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 

Na

na_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: na_percent
                  Chisq Df Pr(>Chisq)    
pastoreo         3.3148  1  0.0686596 .  
meses          188.1372  2  < 2.2e-16 ***
pastoreo:meses  17.5761  2  0.0001525 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pastoreo`
 pastoreo    emmean     SE  df lower.CL upper.CL
 Browsing     -3.04 0.0970 138    -3.24    -2.85
 No Browsing  -2.73 0.0941 138    -2.92    -2.55

Results are averaged over the levels of: meses 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pastoreo`
 1                      estimate    SE  df t.ratio p.value
 Browsing - No Browsing    -0.31 0.135 138 -2.302  0.0228 

Results are averaged over the levels of: meses 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of meses`
 meses emmean     SE  df lower.CL upper.CL
 0      -3.31 0.0846 138    -3.48    -3.14
 22     -2.97 0.0781 138    -3.12    -2.82
 29     -2.39 0.0725 138    -2.53    -2.24

Results are averaged over the levels of: pastoreo 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses`
 1       estimate     SE  df t.ratio p.value
 0 - 22    -0.340 0.0750 138  -4.528 <.0001 
 0 - 29    -0.922 0.0695 138 -13.259 <.0001 
 22 - 29   -0.582 0.0616 138  -9.458 <.0001 

Results are averaged over the levels of: pastoreo 
Results are given on the log odds ratio (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of meses | pastoreo`
pastoreo = Browsing:
 meses emmean    SE  df lower.CL upper.CL
 0      -3.64 0.127 138    -3.90    -3.39
 22     -3.04 0.111 138    -3.26    -2.82
 29     -2.45 0.103 138    -2.65    -2.24

pastoreo = No Browsing:
 meses emmean    SE  df lower.CL upper.CL
 0      -2.97 0.111 138    -3.19    -2.75
 22     -2.90 0.109 138    -3.12    -2.68
 29     -2.33 0.102 138    -2.53    -2.13

Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of meses | pastoreo`
pastoreo = Browsing:
 2       estimate     SE  df t.ratio p.value
 0 - 22   -0.6061 0.1152 138  -5.259 <.0001 
 0 - 29   -1.1978 0.1076 138 -11.131 <.0001 
 22 - 29  -0.5918 0.0892 138  -6.637 <.0001 

pastoreo = No Browsing:
 2       estimate     SE  df t.ratio p.value
 0 - 22   -0.0729 0.0959 138  -0.760 0.7278 
 0 - 29   -0.6459 0.0878 138  -7.360 <.0001 
 22 - 29  -0.5730 0.0849 138  -6.752 <.0001 

Results are given on the log odds ratio (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 

General Overview

Mean + SE table

Characteristic Browsing No Browsing
0, N = 241 22, N = 251 29, N = 241 0, N = 241 22, N = 251 29, N = 241
humedad 11.39 (0.79) 10.07 (0.54) 11.91 (0.60) 12.86 (0.86) 6.94 (0.47) 10.67 (0.39)
fe_percent 1.72 (0.07) 1.98 (0.09) 2.61 (0.15) 1.89 (0.04) 1.97 (0.04) 2.89 (0.08)
k_percent 0.29 (0.02) 0.43 (0.02) 1.06 (0.05) 0.54 (0.03) 0.51 (0.03) 1.18 (0.04)
mg_percent 1.10 (0.07) 1.19 (0.08) 1.44 (0.10) 1.74 (0.21) 1.42 (0.12) 1.58 (0.16)
na_percent 0.03 (0.00) 0.05 (0.00) 0.08 (0.01) 0.05 (0.00) 0.05 (0.01) 0.09 (0.00)
n_percent 0.28 (0.03) 0.19 (0.01) 0.24 (0.02) 0.30 (0.04) 0.20 (0.02) 0.22 (0.02)
c_percent 8.73 (0.35) 7.46 (0.38) 7.96 (0.45) 7.27 (0.42) 6.31 (0.36) 6.59 (0.38)
c_n 37.98 (4.00) 41.90 (3.24) 35.46 (2.37) 34.30 (5.37) 34.69 (2.23) 32.21 (2.46)
cic 15.58 (0.47) 15.56 (0.35) 19.38 (0.30) 15.08 (0.36) 14.44 (0.42) 18.29 (0.50)
p 4.91 (0.35) 4.28 (0.47) 3.46 (0.38) 5.50 (0.33) 4.80 (0.80) 2.67 (0.25)
mo 6.15 (0.46) 4.68 (0.28) 3.60 (0.24) 5.86 (0.65) 4.24 (0.42) 3.25 (0.32)
p_h_k_cl 7.57 (0.03) 7.51 (0.02) 7.37 (0.03) 7.52 (0.03) 7.51 (0.03) 7.44 (0.03)
p_h_agua_eez 7.92 (0.03) 7.91 (0.03) 7.73 (0.03) 7.91 (0.02) 7.94 (0.02) 7.85 (0.03)

1 Mean (std.error)

Figures

Anovas table

zona
fecha
zona X fecha
Variables F p F p F p
c_n 0.448 0.528 1.050 0.353 0.373 0.689
cic 1.327 0.293 68.631 0.000 0.468 0.627
c_percent 1.503 0.266 7.566 0.001 0.133 0.876
k_percent 3.556 0.108 477.471 0.000 6.383 0.002
humedad 0.623 0.460 24.553 0.000 9.009 0.000
fe_percent 0.318 0.593 195.205 0.000 3.344 0.038
mg_percent 0.751 0.419 3.138 0.047 4.787 0.010
mo 0.424 0.539 20.545 0.000 0.012 0.989
p 0.023 0.884 12.024 0.000 1.518 0.223
p_h_agua_eez 0.832 0.397 23.112 0.000 4.725 0.010
p_h_k_cl 0.007 0.935 17.353 0.000 3.054 0.050
n_percent 0.036 0.849 12.584 0.002 0.422 0.810
na_percent 3.315 0.069 188.137 0.000 17.576 0.000

R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.1   gtsummary_1.4.2    plotrix_3.8-1      car_3.0-10        
 [5] carData_3.0-4      glmmADMB_0.8.3.3   glmmTMB_1.0.2.1    DHARMa_0.3.3.0    
 [9] afex_0.28-1        performance_0.7.2  multcomp_1.4-16    TH.data_1.0-10    
[13] mvtnorm_1.1-1      emmeans_1.5.4      lmerTest_3.1-3     lme4_1.1-27.1     
[17] Matrix_1.3-2       fitdistrplus_1.1-3 survival_3.2-7     MASS_7.3-53       
[21] ggpubr_0.4.0       janitor_2.1.0      here_1.0.1         forcats_0.5.1     
[25] stringr_1.4.0      dplyr_1.0.6        purrr_0.3.4        readr_1.4.0       
[29] tidyr_1.1.3        tibble_3.1.2       ggplot2_3.3.5      tidyverse_1.3.1   
[33] rmdformats_1.0.1   knitr_1.31         workflowr_1.6.2   

loaded via a namespace (and not attached):
  [1] minqa_1.2.4         colorspace_2.0-0    ggsignif_0.6.0     
  [4] ellipsis_0.3.2      rio_0.5.16          rprojroot_2.0.2    
  [7] estimability_1.3    snakecase_0.11.0    fs_1.5.0           
 [10] rstudioapi_0.13     farver_2.0.3        fansi_0.4.2        
 [13] lubridate_1.7.10    xml2_1.3.2          codetools_0.2-18   
 [16] splines_4.0.2       jsonlite_1.7.2      nloptr_1.2.2.2     
 [19] gt_0.3.0            pbkrtest_0.5-0.1    broom_0.7.9        
 [22] dbplyr_2.1.1        compiler_4.0.2      httr_1.4.2         
 [25] backports_1.2.1     assertthat_0.2.1    fastmap_1.1.0      
 [28] cli_2.5.0           formatR_1.8         later_1.1.0.1      
 [31] htmltools_0.5.2     tools_4.0.2         coda_0.19-4        
 [34] gtable_0.3.0        glue_1.4.2          reshape2_1.4.4     
 [37] Rcpp_1.0.7          cellranger_1.1.0    jquerylib_0.1.3    
 [40] vctrs_0.3.8         nlme_3.1-152        broom.helpers_1.3.0
 [43] iterators_1.0.13    insight_0.14.4      xfun_0.23          
 [46] openxlsx_4.2.3      rvest_1.0.0         lifecycle_1.0.0    
 [49] rstatix_0.6.0       zoo_1.8-8           scales_1.1.1       
 [52] hms_1.0.0           promises_1.2.0.1    parallel_4.0.2     
 [55] sandwich_3.0-0      TMB_1.7.19          yaml_2.2.1         
 [58] curl_4.3            sass_0.3.1          stringi_1.7.4      
 [61] highr_0.8           foreach_1.5.1       checkmate_2.0.0    
 [64] boot_1.3-26         zip_2.1.1           R2admb_0.7.16.2    
 [67] commonmark_1.7      rlang_0.4.10        pkgconfig_2.0.3    
 [70] evaluate_0.14       lattice_0.20-41     labeling_0.4.2     
 [73] tidyselect_1.1.1    plyr_1.8.6          magrittr_2.0.1     
 [76] bookdown_0.21.6     R6_2.5.0            generics_0.1.0     
 [79] DBI_1.1.1           pillar_1.6.1        haven_2.3.1        
 [82] whisker_0.4         foreign_0.8-81      withr_2.4.1        
 [85] abind_1.4-5         modelr_0.1.8        crayon_1.4.1       
 [88] utf8_1.1.4          rmarkdown_2.8       grid_4.0.2         
 [91] readxl_1.3.1        data.table_1.14.0   git2r_0.28.0       
 [94] webshot_0.5.2       reprex_2.0.0        digest_0.6.27      
 [97] xtable_1.8-4        httpuv_1.5.5        numDeriv_2016.8-1.1
[100] munsell_0.5.0      
 [ reached getOption("max.print") -- omitted 2 entries ]