Last updated: 2021-09-14
Checks: 7 0
Knit directory: soil_alcontar/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210907)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 9ba7a9d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/C369E4F4/
Ignored: .Rproj.user/shared/notebooks/0EF54E14-NOBORRAR/
Ignored: .Rproj.user/shared/notebooks/27FF967E-analysis_pre_post_epoca/
Ignored: .Rproj.user/shared/notebooks/33E25F73-analysis_resilience/
Ignored: .Rproj.user/shared/notebooks/3F603CAC-map/
Ignored: .Rproj.user/shared/notebooks/4672E36C-study_area/
Ignored: .Rproj.user/shared/notebooks/4A68381F-general_overview_soils/
Ignored: .Rproj.user/shared/notebooks/4E13660A-temporal_comparison/
Ignored: .Rproj.user/shared/notebooks/827D0727-analysis_pre_post/
Ignored: .Rproj.user/shared/notebooks/A3F813C2-index/
Ignored: .Rproj.user/shared/notebooks/D4E3AA10-analysis_zona_time/
Untracked files:
Untracked: analysis/NOBORRAR.Rmd
Untracked: analysis/analysis_pre_post_cache/
Untracked: analysis/study_area.Rmd
Untracked: analysis/test.Rmd
Untracked: data/spatial/01_EP_ANDALUCIA/EP_Andalucía.shp.DESKTOP-CKNNEUJ.5492.5304.sr.lock
Untracked: data/spatial/lucdeme/
Untracked: data/spatial/parcelas/GEO_PARCELAS.shp.DESKTOP-CKNNEUJ.5492.5304.sr.lock
Untracked: data/spatial/test/
Untracked: map.Rmd
Untracked: output/anovas_pre_post_epoca.csv
Untracked: output/anovas_zona_time.csv
Untracked: scripts/generate_3dview.R
Unstaged changes:
Modified: analysis/_site.yml
Modified: data/spatial/.DS_Store
Modified: data/spatial/01_EP_ANDALUCIA/EP_Andalucía.dbf
Deleted: index.Rmd
Modified: scripts/00_prepare_data.R
Modified: temporal_comparison.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_pre_post_epoca.Rmd
) and HTML (docs/analysis_pre_post_epoca.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 9ba7a9d | ajpelu | 2021-09-14 | add analysis by date Fire |
raw_soil <- readxl::read_excel(here::here("data/Resultados_Suelos_2018_2021_v2.xlsx"),
sheet = "SEGUIMIENTO_SUELOS_sin_ouliers") %>% janitor::clean_names() %>% mutate(treatment_name = case_when(str_detect(geo_parcela_nombre,
"NP_") ~ "Autumn Burning / No Browsing", str_detect(geo_parcela_nombre, "PR_") ~
"Spring Burning / Browsing", str_detect(geo_parcela_nombre, "P_") ~ "Autumn Burning / Browsing"),
zona = case_when(str_detect(geo_parcela_nombre, "NP_") ~ "QOt_NP", str_detect(geo_parcela_nombre,
"PR_") ~ "QPr_P", str_detect(geo_parcela_nombre, "P_") ~ "QOt_P"), fechaQuema = case_when(str_detect(geo_parcela_nombre,
"NP_") ~ "Ot", str_detect(geo_parcela_nombre, "PR_") ~ "Pr", str_detect(geo_parcela_nombre,
"P_") ~ "Ot"), fecha = lubridate::ymd(fecha), momento = case_when(pre_post_quema ==
"Prequema" ~ "0 preQuema", pre_post_quema == "Postquema" ~ "1 postQuema"))
soil <- raw_soil %>% filter(fecha %in% lubridate::ymd(c("2018-12-11", "2018-12-20",
"2019-04-24", "2019-05-09"))) %>% mutate(zona = as.factor(zona), momento = as.factor(momento))
fechaQuema
momento Ot Pr
0 preQuema 48 24
1 postQuema 48 24
\(Y \sim fechaQuema (Ot|Pr) + momento(pre|post) + fechaQuema \times momento\)
using the “(1|fechaQuema:geo_parcela_nombre)” as nested random effects
Then explore error distribution of the variable response and model diagnostics
Select the appropiate error distribution and use LMM or GLMM
Explore Post-hoc
Plot interactions
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
momento 461.74 461.74 1 130 50.4197 7.257e-11 ***
fechaQuema 0.53 0.53 1 10 0.0575 0.8153
momento:fechaQuema 439.95 439.95 1 130 48.0407 1.748e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
momento 461.7404592 461.7404592 1 130 50.41969020 7.256505e-11
fechaQuema 0.5268064 0.5268064 1 10 0.05752456 8.152969e-01
momento:fechaQuema 439.9539281 439.9539281 1 130 48.04071273 1.748462e-10
variable factor
momento humedad momento
fechaQuema humedad fechaQuema
momento:fechaQuema humedad momento:fechaQuema
$`emmeans of momento`
momento emmean SE df lower.CL upper.CL
0 preQuema 13.9 0.689 13.8 12.44 15.4
1 postQuema 10.1 0.689 13.8 8.64 11.6
Results are averaged over the levels of: fechaQuema
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 3.8 0.535 130 7.101 <.0001
Results are averaged over the levels of: fechaQuema
Degrees-of-freedom method: kenward-roger
$`emmeans of fechaQuema`
fechaQuema emmean SE df lower.CL upper.CL
Ot 12.2 0.734 10 10.54 13.8
Pr 11.9 1.038 10 9.56 14.2
Results are averaged over the levels of: momento
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df t.ratio p.value
Ot - Pr 0.305 1.27 10 0.240 0.8153
Results are averaged over the levels of: momento
Degrees-of-freedom method: kenward-roger
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df lower.CL upper.CL
0 preQuema 12.22 0.796 13.8 10.5 13.9
1 postQuema 12.13 0.796 13.8 10.4 13.8
fechaQuema = Pr:
momento emmean SE df lower.CL upper.CL
0 preQuema 15.62 1.126 13.8 13.2 18.0
1 postQuema 8.11 1.126 13.8 5.7 10.5
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 0.0907 0.618 130 0.147 0.8835
fechaQuema = Pr:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 7.5065 0.874 130 8.593 <.0001
Degrees-of-freedom method: kenward-roger
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
momento 18.503 18.503 1 130 5.1118 0.02543 *
fechaQuema 35.605 35.605 1 10 9.8361 0.01058 *
momento:fechaQuema 8.337 8.337 1 130 2.3031 0.13154
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
momento 18.503472 18.503472 1 130.000001 5.111751 0.02542616
fechaQuema 35.604511 35.604511 1 9.999998 9.836067 0.01057742
momento:fechaQuema 8.336806 8.336806 1 130.000001 2.303118 0.13154272
variable factor
momento cic momento
fechaQuema cic fechaQuema
momento:fechaQuema cic momento:fechaQuema
$`emmeans of momento`
momento emmean SE df lower.CL upper.CL
0 preQuema 14.9 0.496 12.8 13.8 16.0
1 postQuema 14.1 0.496 12.8 13.1 15.2
Results are averaged over the levels of: fechaQuema
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 0.76 0.336 130 2.261 0.0254
Results are averaged over the levels of: fechaQuema
Degrees-of-freedom method: kenward-roger
$`emmeans of fechaQuema`
fechaQuema emmean SE df lower.CL upper.CL
Ot 16 0.539 10 14.8 17.2
Pr 13 0.762 10 11.3 14.7
Results are averaged over the levels of: momento
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df t.ratio p.value
Ot - Pr 2.93 0.933 10 3.136 0.0106
Results are averaged over the levels of: momento
Degrees-of-freedom method: kenward-roger
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df lower.CL upper.CL
0 preQuema 16.6 0.573 12.8 15.4 17.8
1 postQuema 15.3 0.573 12.8 14.1 16.6
fechaQuema = Pr:
momento emmean SE df lower.CL upper.CL
0 preQuema 13.2 0.810 12.8 11.4 14.9
1 postQuema 12.9 0.810 12.8 11.2 14.7
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 1.27 0.388 130 3.272 0.0014
fechaQuema = Pr:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 0.25 0.549 130 0.455 0.6497
Degrees-of-freedom method: kenward-roger
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
momento 13.3214 13.3214 1 130 6.1796 0.01419 *
fechaQuema 0.2542 0.2542 1 10 0.1179 0.73843
momento:fechaQuema 0.5636 0.5636 1 130 0.2614 0.61001
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
momento 13.3214014 13.3214014 1 130.000000 6.1795805 0.01419189
fechaQuema 0.2541669 0.2541669 1 9.999999 0.1179039 0.73842869
momento:fechaQuema 0.5635681 0.5635681 1 130.000000 0.2614300 0.61000674
variable factor
momento c_percent momento
fechaQuema c_percent fechaQuema
momento:fechaQuema c_percent momento:fechaQuema
$`emmeans of momento`
momento emmean SE df lower.CL upper.CL
0 preQuema 7.14 0.455 11.8 6.14 8.13
1 postQuema 7.78 0.455 11.8 6.79 8.77
Results are averaged over the levels of: fechaQuema
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema -0.645 0.26 130 -2.486 0.0142
Results are averaged over the levels of: fechaQuema
Degrees-of-freedom method: kenward-roger
$`emmeans of fechaQuema`
fechaQuema emmean SE df lower.CL upper.CL
Ot 7.61 0.503 10 6.49 8.73
Pr 7.31 0.712 10 5.72 8.90
Results are averaged over the levels of: momento
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df t.ratio p.value
Ot - Pr 0.299 0.872 10 0.343 0.7384
Results are averaged over the levels of: momento
Degrees-of-freedom method: kenward-roger
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df lower.CL upper.CL
0 preQuema 7.22 0.525 11.8 6.07 8.37
1 postQuema 8.00 0.525 11.8 6.85 9.14
fechaQuema = Pr:
momento emmean SE df lower.CL upper.CL
0 preQuema 7.05 0.743 11.8 5.43 8.67
1 postQuema 7.57 0.743 11.8 5.95 9.19
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema -0.778 0.300 130 -2.596 0.0105
fechaQuema = Pr:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema -0.512 0.424 130 -1.209 0.2288
Degrees-of-freedom method: kenward-roger
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: fe_percent ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 0.28 .598
2 fechaQuema 1, 10 0.46 .512
3 momento:fechaQuema 1, 130 0.21 .648
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: fe_percent ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 0.2796 0.5979
fechaQuema 1 10 0.4631 0.5116
momento:fechaQuema 1 130 0.2093 0.6481
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.545 0.036 Inf 0.475 0.616
1 postQuema 0.554 0.036 Inf 0.484 0.625
Results are averaged over the levels of: fechaQuema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.00898 0.0167 Inf -0.539 0.5898
Results are averaged over the levels of: fechaQuema
Note: contrasts are still on the inverse scale
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 0.568 0.0398 Inf 0.490 0.646
Pr 0.532 0.0573 Inf 0.419 0.644
Results are averaged over the levels of: momento
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr 0.0364 0.0695 Inf 0.524 0.6006
Results are averaged over the levels of: momento
Note: contrasts are still on the inverse scale
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.559 0.0410 Inf 0.479 0.640
1 postQuema 0.576 0.0411 Inf 0.496 0.657
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.531 0.0588 Inf 0.416 0.646
1 postQuema 0.532 0.0588 Inf 0.417 0.647
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.01688 0.0200 Inf -0.843 0.3991
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.00109 0.0266 Inf -0.041 0.9675
Note: contrasts are still on the inverse scale
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mo ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 0.60 .439
2 fechaQuema 1, 10 35.18 *** <.001
3 momento:fechaQuema 1, 130 0.91 .341
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mo ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 0.6020 0.4392419
fechaQuema 1 10 35.1850 0.0001448 ***
momento:fechaQuema 1 130 0.9143 0.3407472
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.271 0.0190 Inf 0.233 0.308
1 postQuema 0.265 0.0191 Inf 0.228 0.302
Results are averaged over the levels of: fechaQuema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.00557 0.0229 Inf 0.243 0.8082
Results are averaged over the levels of: fechaQuema
Note: contrasts are still on the inverse scale
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 0.181 0.0143 Inf 0.153 0.209
Pr 0.355 0.0265 Inf 0.303 0.407
Results are averaged over the levels of: momento
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr -0.175 0.0298 Inf -5.859 <.0001
Results are averaged over the levels of: momento
Note: contrasts are still on the inverse scale
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.190 0.0166 Inf 0.158 0.223
1 postQuema 0.171 0.0158 Inf 0.140 0.202
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.351 0.0339 Inf 0.285 0.417
1 postQuema 0.359 0.0345 Inf 0.292 0.427
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.01929 0.0152 Inf 1.269 0.2044
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.00815 0.0433 Inf -0.188 0.8507
Note: contrasts are still on the inverse scale
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: k_percent ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 1.92 .168
2 fechaQuema 1, 10 8.33 * .016
3 momento:fechaQuema 1, 130 0.00 .976
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: k_percent ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 1.9189 0.16835
fechaQuema 1 10 8.3254 0.01624 *
momento:fechaQuema 1 130 0.0009 0.97555
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 2.06 0.286 Inf 1.50 2.62
1 postQuema 2.18 0.287 Inf 1.62 2.74
Results are averaged over the levels of: fechaQuema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.119 0.0844 Inf -1.414 0.1574
Results are averaged over the levels of: fechaQuema
Note: contrasts are still on the inverse scale
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 2.73 0.287 Inf 2.167 3.29
Pr 1.51 0.487 Inf 0.554 2.46
Results are averaged over the levels of: momento
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr 1.22 0.565 Inf 2.161 0.0307
Results are averaged over the levels of: momento
Note: contrasts are still on the inverse scale
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 2.64 0.294 Inf 2.063 3.21
1 postQuema 2.82 0.296 Inf 2.242 3.40
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 1.48 0.490 Inf 0.522 2.44
1 postQuema 1.54 0.490 Inf 0.576 2.50
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.1833 0.132 Inf -1.386 0.1657
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.0554 0.105 Inf -0.528 0.5975
Note: contrasts are still on the inverse scale
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mg_percent ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 0.96 .329
2 fechaQuema 1, 10 4.01 + .073
3 momento:fechaQuema 1, 130 0.13 .719
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mg_percent ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 0.9587 0.32933
fechaQuema 1 10 4.0114 0.07304 .
momento:fechaQuema 1 130 0.1300 0.71903
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.738 0.0953 Inf 0.551 0.925
1 postQuema 0.699 0.0950 Inf 0.513 0.885
Results are averaged over the levels of: fechaQuema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.0394 0.0329 Inf 1.197 0.2313
Results are averaged over the levels of: fechaQuema
Note: contrasts are still on the inverse scale
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 0.888 0.100 Inf 0.691 1.084
Pr 0.549 0.158 Inf 0.240 0.858
Results are averaged over the levels of: momento
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr 0.338 0.186 Inf 1.816 0.0693
Results are averaged over the levels of: momento
Note: contrasts are still on the inverse scale
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.920 0.103 Inf 0.717 1.122
1 postQuema 0.856 0.102 Inf 0.655 1.056
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.557 0.159 Inf 0.244 0.869
1 postQuema 0.542 0.159 Inf 0.230 0.854
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.0643 0.0469 Inf 1.371 0.1702
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.0146 0.0463 Inf 0.315 0.7530
Note: contrasts are still on the inverse scale
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: c_n ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 0.05 .815
2 fechaQuema 1, 10 0.56 .471
3 momento:fechaQuema 1, 130 0.80 .372
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: c_n ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 0.0550 0.8150
fechaQuema 1 10 0.5601 0.4715
momento:fechaQuema 1 130 0.8031 0.3718
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.0266 0.00265 Inf 0.0214 0.0318
1 postQuema 0.0272 0.00265 Inf 0.0220 0.0324
Results are averaged over the levels of: fechaQuema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.000626 0.00163 Inf -0.385 0.7000
Results are averaged over the levels of: fechaQuema
Note: contrasts are still on the inverse scale
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 0.0288 0.00291 Inf 0.0231 0.0345
Pr 0.0250 0.00408 Inf 0.0170 0.0330
Results are averaged over the levels of: momento
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr 0.00388 0.00496 Inf 0.781 0.4346
Results are averaged over the levels of: momento
Note: contrasts are still on the inverse scale
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.0277 0.00305 Inf 0.0217 0.0336
1 postQuema 0.0300 0.00311 Inf 0.0239 0.0361
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.0255 0.00429 Inf 0.0171 0.0339
1 postQuema 0.0244 0.00425 Inf 0.0161 0.0327
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.00236 0.00202 Inf -1.171 0.2415
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.00111 0.00255 Inf 0.435 0.6636
Note: contrasts are still on the inverse scale
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 0.45 .502
2 fechaQuema 1, 10 8.17 * .017
3 momento:fechaQuema 1, 130 9.31 ** .003
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 0.4536 0.501823
fechaQuema 1 10 8.1689 0.017011 *
momento:fechaQuema 1 130 9.3060 0.002769 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 1.62 0.0628 Inf 1.50 1.74
1 postQuema 1.70 0.0619 Inf 1.58 1.82
Results are averaged over the levels of: fechaQuema
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.0834 0.0746 Inf -1.118 0.2635
Results are averaged over the levels of: fechaQuema
Results are given on the log (not the response) scale.
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 1.49 0.0614 Inf 1.37 1.61
Pr 1.83 0.0788 Inf 1.68 1.99
Results are averaged over the levels of: momento
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr -0.338 0.1 Inf -3.379 0.0007
Results are averaged over the levels of: momento
Results are given on the log (not the response) scale.
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 1.34 0.0819 Inf 1.18 1.50
1 postQuema 1.65 0.0730 Inf 1.50 1.79
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 1.90 0.0951 Inf 1.71 2.09
1 postQuema 1.76 0.0994 Inf 1.57 1.96
Results are given on the log (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.306 0.0947 Inf -3.227 0.0012
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.139 0.1140 Inf 1.217 0.2235
Results are given on the log (not the response) scale.
$`emmeans of momento`
momento emmean SE df lower.CL upper.CL
0 preQuema -1.33 0.0758 138 -1.48 -1.18
1 postQuema -1.18 0.0742 138 -1.32 -1.03
Results are averaged over the levels of: fechaQuema
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema -0.153 0.105 138 -1.461 0.1463
Results are averaged over the levels of: fechaQuema
Results are given on the log odds ratio (not the response) scale.
$`emmeans of fechaQuema`
fechaQuema emmean SE df lower.CL upper.CL
Ot -1.11 0.0590 138 -1.23 -0.997
Pr -1.39 0.0883 138 -1.57 -1.219
Results are averaged over the levels of: momento
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df t.ratio p.value
Ot - Pr 0.28 0.105 138 2.673 0.0084
Results are averaged over the levels of: momento
Results are given on the log odds ratio (not the response) scale.
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df lower.CL upper.CL
0 preQuema -1.276 0.0857 138 -1.45 -1.106
1 postQuema -0.952 0.0798 138 -1.11 -0.794
fechaQuema = Pr:
momento emmean SE df lower.CL upper.CL
0 preQuema -1.384 0.1237 138 -1.63 -1.140
1 postQuema -1.403 0.1243 138 -1.65 -1.157
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema -0.3240 0.116 138 -2.789 0.0060
fechaQuema = Pr:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 0.0182 0.174 138 0.104 0.9171
Results are given on the log odds ratio (not the response) scale.
$`emmeans of momento`
momento emmean SE df lower.CL upper.CL
0 preQuema -2.95 0.116 138 -3.18 -2.72
1 postQuema -3.02 0.117 138 -3.25 -2.78
Results are averaged over the levels of: fechaQuema
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 0.0699 0.0893 138 0.784 0.4346
Results are averaged over the levels of: fechaQuema
Results are given on the log odds ratio (not the response) scale.
$`emmeans of fechaQuema`
fechaQuema emmean SE df lower.CL upper.CL
Ot -3.15 0.126 138 -3.40 -2.90
Pr -2.81 0.172 138 -3.15 -2.47
Results are averaged over the levels of: momento
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df t.ratio p.value
Ot - Pr -0.341 0.212 138 -1.606 0.1106
Results are averaged over the levels of: momento
Results are given on the log odds ratio (not the response) scale.
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df lower.CL upper.CL
0 preQuema -3.10 0.137 138 -3.38 -2.83
1 postQuema -3.20 0.139 138 -3.47 -2.92
fechaQuema = Pr:
momento emmean SE df lower.CL upper.CL
0 preQuema -2.79 0.186 138 -3.15 -2.42
1 postQuema -2.83 0.186 138 -3.20 -2.47
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 0.0936 0.112 138 0.833 0.4065
fechaQuema = Pr:
2 estimate SE df t.ratio p.value
0 preQuema - 1 postQuema 0.0463 0.139 138 0.334 0.7389
Results are given on the log odds ratio (not the response) scale.
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p_h_agua_eez ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 0.99 .322
2 fechaQuema 1, 10 9.29 * .012
3 momento:fechaQuema 1, 130 10.51 ** .002
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p_h_agua_eez ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 0.9889 0.321856
fechaQuema 1 10 9.2903 0.012294 *
momento:fechaQuema 1 130 10.5108 0.001508 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.1255 0.0003116 Inf 0.1249 0.1261
1 postQuema 0.1251 0.0003101 Inf 0.1245 0.1257
Results are averaged over the levels of: fechaQuema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.00039 0.000397 Inf 0.982 0.3261
Results are averaged over the levels of: fechaQuema
Note: contrasts are still on the inverse scale
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 0.1259 0.0002773 Inf 0.1254 0.1265
Pr 0.1247 0.0003898 Inf 0.1239 0.1255
Results are averaged over the levels of: momento
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr 0.00123 0.000478 Inf 2.570 0.0102
Results are averaged over the levels of: momento
Note: contrasts are still on the inverse scale
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.125 0.000359 Inf 0.125 0.126
1 postQuema 0.126 0.000362 Inf 0.126 0.127
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.126 0.000509 Inf 0.125 0.127
1 postQuema 0.124 0.000503 Inf 0.123 0.125
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema -0.000918 0.000460 Inf -1.994 0.0461
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.001697 0.000646 Inf 2.628 0.0086
Note: contrasts are still on the inverse scale
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p_h_k_cl ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
Effect df F p.value
1 momento 1, 130 45.36 *** <.001
2 fechaQuema 1, 10 5.70 * .038
3 momento:fechaQuema 1, 130 9.39 ** .003
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p_h_k_cl ~ momento * fechaQuema + (1 | fechaQuema:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
momento 1 130 45.3634 4.776e-10 ***
fechaQuema 1 10 5.7006 0.038115 *
momento:fechaQuema 1 130 9.3932 0.002649 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`emmeans of momento`
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.134 0.000631 Inf 0.132 0.135
1 postQuema 0.131 0.000628 Inf 0.130 0.132
Results are averaged over the levels of: fechaQuema
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento`
1 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.00263 0.000383 Inf 6.876 <.0001
Results are averaged over the levels of: fechaQuema
Note: contrasts are still on the inverse scale
$`emmeans of fechaQuema`
fechaQuema emmean SE df asymp.LCL asymp.UCL
Ot 0.133 0.000689 Inf 0.132 0.135
Pr 0.131 0.000981 Inf 0.129 0.133
Results are averaged over the levels of: momento
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of fechaQuema`
1 estimate SE df z.ratio p.value
Ot - Pr 0.00216 0.0012 Inf 1.806 0.0710
Results are averaged over the levels of: momento
Note: contrasts are still on the inverse scale
$`emmeans of momento | fechaQuema`
fechaQuema = Ot:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.134 0.000725 Inf 0.133 0.135
1 postQuema 0.133 0.000724 Inf 0.131 0.134
fechaQuema = Pr:
momento emmean SE df asymp.LCL asymp.UCL
0 preQuema 0.133 0.001032 Inf 0.131 0.135
1 postQuema 0.129 0.001026 Inf 0.127 0.131
Results are given on the inverse (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of momento | fechaQuema`
fechaQuema = Ot:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.00147 0.000446 Inf 3.291 0.0010
fechaQuema = Pr:
2 estimate SE df z.ratio p.value
0 preQuema - 1 postQuema 0.00379 0.000621 Inf 6.105 <.0001
Note: contrasts are still on the inverse scale
momento
fechaQuema 0 preQuema 1 postQuema
Ot 48 43
Characteristic | 0 preQuema | 1 postQuema | ||
---|---|---|---|---|
Ot, N = 481 | Pr, N = 241 | Ot, N = 481 | Pr, N = 241 | |
humedad | 12.22 (0.50) | 15.62 (0.63) | 12.13 (0.59) | 8.11 (0.53) |
n_nh4 | 0.62 (0.03) | NA (NA) | 2.91 (0.36) | NA (NA) |
n_no3 | 0.92 (0.07) | NA (NA) | 0.81 (0.07) | NA (NA) |
fe_percent | 1.86 (0.07) | 1.95 (0.08) | 1.80 (0.04) | 1.95 (0.09) |
k_percent | 0.45 (0.03) | 0.79 (0.06) | 0.41 (0.03) | 0.75 (0.06) |
mg_percent | 1.29 (0.09) | 2.00 (0.14) | 1.42 (0.12) | 2.06 (0.18) |
na_percent | 0.04 (0.00) | 0.06 (0.01) | 0.04 (0.00) | 0.06 (0.01) |
n_percent | 0.22 (0.01) | 0.19 (0.02) | 0.29 (0.02) | 0.18 (0.01) |
c_percent | 7.22 (0.30) | 7.05 (0.31) | 8.00 (0.29) | 7.57 (0.38) |
c_n | 39.72 (2.77) | 41.62 (3.62) | 36.14 (3.32) | 43.72 (3.06) |
cic | 16.60 (0.34) | 13.17 (0.49) | 15.33 (0.29) | 12.92 (0.55) |
p | 3.83 (0.17) | 6.75 (0.92) | 5.20 (0.24) | 5.88 (0.25) |
mo | 5.37 (0.30) | 2.87 (0.32) | 6.00 (0.39) | 2.80 (0.16) |
p_h_k_cl | 7.46 (0.02) | 7.52 (0.04) | 7.54 (0.02) | 7.74 (0.03) |
p_h_agua_eez | 7.97 (0.02) | 7.97 (0.04) | 7.91 (0.02) | 8.07 (0.02) |
1
Mean (std.error)
|
Characteristic | Ot | Pr | ||
---|---|---|---|---|
0 preQuema, N = 481 | 1 postQuema, N = 481 | 0 preQuema, N = 241 | 1 postQuema, N = 241 | |
humedad | 12.22 (0.50) | 12.13 (0.59) | 15.62 (0.63) | 8.11 (0.53) |
n_nh4 | 0.62 (0.03) | 2.91 (0.36) | NA (NA) | NA (NA) |
n_no3 | 0.92 (0.07) | 0.81 (0.07) | NA (NA) | NA (NA) |
fe_percent | 1.86 (0.07) | 1.80 (0.04) | 1.95 (0.08) | 1.95 (0.09) |
k_percent | 0.45 (0.03) | 0.41 (0.03) | 0.79 (0.06) | 0.75 (0.06) |
mg_percent | 1.29 (0.09) | 1.42 (0.12) | 2.00 (0.14) | 2.06 (0.18) |
na_percent | 0.04 (0.00) | 0.04 (0.00) | 0.06 (0.01) | 0.06 (0.01) |
n_percent | 0.22 (0.01) | 0.29 (0.02) | 0.19 (0.02) | 0.18 (0.01) |
c_percent | 7.22 (0.30) | 8.00 (0.29) | 7.05 (0.31) | 7.57 (0.38) |
c_n | 39.72 (2.77) | 36.14 (3.32) | 41.62 (3.62) | 43.72 (3.06) |
cic | 16.60 (0.34) | 15.33 (0.29) | 13.17 (0.49) | 12.92 (0.55) |
p | 3.83 (0.17) | 5.20 (0.24) | 6.75 (0.92) | 5.88 (0.25) |
mo | 5.37 (0.30) | 6.00 (0.39) | 2.87 (0.32) | 2.80 (0.16) |
p_h_k_cl | 7.46 (0.02) | 7.54 (0.02) | 7.52 (0.04) | 7.74 (0.03) |
p_h_agua_eez | 7.97 (0.02) | 7.91 (0.02) | 7.97 (0.04) | 8.07 (0.02) |
1
Mean (std.error)
|
Variables | F | p | F | p | F | p |
---|---|---|---|---|---|---|
c_n | 0.560 | 0.471 | 0.055 | 0.815 | 0.803 | 0.372 |
cic | 9.836 | 0.011 | 5.112 | 0.025 | 2.303 | 0.132 |
k_percent | 8.325 | 0.016 | 1.919 | 0.168 | 0.001 | 0.976 |
mg_percent | 4.011 | 0.073 | 0.959 | 0.329 | 0.130 | 0.719 |
mo | 35.185 | 0.000 | 0.602 | 0.439 | 0.914 | 0.341 |
n_nh4 | NA | NA | 403.000 | 0.000 | NA | NA |
n_no3 | NA | NA | 1198.500 | 0.187 | NA | NA |
p | 8.169 | 0.017 | 0.454 | 0.502 | 9.306 | 0.003 |
p_h_agua_eez | 9.290 | 0.012 | 0.989 | 0.322 | 10.511 | 0.002 |
p_h_k_cl | 5.701 | 0.038 | 45.363 | 0.000 | 9.393 | 0.003 |
humedad | 0.058 | 0.815 | 50.420 | 0.000 | 48.041 | 0.000 |
n_percent | 7.294 | 0.007 | 5.121 | 0.024 | 2.671 | 0.102 |
c_percent | 0.118 | 0.738 | 6.180 | 0.014 | 0.261 | 0.610 |
na_percent | 2.571 | 0.109 | 0.735 | 0.391 | 0.070 | 0.791 |
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] kableExtra_1.3.1 gtsummary_1.4.2 plotrix_3.8-1 glmmTMB_1.0.2.1
[5] afex_0.28-1 performance_0.7.2 multcomp_1.4-16 TH.data_1.0-10
[9] mvtnorm_1.1-1 emmeans_1.5.4 lmerTest_3.1-3 lme4_1.1-27.1
[13] Matrix_1.3-2 fitdistrplus_1.1-3 survival_3.2-7 MASS_7.3-53
[17] ggpubr_0.4.0 janitor_2.1.0 here_1.0.1 forcats_0.5.1
[21] stringr_1.4.0 dplyr_1.0.6 purrr_0.3.4 readr_1.4.0
[25] tidyr_1.1.3 tibble_3.1.2 ggplot2_3.3.5 tidyverse_1.3.1
[29] rmdformats_1.0.1 knitr_1.31 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] minqa_1.2.4 colorspace_2.0-0 ggsignif_0.6.0
[4] ellipsis_0.3.2 rio_0.5.16 rprojroot_2.0.2
[7] estimability_1.3 snakecase_0.11.0 fs_1.5.0
[10] rstudioapi_0.13 farver_2.0.3 fansi_0.4.2
[13] lubridate_1.7.10 xml2_1.3.2 codetools_0.2-18
[16] splines_4.0.2 jsonlite_1.7.2 nloptr_1.2.2.2
[19] gt_0.3.0 pbkrtest_0.5-0.1 broom_0.7.9
[22] dbplyr_2.1.1 compiler_4.0.2 httr_1.4.2
[25] backports_1.2.1 assertthat_0.2.1 fastmap_1.1.0
[28] cli_2.5.0 formatR_1.8 later_1.1.0.1
[31] htmltools_0.5.2 tools_4.0.2 coda_0.19-4
[34] gtable_0.3.0 glue_1.4.2 reshape2_1.4.4
[37] Rcpp_1.0.7 carData_3.0-4 cellranger_1.1.0
[40] jquerylib_0.1.3 vctrs_0.3.8 nlme_3.1-152
[43] broom.helpers_1.3.0 insight_0.14.4 xfun_0.23
[46] openxlsx_4.2.3 rvest_1.0.0 lifecycle_1.0.0
[49] rstatix_0.6.0 zoo_1.8-8 scales_1.1.1
[52] hms_1.0.0 promises_1.2.0.1 parallel_4.0.2
[55] sandwich_3.0-0 TMB_1.7.19 yaml_2.2.1
[58] curl_4.3 sass_0.3.1 stringi_1.7.4
[61] highr_0.8 checkmate_2.0.0 boot_1.3-26
[64] zip_2.1.1 commonmark_1.7 rlang_0.4.10
[67] pkgconfig_2.0.3 evaluate_0.14 lattice_0.20-41
[70] labeling_0.4.2 tidyselect_1.1.1 plyr_1.8.6
[73] magrittr_2.0.1 bookdown_0.21.6 R6_2.5.0
[76] generics_0.1.0 DBI_1.1.1 pillar_1.6.1
[79] haven_2.3.1 whisker_0.4 foreign_0.8-81
[82] withr_2.4.1 abind_1.4-5 modelr_0.1.8
[85] crayon_1.4.1 car_3.0-10 utf8_1.1.4
[88] rmarkdown_2.8 grid_4.0.2 readxl_1.3.1
[91] data.table_1.14.0 git2r_0.28.0 webshot_0.5.2
[94] reprex_2.0.0 digest_0.6.27 xtable_1.8-4
[97] httpuv_1.5.5 numDeriv_2016.8-1.1 munsell_0.5.0
[100] viridisLite_0.3.0 bslib_0.2.4